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Abstract

We propose a real-time and accurate solution to the Perspective-n-Point (PnP) prob-
lem –estimating the pose of a calibrated camera from n 3D-to-2D point correspondences–
that exploits the fact that in practice the 2D position of not all 2D features is estimated
with the same accuracy. Assuming a model of such feature uncertainties is known in
advance, we reformulate the PnP problem as a maximum likelihood minimization ap-
proximated by an unconstrained Sampson error function, which naturally penalizes the
most noisy correspondences. The advantages of this approach are thoroughly demon-
strated in synthetic experiments where feature uncertainties are exactly known.

Pre-estimating the features uncertainties in real experiments is, though, not easy. In
this paper we model feature uncertainty as 2D Gaussian distributions representing the
sensitivity of the 2D feature detectors to different camera viewpoints. When using these
noise models with our PnP formulation we still obtain promising pose estimation results
that outperform the most recent approaches.

1 Introduction
The goal of the Perspective-n-Point (PnP) problem is to estimate the position and orientation
of a calibrated camera from a set of n correspondences between 3D points and their 2D
projections. It is a problem that lies at the core of a large number of applications in computer
vision, augmented reality, robotics and photogrammetry.

Yet, while the PnP problem has been studied for more than a century, recent works have
shown impressive results in terms of accuracy and efficiency. For instance, the Efficient PnP
(EPnP) [23] was the first closed-form solution to the problem with O(n) complexity and
almost no loss of accuracy with respect to the most accurate iterative methods existing at the
moment [21]. Subsequent works [11, 19, 33, 34] have improved, also with O(n) complexity,
the accuracy of the EPnP specially for the minimal cases with n = {3,4,5} correspondences.
In addition, the flexibility of the linear formulation of the EPnP has allowed reformulations
of the problem to also estimate the intrinsic parameters of an uncalibrated camera [26], or
to integrate an algebraic outlier rejection criterion which does not require executing multiple
RANSAC iterations [5].
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(a) (b) (c)
Figure 1: PnP problem with noisy correspondences. We assume a set of 2D feature points
are given, with particular noise models for each of them, as shown in (a). We also assume
the correspondences (red dots) with respect to a 3D model are known, as shown in (b). Our
approach estimates a solution of the PnP problem that minimizes the Mahalanobis distances
∆ui shown in (c). In (c) green rectangle and red dots are the true projection of the 3D model.

In any event, although all previous PnP solutions assume that correspondences may be
corrupted by noise and show robustness against large amounts of it, none of these works con-
siders that the particular structure of the uncertainty associated to each correspondence could
indeed to be used to further improve the accuracy of the estimated pose (see Fig. 1). Specif-
ically, existing solutions assume all 2D correspondences to be affected by the same model
of noise, a zero mean Gaussian distribution, and consider all correspondences to equally
contribute to the estimated pose, independently of the precision of their actual location.

In contrast, in this paper we propose a solution to the PnP problem which, to the best of
our knowledge, is the first one that inherently incorporates into its formulation feature uncer-
tainties. We do this by iteratively minimizing an uncontrained Sampson error function [10],
which approximates the Maximum Likelihood solution. Furthermore, we also propose a
strategy to compute a specific uncertainty model per correspondence in real experiments,
by modeling the sensitivities of 2D detectors to different viewpoints. As we will show in
both synthetic and real experiments, our approach outperforms the most recent techniques
in terms of accuracy while keeping a running time still linear with respect to the number of
correspondences.

2 Related work
Traditionally, the PnP problem has been applied to small subsets of correspondences yielding
closed form solutions to the P3P [4, 7, 9, 16], P4P [6], and P5P [32] problems. Yet, these
solutions to the minimal case are prone to be sensitive to noise, being therefore typically used
within RANSAC schemes. Noise robustness can be achieved by considering larger sizes of
the correspondence set. For uncalibrated cameras, the most straight-forward algorithm for
doing so, is the Direct Linear Transformation (DLT) [10].

