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1. INTRODUCTION  

Wind energy has gained a big interest these last years as one 
of the most promising and abundant sources for green and 
sustainable energy. However, wind farms are characterized 
by high manufacturing and maintenance costs that bring 
challenging reliability and lifetime issues. Introducing fault 
diagnosis and fault tolerant control (FTC) is considered a 
suitable way for improving their reliability and reducing their 
maintenance.  

In recent years, the problem of fault diagnosis and FTC of 
wind turbines has become an important topic of research. In 
Odgaard et al. (2013), a benchmark model for fault diagnosis 
and FTC of wind turbines has been proposed and results 
obtained using several approaches are compared. This 
benchmark relies on a realistic three blade horizontal variable 
speed wind turbine with a full scale converter coupling and a 
rated power of 4.8 MW. In some of the the works 
summarised in Odgaard et al. (2013),   the fault detection 
problem has been addressed using model-based approaches 
that are based on analytical redundancy and checking the 
consistency of the observed behavior with respect to the 
system one. This consistency checking is based on computing 
the difference, called residual, between the value predicted 
from the model and the real value measured by the sensors. 
In case a discrepancy is detected, a fault in the system is 
indicated. Otherwise, it is considered that the system is 
working properly. 

In the case of LTI systems, model-based fault detection 
theory is well developed (Blanke et al. 2006; Isermann, 
2005). However, since these models are based on LTI lumped 
parameter models, they are valid only around a given 
operating point. In order to use these simplified models in 

large operating conditions, the influence of the operating 
point in the parameters of the LTI model should be taken into 
account in some way. In this paper, the use of non-linear 
parameter varying (NLPV) models is proposed to consider 
the variation of the parameters with the operating point. This 
type of models adds a non-linear dynamic map to the 
classical LPV model, which takes into account the scheduling 
variables available for measurement, resulting in a hybrid 
linear/nonlinear model. In this way, the advantages of a 
parametrically varying structure and the generality of the 
NARMAX (nonlinear autoregressive exogenous moving 
average) class (Previdi and Lovera, 2004) are combined.  

Fault detection methods based on mathematical models are 
always affected by modeling errors. These modeling errors 
introduce uncertainty in the model and interfere with the fault 
detection. A fault detection algorithm able to handle 
uncertainty is called robust, and its robustness represents the 
degree of sensitivity to faults compared to the degree of 
sensitivity to uncertainty (Chen and Patton, 1999). In this 
paper, the uncertainty will be located in the parameters and in 
the delay of the NLPV model, bounding their values by 
intervals. One of the FDI approaches, known as passive, 
which enhances the robustness of the fault detection system 
at the decision-making stage, is based on using an adaptive 
threshold (Puig et al. 2008; Fagasaran et al.2004; Sainz et al. 
2002) generated by considering the set of model responses 
obtained by varying the uncertain parameters within their 
intervals. 

The aim of this paper is to address the problem of fault 
diagnosis of a wind farm using interval parity equations 
(Patton and Chen, 1994). Fault detection is based on the use 
of parity equations and unknown but bounded description of 
the noise and modeling errors. The fault detection test is 
based on checking consistency between the measurements 

     

                                                 



 
 

 

and the model, finding out if the formers are inside the 
interval prediction bounds. The fault isolation algorithm is 
based on analyzing the observed fault signatures on-line, and 
matching them with the theoretical ones obtained using 
structural analysis. The proposed approach is tested using the 
wind farm benchmark proposed in the context of the wind 
farm FDI/FTC competition (Odgaard and Stoustrup, 2013). 

The paper is organized as follows. In Section 2, a method 
using interval parity equations for fault detection is 
introduced. Section 3 presents a method for the calibration of 
interval models. In Section 4, the wind farm benchmark is 
presented and the fault diagnosis approach based on interval 
parity equations is applied. The results obtained applying the 
proposed method to the wind farm benchmark, are shown in 
Section 5. Finally, in Section 6, the main conclusions are 
presented. 

