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Abstract— In this paper, an actuator fault-tolerant control
(FTC) scheme is proposed, which is based on tube-based model
predictive control (MPC) and set-theoretic fault detection and
isolation (FDI). As a robust MPC technique, tube-based MPC,
can effectively deal with system constraints and uncertainties
with relatively low computational complexity. Set-based FDI can
robustly detect and isolate actuator faults. Here, fault detection
(FD) is passive by invariant sets, while fault isolation (FI) is
active by tubes. Using the constraint-handling ability of MPC
controllers, an active FI approach is implemented. A numerical
example illustrates the effectiveness of the proposed approach.

I. INTRODUCTION

The objective of FTC is to maintain satisfactory perfor-
mance for the controlled system even in the presence of
faults. Generally, FTC is divided into passive FTC (PFTC)
and active FTC (AFTC) [3]. In this paper, AFTC is consid-
ered, which is based on MPC. Due to the ability to deal with
system constraints, MPC is chosen as the control strategy
for this proposed approach. Besides, MPC is implemented
by optimizing the cost function on-line, which endows MPC
with a degree of inherent fault-tolerant ability. Thus, if MPC
can be integrated into the proposed FTC approach, it may
have some interesting features [5].

Fault-tolerant model predictive control (FTMPC) has been
investigated in the literature. In [12], an FTMPC scheme
using the Kalman filter is proposed, which focuses on the im-
plementation of an FTMPC scheme without considering the
features such as stability and feasibility. In [1], an FTMPC
scheme with invariant set-based FDI is presented, which
has relatively less computational complexity. However, the
passive implementation of FDI limits the design of reference
states and inputs in order to guarantee set separation, which
implies the loss of potential system performance to some
extent. Besides, in [9], another FTMPC scheme using set-
membership FDI is done, whose main advantage consists in
using an active FI method to loosen FI conditions. However,
due to the requirements for guaranteeing set separation on-
line, this approach is at high complexity.
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Comparing with the existing FTMPC schemes, the objec-
tive of this paper consists in proposing a new scheme to not
only obtain less conservative FI conditions but also imple-
ment FTC with relatively low complexity. In this proposed
scheme, FD is passively implemented by invariant sets and
FI is actively done by tubes that can isolate faults at transient
state. Besides, FI conditions can be prechecked off-line by
invariant sets but established on-line by MPC controllers.

The advantages of this FTC scheme are threefold. First,
it proposes a novel method to integrate MPC with set-based
FDI. Second, it proposes a simple active FI strategy to obtain
guaranteed FI. Third, it can reduce the complexity of the
existing set-based active FI and decrease the conservatism
of FI conditions of the set-based passive FI [9], [1].

The remaining of the paper is organized as follows. In
Section II, the FTMPC scheme is introduced. In Section
III, the FDI approach based on invariant sets and tubes
is presented. Section IV proposes the FTC strategy. In
Section V, an example is used to show the effectiveness of
the proposed scheme. Finally, Section VI draws the main
conclusions.

II. FAULT-TOLERANT CONTROL SCHEME

The linear discrete time-invariant plant is modelled as

xk+1 = Axk +BFuk + ωk, (1a)
yk = Cxk + ηk, (1b)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are constant
matrices, xk ∈ Rn, uk ∈ Rp and yk ∈ Rq are states, inputs
and outputs at time instant k, respectively, ωk and ηk are
unknown disturbances and noises, respectively and F is used
to model considered actuator modes (healthy and faulty).

Assumption 2.1: ωk and ηk are bounded by known sets

W ={ω ∈ Rn : |ω − ωc| ≤ ω̄, ωc ∈ Rn, ω̄ ∈ Rn}, (2a)
V ={η ∈ Rq : |η − ηc| ≤ η̄, ηc ∈ Rq, η̄ ∈ Rq}, (2b)

respectively, where ωc, ηc, ω̄ and η̄ are constant vectors. �
Assumption 2.2: The pairs (A,BFi) for all considered

modes and (A,C) are stabilizable and detectable. �
Assumption 2.3: Only single and abrupt actuator fault is

considered in this paper and the considered faults can persist
sufficiently long such that the system has enough responsive
time to detect and isolate them. �

Remark 2.1: Despite only single fault is considered, in
principle, the proposed approach can also cope with the
multiple faults. ♦



Under Assumption 2.3, F can take p+ 1 different values,
i.e., F = Fi (i ∈ I = {0, 1, 2, . . . , p}). F0 is the identity
matrix denoting the healthy mode and Fi (i 6= 0) modelling
the i-th actuator-fault mode is denoted as

Fi = diag[1 . . .

i

↓
0 . . . 1]. (3)

The input and state constraints are denoted as
X ={x ∈ Rn : |x− xc| ≤ x̄, xc ∈ Rn, x̄ ∈ Rn}, (4a)
U ={u ∈ Rp : |u− uc| ≤ ū, uc ∈ Rp, ū ∈ Rp}, (4b)

where xc, uc, x̄ and ū are constant vectors.
Since p + 1 actuator modes are considered in this paper,

the reference system has p + 1 different reference models,
each of which corresponds to one mode. For the i-th mode,
the corresponding reference model is given as

xrefk+1 = Axrefk +BFiu
ref
k , (5a)

yrefk+1 = Cxrefk , (5b)

where urefk , xrefk and yrefk denote the reference inputs, states
and outputs, respectively. For brevity, the control objective
of the i-th actuator mode1 is to track an output set-point y∗i ,
i.e., in the absence of uncertainties and/or faults

lim
k→∞

(yk − y∗i )→ 0. (6)

By using (5), a reference state-input pair (x∗i ,u∗i ) in the
steady-state operation can be computed by the equation[

A− I B
C O

] [
x∗i
u∗i

]
=

[
O
y∗i

]
. (7)

Assumption 2.4: The equation (7) corresponding to each
mode is solvable to obtain the state-input pairs. �

Under Assumption 2.4, a state-input pair (x∗i , u∗i ) corre-
sponding to y∗i can be obtained by solving (7). Note that, for
each mode, the state-input pair may be not unique.

A bank of observers are designed to monitor the behavior
of the system, each of which matches one mode. Thus, the
observer matching the j-th (j ∈ I) mode is designed as

x̂jk+1 = (A− LjC)x̂jk +BFjuk + Ljyk, (8a)

ŷjk = Cx̂jk, (8b)

where x̂jk and ŷjk are the estimated states and outputs, re-
spectively, and Lj is the j-th observer gain that can stabilize
(8), which is always possible under Assumption 2.2.

A bank of tube-based output feedback MPC controllers
are used to tolerate actuator faults, each of which is for one
actuator mode. The nominal system corresponding to the i-
th mode is obtained from (1) by neglecting the uncertainties
ωk and ηk, which is given as

x̄ik+1 = Ax̄ik +BFiū
i
k, (9a)

ȳik = Cx̄ik. (9b)

1For simplicity, only the set-point tracking problem is considered here.
However, the proposed approach can be extended to track a time-varying
reference output using the same principle.

According to [7], the control law of the i-th tube-based
MPC controller has the following form:

uk = ūik +Ki(x̂
i
k − x̄ik), (10)

where Ki is the corresponding feedback gain.

III. FAULT DETECTION AND ISOLATION

A. System Analysis

In the steady-state operation of the i-th mode, F in (1)
takes the value Fi, and the i-th tube-based MPC controller,
the i-th state-input pair and the i-th observer should be used
in the closed-loop system. Moreover, in the i-th mode, the
state estimation error of the j-th observer is defined as

x̃i,j,ik = xk − x̂jk. (11)

Remark 3.1: In the superscript of x̃i,j,ik , the first index
denotes that the plant is in the i-th mode, the second index
denotes that the j-th observer and the third index denotes
that the i-th MPC controller is active in the system. ♦

If j 6= i in (11), using (1), (8) and (10), the dynamics of
x̃i,j,ik can be derived as

x̃i,j,ik+1 =(A− LjC)x̃i,j,ik +B(Fi − Fj)ūik + ωk − Ljηk
+B(Fi − Fj)Ki(x̂

i
k − x̄ik) (12)

and the corresponding output estimation error of the j-th
observer can also be derived as