When the internal parameters of the camera are known, there exist iterative PnP ap-
proaches which optimize an objective function involving an arbitrary number of correspon-
dences. Standard objective functions are based on geometric (e.g. 2D reprojection) [25] or
algebraic errors [21]. Yet, iterative methods suffer from a high computational cost and tend
to be sensitive to local minima [8, 21]. Paradoxically, early non-iterative solutions were
neither computationally tractable, as they considered all n points as unknowns of the prob-
lem [1, 27].
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This has recently been overcome by a series of O(n) formulations that can afford arbitrar-
ily large point sets. The first of these techniques was the EPnP [18, 23], that reduced the PnP
to retrieving the position of four control points spanning any number n of 3D points. This re-
formulation of the problem, jointly with the use of linearization strategies, permitted dealing
with hundreds of correspondences in real time. The EPnP has been revisited in [5], where
the problem is reformulated in terms of an Efficient Procrustes PnP (EPPnP), yielding to
even additional speed-ups. Subsequent works have improved the accuracy of the EPnP, still
in O(n), by replacing the linearization with polynomial solvers. The most remarkable works
along these lines are the Robust PnP (RPnP) [19], the Direct-Least-Squares (DLS) [11], the
Accurate and Scalable PnP (ASPnP) [34] and the Optimal PnP (OPnP) [33].

Yet, as we have pointed out above, the noise problem has not been directly handled by
previous PnP solutions, which simply attenuate its effect by exploiting data redundancy. In
contrast, other problems in geometric computer vision, such as Simultaneous Pose and Cor-
respondence [24, 28, 31], Fundamental matrix computation [2, 14] , ellipse fitting [2, 13, 15,
17], do take into account specific models of uncertainty per observed point. In most these
approaches, the uncertainty is modeled by a covariance matrix, and Maximum Likelihood
strategies are proposed to minimize the Mahalanobis distances between the noisy and the
true locations of the point observations. As discussed in [3], estimating the global minima
for this kind of problems is impractical. A feasible alternative is to minimize approximated
Sampson error functions, for instance by means of iterative approaches such as the Funda-
mental Numerical Scheme (FNS) [2], the Heterocedastic Errors-in-Variables (HEIV) [17]
or projective Gauss Newton [14]. These minimization approaches can be considered as a
solution refinement and they need to be fed with an initial solution. Other methods as the
Renormalization [12] or the recent Hyper-Renormalization [15] do not need an initial so-
lution, and find a solution by solving a set of estimating equations which need not to be
derivatives of some cost function.

All these previous approaches, though, are focused on theoretical derivations which are
only evaluated over synthetic data where the uncertainty models per point are assumed to be
known in advance. The problem of estimating these input models in real data is completely
obviated. In this paper we will propose a strategy for this in the case of estimating the pose
of planar objects.

3 Covariant EPPnP
We next describe our PnP approach that exploits prior information about the uncertainty in
the location of image features, as well as the approach to estimate these uncertainty models
on real images. More specifically, we first state the PnP problem and review the EPPnP [5]
linear formulation. Then, we reformulate the EPPnP in order to integrate feature uncertain-
ties and estimate the camera pose based on an approximated Maximum Likelihood proce-
dure. And finally, we describe a methodology to model viewpoint-independent 2D feature
uncertainties using anisotropic Gaussian distributions.