2.  FAULT DETECTION USING INTERVAL 
PARITY EQUATIONS 

2.1 Interval model 

Let us assume that the system can be expressed by means 
of the following NLPV model in regression form: 
      

ˆ( ) ( , ( )) ( ) ( ) ( )ky k F k e k y k e k= + = +θ p         (1) 
where: 
- ( , ( ))kF k θ p  is the regressor function that computes the 
estimation ˆ( )y k  which, in general, is assumed to be 
nonlinear in the parameters ( )kθ p and can contain any 
function of inputs ( )u k  and outputs ( )y k ; 
- ( )k kp p  is a vector of measurable process variables that 
defines the system operating point; 
- ( )k k∈θ p Θ  is the parameter vector of dimensions 1nθ ×  
whose values can vary according to the system operating 
point; 
- kΘ  is the set that bounds the parameter values, and can 
vary according to the system operating point as well. In 
particular, in this paper, the set of uncertain parameters is 
bounded by an interval box in the nominal parameter values: 
 1 1[ ( ), ( )] [ ( ), ( )]k k k n k n kθ θ

θ θ × × θ θΘ p p p p    
where: 

0( ) ( ) ( )i k i k i kθ θ − λp p
; 0( ) ( ) ( )i k i k i kθ θ + λp p

 i=1,…, nθ , 

being 0 ( )i kθ p  the nominal parameter values that follow some 
known function ( )kf p , and ( ) 0i kλ ≥  the parameter 
uncertainties; 
- ( )e k  is an additive error term, which is unknown but 
assumed to be bounded by a constant ( )e k σ≤ . 

2.2  Interval fault detection using parity equations 

The principle of model-based fault detection using parity 
equations is to test whether the measured input and output of 
the system are consistent with the behavior described by a 

model of the faultless system or not. If an inconsistency is 
detected, a fault is indicated. The residual usually describes 
the consistency check between the real behavior, y(k),  and 
the predicted one , ˆ( )y k , as follows: 

 
ˆ( ) ( ) ( )r k y k y k= −                          (2) 

where ˆ( ) ( , ( ))ky k F k= θ p , considering the system described 
by (1).  
 

Ideally, residuals should only be affected by the faults. 
However, the presence of disturbances, noise and modeling 
errors causes residuals to become non-zero, interfering with 
the detection of faults. Therefore, the fault detection 
procedure must be robust against these undesired effects 
(Chen and Patton, 1999). In this work, only noise and 
modeling errors will be considered in the robust fault 
detection method, following the passive approach recalled in 
the introduction. 
 

In the case of modeling a dynamical system using the 
interval NLPV model (1), the predicted output behavior can 
be bounded at any iteration by an interval ˆ ˆ( ), ( )y k y k    

computed by solving the two following optimization 
problems: 

    ( )ˆ ( ) max ( , ( )) . . ( )k k ky k F k s t= ∈θ p θ p Θ           (3a) 

( )ˆ( ) min ( , ( )) . . ( )k k ky k F k s t= ∈θ p θ p Θ           (3b) 
Then, the fault detection test is based on propagating the 
parameter uncertainty and the error bounds to the residual (2) 
and checking if: 
 

[ ] ˆ ˆ0 ( ), ( ) ( ) ( ) , ( ) ( )r k r k y k y k y k y k ∈ = − − σ − + σ    (4) 

or, alternatively: 

ˆ ˆ( ) ( ) , ( )y k y k y k ∈ − σ + σ                  (5) 

holds or not. In case it does not hold, a fault can be indicated.  

2.3 Fault detection for uncertain varying time delay systems 

In case that (1) is used to represent a system with transport 
delay between input and output, this delay can also vary with 
the operating point and can be characterized by some 
measured variables. Considering such varying transport delay 

( )kτ p  in the model (1), the output prediction can be 
expressed as: 

ˆ( ) ( , ( ), ( ))k ky k F k d= θ p p                         (6) 

with 
( )

( ) k
k

s
d

T
 τ

=  
 

p
p , where [ ]  denotes the nearest integer 

and sT  is the sampling time. Some uncertainty τλ in the 
delay is also considered such that: 
 

0 0( ) [ ( ) , ( ) ]k k kτ ττ ∈ τ − λ τ + λp p p             (7) 

     



 
 

 

where the nominal delay satisfies: 0 ( )k ττ > λp  and  

0 ( ),k
+

ττ λ ∈p   .  
Then, as was suggested in Blesa et al. (2010), the interval 

for the predicted output given by (6) can be expressed as 
follows: 
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with: 

0 ( )
( ) k

k
s

d
T

τ τ − λ
=  

 

p
p  and  0 ( )

( ) k
k

s
d

T
τ τ + λ

=  
 

p
p                                                    

3. WIND FARM BENCHMARK 

 
3.1 Wind farm model 

 
The wind farm benchmark is made up by 9 wind turbines 

in a square grid layout (Fig. 1). The distance between the 
wind turbines in both directions is 7L, where L is the rotor 
diameter. Two measuring masts are located in front of the 
wind turbine, one for each possible wind direction considered 
in the benchmark. The distance between the measuring mast 
and the wind farm is 10L. Each turbine is a generic 4.8 MW 
wind turbine, as the one described in Odgaard et al. (2013), 
and is numbered using the corresponding row and column in 
the wind farm. Each wind turbine is driven by the wind farm 
controller that provides a power reference. 