ỹi,j,ik =yk − ŷjk = Cx̃i,j,ik + ηk. (13)

Besides, in the steady-state operation of the i-th mode, the
term x̂ik − x̄ik appearing in (10) and (12) is denoted by

ei,i,ik = x̂ik − x̄ik, (14)

whose dynamics can be derived by using (8) and (9) as

ei,i,ik+1 = (A+BFiKi)e
i,i,i
k + LiCx̃

i,i,i
k + Liηk, (15)

where x̃i,i,ik corresponds to the case of j = i in (11) and its
dynamics can be obtained from (12), i.e.,

x̃i,i,ik+1 = (A− LiC)x̃i,i,ik + [I − Li]
[
ωk
ηk

]
. (16)

Due to ωk ∈W and ηk ∈ V , a robust positively invariant
(RPI) set denoted as X̃i,i,i of x̃i,i,ik can be constructed (see
[10], [8], [11] for RPI sets). According to the notion of
invariant sets, as long as x̃i,i,ik∗ ∈ X̃i,i,i, x̃i,i,ik ∈ X̃i,i,i always
holds for all k > k∗. Similarly, considering x̃i,i,ik ∈ X̃i,i,i,
an RPI set (denoted as Ei,i,i) of ei,i,ik can be obtained by
using (15).

In the i-th mode, if a fault is detected, for FI point of view,
one defines an input set Ū if for FI analysis (i.e., ūik ∈ Ū if )

Ū if = {ūi ∈ Rp :
∣∣∣ūi − ūi,cf ∣∣∣ ≤ ūif , ūi,cf ∈ Rp, ūif ∈ Rp},

where both ūi,cf and ūif are constant vectors.



Similarly, considering ei,i,ik ∈ Ei,i,i and ūik ∈ Ū if in (12),
an RPI set (denoted as X̃i,j,i) of x̃i,j,ik can be obtained2. The
corresponding set of output estimation errors is

Ỹ i,j,i = CX̃i,j,i ⊕ V, (17)

where, in the case of j = i, the output estimation error set
Ỹ i,i,i corresponding to X̃i,i,i can be obtained as well.

Remark 3.2: From FDI point of vew, all the RPI sets
X̃i,i,i, Ei,i,i and X̃i,j,i should be as small as possible. ♦

Since ỹi,j,ik is available while x̃i,j,ik is unavailable, ỹi,j,ik is
defined as the residual signal of the proposed FTC approach.

B. Fault Detection

The FD approach used here is a passive approach, which is
based on invariant sets. Thus, the FD task can be simplified
into only testing whether or not the residual is inside its
corresponding invariant set, whose advantage consists in less
computational complexity. As analyzed in Section III-A,
for each mode i ∈ I, only the sets X̃i,i,i and Ỹ i,i,i are
independent of ūik, while X̃i,j,i and Ỹ i,j,i (j 6= i) depend on
ūik. Thus, in order to assure that FD is not affected by ūik,
in the i-th mode, only the set Ỹ i,i,i is used for the FD task,
i.e., testing whether or not

ỹi,i,ik ∈ Ỹ i,i,i (18)

is violated in real time. If a violation of (18) is detected, it
means that a fault has occurred in the system. Otherwise, it
is considered that the system still operates in the i-th mode.

For some faults, even they occur, perhaps (18) is still
respected. This means that these faults can not be detected,
then actively tolerated. Instead, they can only be tolerated to
some extent by the PFTC ability of this proposed scheme.

C. Fault Isolation

1) After-fault Behaviors : The FI task is started when a
fault is detected. Without loss of generality, it is assumed
that the l-th (l 6= i) fault occurs at time instant kd, i.e., after
kd, the system mode changes from i to l. Although the mode
changes from i to l, before the fault is isolated, the system
structure does not change yet, which implies that the closed-
loop system is still composed of the same components.