3.1 Problem statement and EPPnP Linear Formulation
Let us assume we are given a set of 3D-to-2D correspondences between n 3D reference
points pw

i = [xw
i ,y

w
i ,z

w
i ]
> expressed in a world coordinate system w and their 2D projections

ui = [ui,vi]
>. Let A be the camera internal calibration matrix, also assumed to be known in
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advance. Using these assumptions, the goal of the PnP is to estimate, using a single image,
the rotation matrix R and translation t that align the camera and world coordinate frames.
For each 2D feature point i, we have the following perspective constraint:

di

[
ui
1

]
= A [R|t]

[
pw

i
1

]
, (1)

where di is the depth of the feature point. Following the EPnP [23] derivation, pw
i can

be rewritten in terms of the barycentric coordinates of four control points cw
j , j = 1, . . . ,4,

chosen so as to define an orthonormal basis centered at the origin of the world coordinate
system. Every reference point, can therefore be expressed as pw

i = ∑
4
j=1 αi jcw

j .
Note that the barycentric coordinates αi j are independent on the coordinate system, and

specifically they remain the same when writing the reference points in the camera coordinate
system c. That is, pc

i = ∑
4
j=1 αi jcc

j.
From the EPPnP [5], after some operations and matrix manipulations, Eq. 1 can be

rewritten as the following Kronecker product:

[
αi1 αi2 αi3 αi4

]
⊗
[

1 0 −uc
i

0 1 −vc
i

]
x = 0 (2)

where [uc
i ,v

c
i ,1]

> = A−1[ui,vi,1]> are the normalized 2D coordinates and x = [cc
1
>, . . . ,cc

4
>]>

is the unique unknown, a 12-dimensional vector containing the control point coordinates in
the camera reference system.

Finally, the concatenation of Eq. 2 for all n correspondences can be expressed as a linear
system Mx = 0 where M is a 2n×12 known matrix.

The ultimate goal is to estimate the R and t, which provide the absolute camera pose in
the world coordinate system. However, x is an estimation of the subspace where the control
points cc

j in camera referencial lies, i.e. any scaled version γx would also be a solution of
Eq. 2. The EPPnP [5] proposes to estimate R, t and γ in closed-form using a generalization
of the Orthogonal Procrustes problem [29]:

argmin
γ,R,t

4

∑
j=1
‖Rcw

j + t− γcc
j‖2 subject to R>R = I3 (3)

Additionally, [5] also proposes an iterative refinement of x. Considering the control points
positions estimated from Eq. 3, ĉc

j = Rcw
j + t, the vector x̂ = [(ĉc

1)
>, . . . ,(ĉc

4)
>]> is obtained

and projected on the extended null-space of M, built using its 4 eigenvectors with smaller
singular values. The projected x̂ is in turn fed again into Eq. 3 to recompute γ , R and t. This
process is followed until convergence.

Just as with the EPnP [23], the planar case requires a slight modification of the method.
Since in this case only three control points are necessary to span the reference points onto
the plane, the dimensionality of our vector of unknowns x drops to 9, and M becomes a
2n× 9 matrix of correspondences. Besides these changes the rest of the algorithm remains
completely unchanged.

3.2 Integration of Feature Uncertainties in the Linear Formulation
Let us assume that ui = [ui,vi]

> in Eq. 1 represents an observed 2D feature location obtained
using a feature detector. This observed value can be regarded as a perturbation from its true
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2D projection ui by a random variable ∆ui. We write this as,

ui = ui +∆ui (4)

We assume that ∆ui is small, independent and unbiased allowing to model the uncer-
tainty in statistical terms, with expectation E[∆ui] = 0 and covariance E[∆ui∆u>i ] = σ2Cui ,
where Cui is the known 2× 2 uncertainty covariance matrix and σ is an unknown global
constant specifying the global uncertainty in the image. Splitting the uncertainty term into
two components is motivated because the optimal solution can be obtained ignoring σ [13],
making the known uncertainties to be independent of the object size in the image.