 

The model consists of three parts: the wind & wake model, 
wind turbine model and the wind farm controller. The details 
can be found in Odgaard et al. (2010) and Odgaard and 
Stoustrup (2013). 

 
3.2 Fault scenarios 

Three different faults are considered in the benchmark, 
affecting the three measured variables P (power) , β (pitch 
angle) and ωg (angular velocity). The faults are hard to detect 
at a wind turbine level, but can be detected at the wind farm 
level comparing the performances of the other wind turbines. 
Fault 1: debris build-up on the wind turbine blades, changing 
the aerodynamics of the wind turbine, lowering the maximum 
obtained power. 
Fault 2: misalignment of one or more blades originated at the 
time of installation of the wind turbine.  
Fault 3: change in the drive train damping due to wear and 
tear.  
 
3.3 Wind estimation 

The wind sequence considered in each wind turbine is 
estimated by considering the distance between the measuring 
mast and the wind turbine itself. The delay in the wind 
sequence is the distance divided by the mean wind velocity 
while the wake is modeled by a wind deficit between the 

wind turbines by a factor of 0.9. 

 
Fig. 1. Illustration of the layout of the example wind farm.  

 

4. FAULT DIAGNOSIS APPROACH 
 

4.1 Residual generation 
The models considered for FDI in the wind farm take into 

account the temporal and spatial redundancy existing in the 
wind farm. 

The temporal redundancy in each wind turbine can be 
taken into account by considering the estimated wind that 
each wind turbine receives and the estimated power, pitch 
angle and angular velocity, as follows: 
 

( ), , ,, ,( ) ( ), ( ), ( )
i j i j i ji j P i j w rP t f P t v t P t=                 (9) 

( ), , ,, ,( ) ( ), ( ), ( )
i j i j i ji j i j w rt f t v t P tββ β=               (10) 

( ), , ,, ,( ) ( ), ( ), ( )
gi j i j i jgi j g i j w rt f t v t P tww w=             (11) 

 

where 
,i jPf , 

,i j
fβ  and 

,gi j
fw  are non-linear functions, 

,
( )

i jrP t is 
the control signal provided to the turbine i,j by the wind farm 
controller and 

,
( )

i jwv t  is the wind speed at the turbine i,j, that 
can be estimated from the wind speed  measured in a wind 
mast ( )wv t  with: 

 

( )
, , , ,, , ˆ( ) ( ( )) ( ) ( ) ( )

i j w i j i j i ji jw v w i j w w wv t f v t t e t v t e tτ= − + = +   (12) 
 

where 
,

( )
i jwe t  is the wind estimation error in turbine i,j 

considered unknown but bounded 
, ,

( )
i j i jw we t σ≤  and ,i jτ  is 

the wind transport delay from the wind mast to the turbine i,j, 
that can be calculated as: 

  

, , ,

0
, ,( ) ( , ( )) ( ),        ( )

i j i j i ji j i j wt f D v t e t e tτ τ ττ λ= + ≤        (13) 
 

where ,i jD  is the distance from the wind mast to the turbine 

i,j, 0 ( )wv t   is the mean wind speed at the wind mast point (see 
Fig. 1) obtained by filtering the wind measurement ( )wv t , 
and the bounded additive error 

,
( )

i j
e tτ  is the error in the 

delay estimation. In the wind and wake model used in this 

     



 
 

 

work, for the wind scenario 1 (0 deg wind direction), the 
transport delays , ( )i j tτ  can be estimated as follows: 

 

0
,1 0

0
,2 0 0

0
,3 0 0 0

10( , ( )) ,   1, 2,3
( )

10 7( , ( )) ,   1, 2,3
( ) 0,9 ( )