According to (1), (8), (9) and (10), when the l-th fault
occurs, the state estimation error of the j-th observer changes
from x̃i,j,ik to x̃l,j,ik with the dynamics

x̃l,j,ik+1 =(A− LjC)x̃l,j,ik +B(Fl − Fj)ūik + ωk − Ljηk
+B(Fl − Fj)Kie

l,i,i
k , (19)

and ei,i,ik in (15) changes to el,i,ik in (19) with the dynamics

el,i,ik+1 = (A+BFiKi)e
l,i,i
k + LiCx̃

l,i,i
k + Liηk. (20)

To collect the whole process information after the l-th fault
from the i-th mode, one defines an augmented vector

ξi→lk =
[
x̃l,0,ik · · · x̃l,i,ik · · · x̃l,p,ik el,i,ik

]T
.

2Ū i
f different from the constraint set U is only used for active FI.

As per (19) and (20), the dynamics of ξi→lk is obtained as

ξi→lk+1 = Ai→lξ
i→l
k +Bi→lū

i
k + Eωi→lωk + Eηi→lηk, (21)

where

Ai→l =


A−L0C O ··· O B(Fl−F0)Ki

...
... ···

...
...

O A−LiC ··· O B(Fl−Fi)Ki

...
... ···

...
...

O O ··· A−LpC B(Fl−Fp)Ki

O LiC ··· O A+BFiKi

,

Bi→l =


B(Fl−F0)

...
B(Fl−Fi)

...
B(Fl−Fp)

O

, Eωi→l =


I
...
I
...
I
O

, Eηi→l =


−L0

...
−Li

...
−Lp

Li

.

Assumption 3.1: The designed observer and feedback
gains L0, L1, . . . , Lp and F0, F1, . . . , Fp always assure that
the matrix Ai→l is a Schur matrix. �

Similarly, since ūik ∈ Ū if , ωk ∈ W and ηk ∈ V , an RPI
set of ξi→lk can be constructed, which is denoted as Ξi→l.
By projecting Ξi→l towards the component space, an RPI set
of each component of ξi→lk can be obtained. For example,
an RPI set (denoted as X̃ l,j,i) of x̃l,j,ik can be obtained by
projecting Ξi→l to the space of x̃l,j,ik . Similarly, an RPI set
(denoted as El,i,i) of el,i,ik can be computed by projection.
This implies, after the l-th fault, x̃l,j,ik and el,i,ik finally enter
into X̃ l,j,i and El,i,i, respectively. Moreover, using (1b), the
set of output estimation errors corresponding to X̃ l,j,i is

Ỹ l,j,i = CX̃ l,j,i ⊕ V. (22)

2) Residual Tubes: The dynamics of x̃l,l,i extracted from
(21) are used for FI, which has the form

x̃l,l,ik+1 =(A− LlC)x̃l,l,ik + ωk − Llηk. (23)

Substituting W and V into (23), the set-based description
of x̃l,l,ik and ỹl,l,ik can be obtained as

X̃ l,l,i
k+1 =(A− LlC)X̃ l,l,i

k ⊕W ⊕ (−LlV ), (24a)

Ỹ l,l,ik =CX̃ l,l,i
k ⊕ V. (24b)

Similarly, a set-based description of (19) is obtained as

X̃ l,j,i
k+1 =(A− LjC)X̃ l,j,i

k ⊕B(Fl − Fj)Ūf ⊕W ⊕ (−LjV )

⊕B(Fl − Fj)KiE
l,i,i. (25)

As k tends to infinity, X̃ l,j,i
k+1 and X̃ l,l,i

k+1 will converge to the
minimal robust positively invariant (mRPI) sets of (19) and
(23), i.e., they finally enter into RPI sets X̃ l,j,i and X̃ l,l,i and
stay inside, respectively. Besides, the output estimation error
set sequence corresponding to X̃ l,j,i

k is obtained as Ỹ l,j,ik =

CX̃ l,j,i
k ⊕ V .