From these assumptions, the likelihood of each observed 2D feature location ui from its
true 2D projection ui can be expressed as,

P(ui) = k · exp(−1
2
(ui−ui)

>C−1
ui
(ui−ui)) = k · exp(−1

2
∆u>i C−1

ui
∆ui) (5)

where k is a normalization constant.
Thus, the Maximum Likelihood solution for the PnP problem is equivalent to minimizing

the Mahalanobis distance in Eq. 5 for all n correspondences,

argmin
∆ui,x

n

∑
i=1
‖∆ui‖2

C−1
ui

subject to Muix = 0 (6)

where Muix = 0 enforce the 3D-to-2D projective constraints in terms of the noise-free cor-
respondences. Assuming the uncertainty ∆ui = [∆ui ∆vi]

> to be small, a first order pertur-
bation analysis allows to approximate the projective constraint as,

Muix = Muix−∆ui∇uMuix−∆vi∇vMuix = 0 (7)

where ∇uMui and ∇vMui are the partial derivatives of Mui in Eq. 2 with respect to u and v,

∇uMui =
[

αi1 αi2 αi3 αi4
]
⊗
[

0 0 −1
0 0 0

]
(8)

∇vMui =
[

αi1 αi2 αi3 αi4
]
⊗
[

0 0 0
0 0 −1

]
Using Lagrange multipliers we can further eliminate the constraints in Eq. 6, and write

the problem as an unconstrained minimization of the Sampson error function J(x), namely

argmin
x

J(x) = argmin
x

n

∑
i=1

x>M>ui
Muix

x>CMix
. (9)

CMi is the following 12×12 covariance matrix

CMi = (∇uMui +∇vMui)
>Cui(∇uMui +∇vMui) , (10)

which can be interpreted as the uncertainty Cui propagated to the M-space [13].
In order to minimize Eq. 9 we take the derivative of J(x) with respect to x:

∂J
∂x

= 2
n

∑
i=1

M>ui
Mui

x>CMix
x−2

n

∑
i=1

x>M>ui
MuixCMi

(x>CMix)2 x = Nx−Lx (11)
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(a) (b) (c)
Figure 2: Feature uncertainties on real images. (a) Example of a grid of reference views
where uncertainties must be estimated. (b) Example of feature point clouds (in green) and
their Gaussian models (black ellipses) for V1. (c) Results of feature matching and uncertain-
ties alignment against a test image.

where N and L are 12×12 matrices which also depend on x.
Setting the previous equation to zero we obtain Nx−Lx = 0. As we mentioned in the

related work section, there are several techniques to compute x from this equation, e.g [2,
14, 17]. In this paper, we chose the Fundamental Numerical Scheme (FNS) approach [2],
which solves iteratively the following eigenvalue problem,

(N−L)x = λx (12)

where the eigenvector with smaller eigenvalue is used to update the solution x. Note that at
each iteration, the matrices N and L need to be updated with the new x estimate up to the
convergence. For the first iteration, x is initialized solving the equation system Mx = 0 as is
done in the EPPnP method.

Finally, once x is estimated, the PnP problem is solved using the generalized Orthogonal
Procrustes problem of Eq. 3 and its refinement.

3.3 Dealing with Feature Uncertainties on Real Images
Estimating 2D feature uncertainties (Cui in previous section) in real images is still an open
problem. Most of previous approaches dealing with geometric estimation under noise, just
address the problem in synthetic situations where 2D uncertainties are perfectly modeled
using Gaussian distributions. In this paper, we propose an approach to model stochastically
the behavior of a feature detection algorithm under real camera pose changes.

Our approach starts by detecting features on a given reference view Vr of the object of
interest. Then, we synthesize m novel views {I1, . . . ,Im} of the object, which sample poses
around Vr. Each view I j is generated by projecting the 3D object model onto the image
plane assuming a known projection matrix PI j = A[RI j |tI j ] (without changing the distance
between the 3D object center and the camera to avoid changes in the global scale of the
uncertainty σ ). We then extract 2D features for each I j, and reproject them back to Vr,
creating feature point clouds (see Fig. 2b).