10 7 7( , ( )) ,   1, 2,3
( ) 0,9 ( ) 0,81 ( )

i w
w

i w
w w

i w
w w w

Lf D v t i
v t

L Lf D v t i
v t v t

L L Lf D v t i
v t v t v t

= ∀ =

= + ∀ =

= + + ∀ =

   

(14) 
 

Redundancy equations (9)-(11) can be discretized and 
expressed in regression form as (6): 

 

( ), , ,, ,
ˆ ( ) , ( ), ( ), ( )

i j i j i ji j P i j k P k rP k F k d P k= p θ p                (15) 

( ), , ,, ,
ˆ ( ) , ( ), ( ), ( )

i j i j i ji j i j k k rk F k d P kβ ββ = p θ p               (16) 

( ), , , ,,ˆ ( ) , ( ), ( ), ( )
i j gi j gi j i jg i j k k rk F k d P kw ww = p θ p               (17) 

 
with 

,i jPF , 
,i j

Fβ  and 
,gi j

Fw nonlinear discrete functions of 

outputs ,
ˆ ( )i jP k , ,

ˆ ( )i j kβ  and ,ˆ ( )gi j kw respectively, with the 
same input 

,
( )

i jrP k . Parameters 
,

( )
i jP kθ p , 

,
( )

i j kβθ p  and 

,
( )

gi j kwθ p  vary with the same scheduling variables: 

( )0 ( ), ( )
T

k w wv k v k=p  

 
Finally, , ( )i j kd p  is the discrete time delay that can be 
computed as: 

0
,

,

( , ( ))
( ) i j w

i j k
s

f D v k
d

T
 

=  
  

p                        (18) 

Remark: the filtered wind measurement 0 ( )wv k  is used for 
delay estimation (13) and the direct wind measurement 

( )wv k  (without filtering) is used for the wind estimation (12). 
 

Subtracting estimations (15)-(17) from real data 
measurements, three residuals are obtained for every wind 
turbine, resulting in 27 residuals. The main drawback of these 
27 temporal parity equations is that they depend directly on 
the scheduling variable which, in this case, is the wind that is 
measured with a high noise level, leading to a big wind speed 
estimation error bound 

,i jwσ  in (12). On the other hand, the 
spatial redundancy is based on comparing those wind 
turbines that receive the same wind. This allows generating 
other relations that are less dependent on the wind 
measurements. For example, in wind scenario 1 (wind 
direction 0 deg) the wind for all the wind turbines that are in 
the same y-column (see Fig. 1) is expected to be the same at 
every instant k that implies: 

 

1, 2, 3,
( ) ( ) ( ) ( )    1,...,3  

i i i iw w w wv k v k v k v k i k= = = = ∀         (19) 
 

Then, if the reference power is the same for all the generators 
in the wind farm, as it usually happens or can be imposed for 
a while for fault detection purposes, the following topological 
relations can be deduced: 
 

1, 2, 3,( ) ( ) ( )        1,...,3  i i iP k P k P k i k= = = ∀        (20) 

1, 2, 3,( ) ( ) ( )        1,...,3  i i ik k k i kβ β β= = = ∀       (21) 

1, 2, 3,
( ) ( ) ( )     1,...,3  

i i ig g gk k k i kw w w= = = ∀       (22) 
 

In a real scenario (19) would include some noise: 
 

1, 1, 1,

2, 2, 2,

3, 3, 3,

( ) ( ) ( ),       ( )

( ) ( ) ( ),       ( )

( ) ( ) ( ),       ( )

i i i i i

i i i i i

i i i i i

w w w w w

w w w w w

w w w w w

v k v k e k e k

v k v k e k e k

v k v k e k e k

σ

σ

σ

= + ≤

= + ≤

= + ≤

        (23) 

 
and (20) would lead to: 
 

1_ 2,

1_ 3,

2 _ 3,

1, 2, 1, 2,

1, 3, 1, 3,

2, 3, 2, 3,

ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) 

ˆ ˆ( ) ( ) ( ) ( ) ( ) 

i

i

i

i i i i P

i i i i P

i i i i P

P k P k P k P k e k

P k P k P k P k e k

P k P k P k P k e k

− = − +

− = − +

− = − +

              (24) 

 
In this way, 9 spatial relations between the power wind 

turbine magnitudes can be obtained in wind scenario 1.  The 
same relations are obtained for the pitch and the angular 
velocity. This means that 27 additional parity equations are 
added to the 27 temporal parity equations. On the other hand, 
in wind scenario 2 the following wind speed ideal relations 
can be deduced: 

2,1 1,2 3,2 2,3

3,1 2,2 1,3

( ) ( ),    ( ) ( )
      

( ) ( ) ( )
w w w w

w w w

v k v k v k v k
k

v k v k v k

= =
∀

= =
               (25) 

Hence, 15 additional spatial parity equations can be 
obtained. 