Proposition 3.1: Given that the l-th (l 6= i) fault occurs in
the i-th mode and the state estimation error x̃l,l,ik∗ of the l-th
observer is bounded by a set X̃ l,l,i

k∗ at time instant k∗, if X̃ l,l,i
k∗

is used to initialize (24) to generate tubes, x̃l,l,ik ∈ X̃ l,l,i
k and

ỹl,l,ik ∈ Ỹ l,l,ik will hold for all k ≥ k∗. �



In the i-th mode, it is assumed that the l-th fault is detected
at time instant kd. If an initial set is used to initialize (24a)
at time instant kd, the tubes of state and output estimation
errors generated by (24) are denoted as

T̃x,l,l,ikd
={X̃ l,l,i

kd
, X̃ l,l,i

kd+1, X̃
l,l,i
kd+2, . . . }, (26a)

T̃y,l,l,ikd
={Ỹ l,l,ikd

, Ỹ l,l,ikd+1, Ỹ
l,l,i
kd+2, . . . }. (26b)

Remark 3.3: Generally, when the system is in the i-th
mode, the detection of a violation of (18) implies that a
mode switching from i to another unknown mode denoted
as f (f ∈ I\{i}) occurred, i.e., there are p mode candidates
(healthy or faulty). Thus, for FI, one has to obtain all the p
output estimation error tubes T̃y,l,l,ikd

(l ∈ I \ {i}). ♦
Thus, at time instant kd, the proposed FI algorithm gen-

erates p output-estimation-error tubes T̃y,l,l,ikd
(l ∈ I \ {i}),

each of which corresponds to a candidate mode. Moreover,
for the p corresponding observers, as long as

x̃f,l,ikd
⊆ X̃ l,l,i

kd
, f, l ∈ I \ {i} (27)

is guaranteed at time instant kd such that ỹf,l,ikd
⊆ Ỹ l,l,ikd

,
which implies that, among the p output-estimation-error
tubes T̃y,l,l,ikd

(l ∈ I \ {i}), there exists at least one tube
(indexed by m) that can always satisfy

ỹf,m,ik ⊆ Ỹ m,m,ik , k ≥ kd, m ∈ I \ {i}. (28)

Remark 3.4: If the fault is indexed by l (i.e., f = l) and
(27) holds, for all k ≥ kd, T̃y,l,l,ikd

can always satisfy ỹf,l,ik ⊆
Ỹ l,l,ik . This implies that the fault will be indicated by one of
the p tubes that can always satisfy (28). ♦

3) Fault Isolation Algorithm: To isolate a fault, one has
to guarantee that one and only one tube can always satisfy
(28) after FD and the index of this tube indicates the fault.

Proposition 3.2: In the i-th mode, for any observer (in-
dexed by j), if all the corresponding p+1 output-estimation-
error sets satisfy

Ỹ j,j,i ∩
p⋃
l=0

Ỹ l,j,i = Ø, l 6= j, i, j, l ∈ I, (29)

once a mode switching from the i-th mode has occurred, the
mode can be isolated by searching the output-estimation-
error tube that always satisfies (28).
Proof : As previously concluded, the tube T̃y,j,j,ikd

will
finally enter into Ỹ j,j,i. Thus, if (29) holds, the tube T̃y,j,j,ikd
will only be able to confine the output estimation error
ỹl,j,ik under the condition l = j. If l 6= j, at the first
several steps, T̃y,j,j,ikd

may be able to confine ỹl,j,ik because of
the initialization condition (27). But, as T̃y,j,j,ikd

approaches
Ỹ j,j,i, ỹl,j,ik must diverge from T̃y,j,j,ikd

. This implies that,
under the condition (29), by searching the tube that is always
able to confine ỹl,j,ik , the fault can be isolated. �

4) Construction of Initial Sets: The key of the FI approach
is to construct initial sets satisfying (27) at time instant kd
to generate the output-estimation-error tubes. For example,
for the j-th observer, one can obtain

Cx̃i,j,ikd
∈ {ỹi,j,ikd

} ⊕ (−V ). (30)

Using (30), a set to bound x̃i,j,ikd
can always be constructed,

which is used to initialize (24a) to generate the output-
estimation-error tubes. Moreover, for the j-th observer, the
expression of (30) is independent of modes. This means that
(30) can always be used to construct a set to bound the state
estimation error of the j-th observer in any mode.