Note that to compute these point clouds onto the reference view we have not performed
any feature matching process,i.e., there might be points within one cluster that do not belong
to the same feature. In order to resolve this issue and perform a correct clustering of features
we make use of the repeatability measure proposed in [22], which measures to what extend
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do the area associated to each feature overlap. This area could correspond, for instance, to
the scale ellipse defined by the SIFT detector [20]. Specifically, if we denote by µa and µb
the two feature points, and Sµa and Sµb their corresponding image areas, we compute the
following intersection over union measure:

IoU =
Sµa ∩S(H>µbH)

Sµa ∪S(H>µbH)

(13)

where H is the known planar homography relating both regions, and ∩ and ∪ represent the
intersection and union of the regions. Then, the two feature points are deemed to correspond
if 1− IoU < 0.4, following the same criterion as in [22].

Once features are grouped we model each cluster i using a Gaussian distribution, with
associated covariance matrix Cui . Note that this covariance tends to be anisotropic, which
means that it is not rotationally invariant with respect to the roll angle. To achieve this
invariance we use the angles of the main gradients of the feature regions, similarly as is done
by the SIFT detector [20]. Fig. 2b and 2c show how each Cui is rotated respect to the main
feature gradients.

In practice, we found that Cui describes with accuracy the uncertainties when the camera
pose of I j is near to the camera pose of the reference Vr. This accuracy drops when camera
pose moves away. This is motivated because each Cui is computed for Vr, remind that
uncertainties are not on the 3D model. In order to handle this, we defined a set of l reference
images {V1, ...,Vl} under different camera poses and each one with its own uncertainty
models. We experimentally found that taking a grid of reference images all around the
3D object every 20◦ in yaw and pitch angles (see Fig. 2a), we obtained precise uncertainty
models. Before running the Covariant EPPnP algorithm we have proposed, we had to choose
an initial reference image to start with. For this, we used the EPPnP.

In summary, the algorithm for real images can be split into the following three main
steps:

1. Estimate an initial camera pose without considering feature uncertainties using EPPnP.
Let [R|t]EPPnP be this initial pose.

2. Pick the nearest reference view Vk taking into account that roll angle is not used to
compute the grid of reference images. Find Vk such that

maxk

(
c>k
‖ck‖
· cEPPnP
‖cEPPnP‖

)
(14)

where ck/‖ck‖ and cEPPnP/‖cEPPnP‖ are the normalized camera centers in world co-
ordinates, being ck =−R>k tk and cEPPnP =−R>EPPnPtEPPnP.

3. Solve Eq. 12 using the covariances Cui of the reference image Vk, and [R|t]EPPnP for
initializing the iterative process. The final pose [R|t]CEPPnP is obtained from Eq. 3 and
its refinement.

4 Experimental results
We compare the accuracy and scalability of our method against state-of-the-art on synthetic
and real data. Our method is implemented in MATLAB and the source code will be made
publicly available in the authors webpage.
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Figure 3: Synthetic experiments, non-planar case (first row) and planar case (second row),
varying the number of correspondences and the uncertainty level.

4.1 Synthetic experiments

In these experiments we compared the accuracy and running time of our proposed method
assuming each uncertainty has a known Gaussian distribution. In experiments we refer to
our method as Covarinat Efficient Procrustes PnP (CEPPnP).

We have compared our formulations against the most recent PnP approaches: the robust
version of DLS [11], ASPnP [34], OPnP [33], RPnP [19], PPnP [8], EPnP + GN [18],
SDP [30], EPPnP [5] and the LHM [21].

We assume a virtual calibrated camera with image size of 640×480 pixels, focal length
of 800 and principal point in the image center. We randomly generated 3D-to-2D correspon-
dences, where 3D reference points were distributed into the interval [−2,2]× [−2,2]× [4,8].
We also added Gaussian noise to the 2D image coordinates. Finally, we chose the ground-
truth translation ttrue as the centroid of the 3D reference points and we randomly generated a
ground truth rotation matrix Rtrue. As a metric errors we used the same as in [5, 19, 33]. The
absolute error is measured in degrees between the Rtrue and the estimated R as erot(deg) =
max3

k=1{acos(r>k,true · rk)× 180/π} where rk,true and rk are the k-th column of Rtrue and R.
The translation error is computed as etrans(%) = ‖ttrue− t‖/‖t‖×100. All the plots discussed
in this section were created by running 500 independent MATLAB simulations and report
the average rotation and translation errors.