The main advantage of spatial versus temporal relations is 
that spatial relations are not affected by uncertainty in 
transport delay 

ijτλ (13). 
Remark: As spatial relations depend on the wind 

direction, they have to be reconfigured according to this wind 
direction provided by a sensor or estimated with the available 
measurements. 

4.2 Fault isolation 

Fault 1 influences the power residuals, Fault 2 influences 
the pitch angle residuals and, finally, Fault 3 influences the 
power and the generator speed residuals. 

The effects of Fault 3 are the increase of the amplitude of a 
10 Hz sine function, while Faults 1 and 2 are low frequency 
faults. This fact, and the need of filtering the residuals in 
order to decrease the effect of measurement noises, lead to 
filter power residuals with low pass (LP) and band pass (BP) 
filters so as to better detect Fault 1 and Fault 3, respectively. 
On the other hand, low pass and band pass filters have been 
used in pitch angle and speed residuals, respectively, in order 

     



 
 

 

to enhance the detectability of Faults 2 and 3 respectively. 
Table 1 shows the theoretical signature matrix that can be 

derived from the temporal residuals of a particular wind 
turbine. As can be deduced from Table 1, temporal residuals 
allow detecting and isolating the proposed 3 faults for each 
wind turbine. Moreover, the extra information provided by 
the spatial residuals increases the robustness in the 
detectability and isolability, as illustrated in Table 2, where 
the power residuals (LP filtered) of column 1 (wind scenario 
1) extracted from (24) are related to the Fault 1 of the wind 
turbines of this column.  

 
Table 1. Signature matrix temporal residuals 

Residuals Fault 1 Fault 2 Fault 3 
LPP  x   

BPP    x 

      LPβ   x  

g BPw    x 

 
Table 2. Signature matrix spatial residuals PLP column 1 wind 

case 1 (0 deg) 
Residuals Fault 1 

turbine 1,1 
Fault 1 

turbine 2,1 
Fault 1 

turbine 3,1 

1,1 2,1( ) ( )LP LPP k P k−   x x  

1,1 3,1( ) ( )LP LPP k P k−  x  x 

2,1 3,1( ) ( )LP LPP k P k−   x x 

 
5. RESULTS 

In the following, the results obtained applying the 
methodologies described above to the realistic benchmark 
implemented in Matlab-Simulink© and available in: 
http://www.kk-electronic.com/Default.aspx?ID=9593 are 
presented. 

5.1 Model Calibration 

Because of space limitation, only the results obtained in 
wind scenario 1 (0 deg) are illustrated. Applying 4400 s long 
wind sequences to the Matlab-Simulink© benchmark, a set of 
input/output data 

,
( )

i jrP t , , ( )i jP k , , ( )i j kβ  and , ( )gi j kw , 

1,...,k N=  has been obtained.  
At first, the three different wind speed estimation 

sequences (
1 2 3

ˆ ˆ ˆ,   and w w wv v v ) have been computed applying 
(12) to the wind speed provided by the measuring mast and 
considering transport delays (14). Fig. 2 shows the real 
sequence of wind speed in turbine 1,1 (

1,1wv ) and the one 
estimated for all the turbines in the y-column 1 i.e. 

1 1,1 2,1 3,1
ˆ ˆ ˆ ˆw w w wv v v v= = =  (see Fig. 1). Delay uncertainties

1τλ , 

2τλ  and 
3τλ have been computed following the signal 

processing method described in Blesa et al. (2010). 
Uncertainty bounds σ  of wind speed error estimation (12) 
and noise (23) have been obtained by a noise analysis of the 
error between the wind speed variables and estimations. 
 