Remark 3.5: If C is not invertible, a set to bound x̃i,j,ikd
can still be obtained by intersecting all strips (each strip
corresponds to an elementwise inequality of (30)) or all strips
of (30) with the physical constraint set of x̃i,j,ik in the case
that C has zero columns. ♦

Remark 3.6: Since X , U , W and V can be rewritten as
zonotopes, from the computational point of view, all the
tubes are generated by using zonotopes in this paper. Thus,
the initial sets should be constructed as zonotopes (see [2],
[6] for the relevant properties of zonotopes). ♦

IV. FAULT-TOLERANT CONTROL

A. Steady-state Behaviors

The tube-based MPC technique proposed in [7] is adopted
to implement FTC in this scheme and the control law of the
i-th one is given in (10). It is assumed that the system is
at steady state of the i-th mode. The key part of the MPC
control law is the open-loop optimization problem behind
the tube-based MPC controller, which is based on the i-th
nominal system, i.e., ūik in (10).

In reality, it is known that X and U in (4) are the
hard system constraints. Those hard constraints implies the
indirect hard constraints on the nominal system-based open-
loop optimization problem. In the case of the i-th mode,
the indirect input hard constraint is via (10), i.e., uk =
ūik+Kie

i,i,i
k . As per Section III-A, at steady state of the i-th

mode, ei,i,ik ∈ Ei,i,i holds, Thus, the hard input constraints
of the nominal system-based open-loop optimization problem
can be obtained as ūik ∈ Ū i = U 	 KiE

i,i,i. Considering
xk = x̄ik + ei,i,ik + x̃i,i,ik , the hard state constraints can be
further obtained as

x̄ik ∈ X̄i = X 	 (Ei,i,i ⊕ X̃i,i,i). (31)

Assumption 4.1: X̄i and Ū i (i ∈ I) are nonempty. �
Thus, the open-loop optimization problem of the i-th tube-

based MPC controller, based on the i-th nominal system (9),
has the following form:

Jk = min
ūi

N−1∑
j=0

‖(x̄ik+j|k − x
∗
i )‖2Qi

+ ‖(ūik+j|k − u
∗
i )‖2Ri

+‖(x̄ik+N |k − x
∗
i )‖2Pi

subject to x̄ik+j|k∈ X̄
i, ūik+j|k ∈ Ū

i,

x̄ik+N |k∈ X̄
i
T , x̄ik|k = x̄ik,

(32)

where ūi = [ūik|k, ū
i
k+1|k, · · · , ū

i
k+N−1|k], N is the predic-

tion horizon, Qi Ri and Pi are positive-definite matrices and
X̄i
T is the corresponding terminal constraint set.
If X̄i

T is the maximal control invariant (MCI) set of the
i-th nominal system, the i-th tube-based MPC controller can
be designed to be feasible. In this paper, the implementation
of the tube-based MPC controller follows [4] and [7].



B. Transient-state Behaviors

Different from the steady-state operation of the i-th mode,
once a fault (denoted by l) has occurred, it implies that
the mode changes from i to l (l 6= i). To analyze the
transient-state behavior induced by the fault, the transient-
state process is split into two phases. The former starts from
the occurrence till the detection of the fault and the latter
starts from the detection to the isolation of the fault. Since
the latter is related here to active FI, it will be separately
discussed.

In the first phase, despite the l-th fault has occurred, the
FD criterion in (18), i.e., x̃l,i,ik ∈ X̃i,i,i, still holds. Thus, as
per (20), el,i,ik ∈ Ei,i,i also holds. Thus, before FI, the closed-
loop system is still composed of the same components with
the i-th “fault-free” mode. Therefore, although the l-th fault
has occurred, one can “think” the system still operates in
the i-th mode since x̃l,i,ik ∈ X̃i,i,i, el,i,ik ∈ Ei,i,i, ūik ∈ Ū i,
and x̄ik ∈ X̄i, which implies that the feasibility and hard
constraints of the system are still respected in this phase.