The first and second columns of Fig. 3 plot the accuracy for increasing number of cor-
respondences, from n = 10 to 200. For each experiment we determine 10 different known
isotropic Gaussian distributions, with standard deviations σ = [1, ...,10]. The number of
features corrupted with each distribution is equal to 10%.

The third and forth columns depict the errors for increasing amounts of noise. For each
correspondence a uniform random σ is computed between 0 and the maximum image noise
value, from 0 to 30. Assuming a constant number of correspondences n = 100.

Both experiments for planar and non-planar configurations, show that the proposed ap-
proach yields very accurate solutions, which are even better than the best state-of-the-art
solution.
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Figure 4: Computation time in synthetic experiments varying the number of correspon-
dences. For the non-planar case (left) and the planar case (right) the color codes and line
styles are the same as those used in Fig. 3.

Fig. 4 shows the computation time of all methods, for an increasing number of correspon-
dences, from n = 10 to 1000 with known distributions with σ = [1, ...,10]. This experiment
was done on an Intel Core i7 CPU to 2.7Ghz and all methods are implemented in MATLAB.
Note that our method, altough do not have a constant running time, is quite fast and has a
linear running time respect to the number of correspondences.

4.2 Real images
We also tested our approach in real images. Feature points are obtained using SIFT [20]
and correspondences are estimated using the repeteability measure [22], which yield around
200−400 correspondences per image. The ground truth used to assess our approach is ob-
tained by randomly generating 3,200 views using homographies with known camera poses.
The camera pose for each view is generated with respect to an orthogonal reference view of
a planar surface (similar to V1 in Fig. 2a) by changing the camera orientations in pitch, yaw
and roll angles. As the camera pose of test views moves away from the reference image, we
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Figure 5: Experiments with real images of a planar object. Each column depicts the errors
(median and quartiles) as the camera pose move away from the reference view, in rotation
(first row) and translation (second row) terms. In red we remark the angular distance we
have selected to generate the grid of reference images.
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estimate the error with respect to the maximum absolute value of the pitch and yaw angles,
from ±10◦ to ±40◦. The roll angle is not restricted since it does not affect directly to the
perspective.

We compare CEPPnP against the methods showing the best results in the synthetic ex-
periments of the planar case, namely DLS [11], ASPnP [34], OPnP [33] and EPPnP [5].

Fig. 5 shows that the pose results (in rotation) we obtain using CEPPnP are remarkably
more consistent than all other approaches when using the feature uncertainties modeled by
reference images close from the input image. This justifies the need of the three-step process
we have described in Sect. 3.3, of distributing reference images for modeling the uncertainty
all around the object at every 20◦ in pitch and yaw angles. In terms of translation error, all
approaches yield almost the same accuracy. This is most probably due to the fact that we
have only generated testing images by constraining the camera to be on the surface of an
hemisphere on top of the object.

5 Conclusions
We have proposed a real-time and very accurate solution to the PnP problem that incorporates
into its formulation the fact that in practice the 2D position of not all 2D features is estimated
with the same accuracy. Our method approximates the Maximum Likelihood solution by
minimizing an unconstrained Sampson error function. Furthermore we propose an effective
strategy to model feature uncertainties on real images analyzing the sensitivity of feature
detectors under viewpoints changes. Finally, we show that our approach outperforms the
accuracy of state-of-the-art methods in both, synthetic and real experiments. As a future
work we plan to transfer the 2D feature uncertainties to the 3D model, in order to make
unnecessary to have a set of reference images with different 2D uncertainties.
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