Continuous functions (9)-(11) have been obtained by 
means of the physical knowledge of the system and 

discretized with Ts=0.01s. Then, the nominal parameters 

,

0 ( )
i jP kθ p , 

,

0 ( )
i j kβθ p  and 

,

0 ( )
gi j kwθ p  have been obtained and 

54 parity equations (27 temporal and 27 spatial) have been 
defined. LP and BP filters have been designed in order to 
minimize the effect of the noise that has been bounded in 
each parity equation (uncertainty bounds σ  in temporal and 
spatial parity equations). Finally, an optimization problem as 
proposed in Blesa et. al. (2014) has been applied, in order to 
compute a tolerance α in parameters of each parity equation 

( )0( )= ( ),    1,...,i i kk i nθλ αθ =p  such as the predicted 

behavior contains all the data in the fault free scenario (5). 
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Fig. 2. Real and estimated wind speed in turbine 1,1. 

 
Fig. (3) shows the evolution of the power spatial residual 

P1,2-P2,2 with its interval bounds in the fault free scenario 
used for the model calibration. 

As it can be observed from Fig. 3, the residual interval 
bounds vary strongly with the operating point in the power 
spatial residual. This is due to the fact that small differences 
in the wind speed produce different effects in the power 
generation. These differences are much lower in the pitch 
residual and negligible in the angular speed residual (the 
corresponding figures are omitted due to lack of space). 

The same procedure has been carried out to calibrate the 
42 parity equations (27 temporal and 15 spatial) for wind 
scenario 2 (45 deg). In this scenario, 5 different wind speed 
estimation sequences, corresponding to the number of wind 
turbine sets that are supposed to receive the same wind speed, 
have been estimated. 

 
5.2 Fault scenarios 

The proposed FDI approach is tested in Fault 1 (the debris 
build-up on the blades), Fault 2 (pitch misalignment) and 
Fault 3 (decrease in drive train damping) cases that are 
described in Section 3.2. These faults are occurring twice in 
three different wind turbines at different time intervals, i.e. no 
multiple faults are present at any time. All faults occur once 
before 2300 s (a) and once after 2300 s (b). In the first period, 
the wind farm cannot deliver the required power, while it can 
do it in the second one. Fig. 4 shows, for fault scenario 1(b), 
the evolution of  spatial residual 

1, 2 3, 2
P P−  that is sensitive to 

this fault in wind scenario 1. 
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Fig. 3. 

1, 2 2 , 2
P P− residual and bounds in fault free scenario. 
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Fig. 4. Evolution of residual 

1, 2 3, 2
P P−  and bounds in fault scenario 1(b): 

Debris build-up the wind turbine blades lowering maximum power 6% in 
wind turbine 1,2 from t=3000s to t=3100s. 

 
Fault detection and isolation results in wind scenarios 1 

and 2 of the proposed FDI method implemented in Matlab-
Simulink©, have been obtained after an exhaustive Monte 
Carlo analysis where the condition of false positive 
detections proposed in Odgaard and Stoustrup (2013) has 
been verified. In general, the behavior of the FDI method is 
better in the wind scenario 1 than in wind scenario 2 due to 
the higher number of spatial relations (27 in wind scenario 1 
and 15 in wind scenario 2). Fault 1 (Debris build-up) is 
detected better in case (b) (after 2300s) due to the fact that 
the available power is higher and the scaling effect is more 
important than in case (a) (before 2300s), where the available 
power is lower. Fault 2 (pitch misalignment) is better 
detected in case (a) because the uncertainty is slightly lower 
than in case (b). In order to have a sensitivity of 0.3º in fault 
detection in this fault, a very restrictive low-pass filter has 
been implemented due to the pitch sensor noise. Then, 
despite the FDI block can detect and isolate 0.3º in 
misalignment, the magnitude has to be increased to 10º-14º in 
order to guarantee the correct detection and isolation in less 
than 3s as was proposed in Odgaard and Stoustrup (2013).  
Finally, Fault 3 (decrease in drive train damping) is detected 
and isolated correctly (Odgaard and Stoustrup, 2013).  

6. CONCLUSIONS 

In this paper, the problem of the fault diagnosis of a wind 
farm has been addressed using interval parity equations and 
NLPV models. Fault detection is based on the use of parity 
equations and unknown but bounded description of the noise 
and modeling errors. The fault detection test is based on 
checking the consistency between the measurements and the 
model by finding if the measurements are inside the interval 
prediction bounds. The fault isolation algorithm is based on 
analyzing the observed fault signatures on-line, and matching 
them with the theoretical ones obtained using structural 
analysis. Finally, the proposed approach has been tested 
using the wind farm benchmark proposed in the context of 
the wind farm FDI/FTC competition obtaining satisfactory 
results. 
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