C. Active Fault Isolation

1) Fault Isolation Principle: Without considering the ef-
fect of the observer and feedback gains and considered faults,
as per (21) and (22), when the system mode changes from i
to l (l 6= i), the sets of output estimation errors are decided
by the sets of the uncertainties and nominal inputs, i.e.,

Ỹ l,j,i = f i→l(Ū if ,W, V ), j 6= l, (33)

which implies whether the FI conditions in Proposition 3.2
hold or not depends on the set of nominal inputs ūik. Note
that Y l,l,i is decided by W and V and free from the effect
of Ū if , which is the reason why only Y i,i,i is used for FD.

Assumption 4.2: There exists a set Ū if satisfying Ū if ⊆ Ū i
such that the FI conditions in Proposition 3.2 hold. �

Assumption 4.2 means, when a switching from the mode
i to l (l 6= i) is detected, if ūik is always confined inside Ū if ,
the FI conditions in Proposition 3.2 can be established on-
line by the i-th MPC controller and the proposed FI approach
can isolate the mode. Thus, in the i-th mode, the i-th MPC
controller has two different objectives:
• Steady-state operation (including the first-phase transi-

tion): No fault is detected and the main task is to im-
plement system performance. Thus, the input constraint
of (32) is Ū i.

• Transient-state operation (only considering the second-
phase transition): A fault is detected and the main task
is to isolate the fault and reconfigure the system. During
this stage, the proposed FI approach actively switches
the input constraint of (32) from Ū i to Ū if at the FD
time kd to establish the FI conditions (i.e., active FI).

2) Transient-state Feasibility and Stability: As per (9) and
(32), (32) is updated by directly using the nominal state from
the i-th nominal system. Since the nominal states are free
from the effect of the real system, fault occurrence does not
affect the feasibility and stability of (32) provided that all
the constraints of (32) are always respected.

However, during the FI process, since the input constraint
of (32) is switched from Ū i to Ū if to establish the FI
conditions, to guarantee the feasibility of (32), one has to
switch the terminal constraint from X̄i

T to X̄f
i

T (X̄f
i

T is
a control invariant (CI) set3 of the i-th nominal system
corresponding to ūik ∈ Ū if , which satisfies the constraints.

Remark 4.1: During FI, this proposed approach uses X̄f
i

T
as both the state and terminal constraints of (32). ♦

Assumption 4.3: During FI, from the modes i to l, Ū if ⊕
Kie

l,i,i
k ∈ U and X̄f

i

T ⊕ e
l,i,i
k ⊕ x̃l,i,ik ∈ X always hold, i.e.,

the hard constraints are not violated. �
Remark 4.2: Since Ū if ⊆ U i, it implies that, comparing

with the steady-state operation, the admissible regions of
el,i,ik , el,i,ik and x̃l,i,ik during active FI relatively increase.
By selecting smaller Ū if , one can give el,i,ik and x̃l,i,ik larger
admissible regions to satisfy Assumption 4.3. ♦

To guarantee the feasibility of (32), one has to consider
the nominal state x̄ikd of the i-th nominal system at kd.

Proposition 4.1: At the FD time kd, if x̄ikd ∈ X̄f
i

T holds,
(32) will be always feasible during the whole FI process.

Proof : Since X̄f
i

T is a CI set, x̄ikd ∈ X̄f
i

T implies
x̄ikd+1 ∈ X̄f

i

T . Thus, there always exist control sequences
that satisfy the input and control constraints during FI. �

Summarizing, the following strategy to guarantee the
feasibility of the MPC controller during FI is proposed: If
x̄ikd ∈ X̄f

i

T , (32) is always feasible. Otherwise, the center of
X̄f

i

T is used to update (32) to guarantee feasibility. Then, if
x̄ikd+1 ∈ X̄f

i

T , the feasibility at the next steps can always be
guaranteed. Otherwise, still use the center of X̄f

i

T to update
(32). Once a fault is isolated, the similar strategy is used to
guarantee the feasibility of the MPC controller corresponding
to a new MPC controller during the initial phase after system
reconfiguration. After the system enters into steady state, the
MPC controller is feasible under Assumption 4.1.

V. ILLUSTRATIVE NUMERICAL EXAMPLE

In this example, two actuator faults F1 and F2 are con-
sidered, three observers are designed and three tube-based
MPC controllers are used to control the modes. Only results
of the second fault are presented due to space limitation. The
parameters are given as follows:

• Parameter matrices:

A =

[
0.6 0.05
0.1 0.7

]
,B =

[
0.5 0.1
0.2 −0.3

]
, C =

[
1 0
0 1

]
.

• Disturbances: w̄ =
[
0.05 0.05

]T
, wc =

[
0 0

]T
.

• Noises: η̄ =
[
0.05 0.05

]T
, ηc =

[
0 0

]T
.

• Observer gains: L0 = L1 = L2 =

[
1 0.05

0.1 0.2

]
.

• Feedback gains:

K0 =

[
0.1288 0.0644
0.1559 0.0780

]
,K1 =

[
0 0.3220
0 0.3898

]
,

3X̄f
i
T

can be an RPI set of the i-th nominal system with ui
k ∈ Ū i

f .



K2 =

[
0.1610 0
0.1949 0

]
.

• Fault magnitudes: F1 =

[
0 1
0 1

]
, F2 =

[
1 0
0 0

]
.

• Output set-point: y∗2 =
[
1.5 1

]T
.

• State-input set-point pairs:

u∗0 =
[
1.0588 0.2059

]T
, x∗0 =

[
1.5 1

]T
,

u∗2 =
[
1.0453 0

]T
, x∗2 =

[
1.4863 1.0168

]T
.

• Initial conditions:
x0 =

[
0 0

]T
, x̂00 = x̂10 = x̂20 =

[
0 0

]T
.

• System constraints:

U = {u :
[
−10 −10

]T ≤ u ≤ [10 10
]
}T ,

X = {x :
[
−30 −30

]T ≤ x ≤ [30 30
]
}T .

• Input sets for active FI:
Ū0
f = {u :

[
7.5 7.5

]
≤ u ≤

[
8.5 8.5

]
}T .

• Prediction horizon: N = 10.
• Parameters of MPC controllers :

Q =

[
1 0
0 1

]
,R =

[
1 0
0 1

]
, P =

[
1 0
0 1

]
.

• Sampling time: T = 0.1s.
Based on Ū0

f , the corresponding sets of output estimation
errors for active FI can be computed. By off-line testing,
those sets can satisfy Proposition 3.2 (the details are omitted
here). Furthermore, corresponding to the constraints X and
U of the system, the state and input constraints X̄0 and Ū0,
X̄1 and Ū1, and X̄2 and Ū2 of the nominal MPC controllers
can be obtained (the details are omitted here).

The simulation scenario for FDI and FTC of the second
actuator fault is defined as: from time instants 0 to 50, the
system is healthy, then from time instants 51 to 100, the
second actuator fault occurs. When the system is healthy,
only the set Ỹ 0,0,0 is used for FD. The FDI and FTC results
of the second actuator fault are shown in Figure 1, 2 and 3. In
Figure 1 and 2, it can be observed that the fault is detected
and isolated at time instants 61 and 62, respectively. This
means that the active FI mechanism is started at time instant
61 and is terminated at time instant 62, and the system is
reconfigured at time instant 62 to tolerate the fault. Similarly,
according to Figure 3, it can be observed that the state
and input constraints are respected all the time. Besides, in
Figure 3, even though the system is in the faulty mode, after
reconfiguration, the output set-point is still well tracked.
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Fig. 1. FD of the second actuator fault

Remark 5.1: To avoid false alarms of faults, after the
system is reconfigured, a waiting time is set and the FD
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Fig. 2. FI of the second actuator fault
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Fig. 3. FTC of the second actuator fault

mechanism is frozen till the waiting time elapses. Then, the
FD mechanism is restarted again to monitor a new mode. In
this example, a waiting time is 10 steps. ♦

VI. CONCLUSIONS

In this paper, an actuator FTMPC scheme is proposed,
where tube-based MPC and set-theoretic FDI are used. In this
scheme, FD is passive by invariant sets and FI is active by
MPC controllers and tubes. The proposed FTMPC scheme
has robust FDI performance, relatively less computational
complexity and conservative FI conditions. Besides, for
undetectable faults, the PFTC ability of the scheme can
still tolerate them to some extent in spite of a degree of
performance degradation.

REFERENCES
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