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Abstract—In our previous work [1] we introduced the
Anticipative Kinodynamic Planning (AKP): a robot navigati on
algorithm in dynamic urban environments that seeks to mini-
mize its disruption to nearby pedestrians. In the present pper,
we maintain all the advantages of the AKP, and we overcome
the previous limitations by presenting novel contributions to our
approach. Firstly, we present a multi-objective cost fundbn to
consider different and independent criteria and a well-posd
procedure to build a joint cost function in order to select the
best path. Then, we improve the construction of the planner
tree by introducing a cost-to-go function that will be shownto
outperform a classical Euclidean distance approach. In ordr to
achieve real time calculations, we have used a steering héstic
that dramatically speeds up the process. Plenty of simulatins
and real experiments have been carried out to demonstrate th
success of the AKP.

I. INTRODUCTION

o

A great interest has grown lately in the deployment oFig. 1. Anticipating kinodynamic planning performing in eat scenario.
service robots in urban environments. However, the compleXne robot goal (red cylinder) is between two people.

ity of these scenarios is notable, since there exist meltipl |, order to speed up the calculations, we use a steering
interactions between pedestrians, static obstacles,dids.  heristic to connect states, and at the same time, we inteodu
In this paper, we discuss in depth the importance of thg randomness factor to the steering function, to obtain more
different cost functions in navigation algorithms and Weyjstinct paths. The Social Force Model (SFM) [2], and the
present a method to systematically reduce the complexifyiended SFM [3] have been used in the present work as
associated to consider multiple criteria while performingne steering method.
robot navigation, such as avoiding collisions, minimize th A5 can be seen in Fig. 1, the AKP predicts people’s
impact to pedestrians, reach the goal efficierly, positions (green cylinders) with respect to timeais) and
In our previous work [1] we presented a novel navigatioa|culates a set of paths (blue lines), taking into accdome t
algorithm, the Anticipative Kinodynamic Planner (AKP)ath  restrictions, since dynamical obstacles change theitiposi

calculates the reaction produced by its planned traje@ody oyver time. Among the set of calculated paths, we chose the
provides the minimum impact to nearby pedestrians. Unfofjnimum cost path.

tunately, there were some limitations that have motivated t

present work: the navigation algorithm was highly condi- Il. RELATED WORK

tioned by the learning environment used, while we desire a Finding a cost function to correctly characterize robot

more general approach for different kinds of scenarios. navigation among people is not an easy endeavor, and may
To alleviate this problem, we present a multi-objectivddecome an ill-posed problerag. local minima,etc. In [4],

function that considers different and independent objesti the authors have addressed this problem and proposed a set

and a technique to correctly handle and compare theséhomotopically distinct trajectories. Sharing this sagoal,

different objectives into a single and well-posed function we tackle this problem by proposing a multi-objective cost
We propose a cost-to-go function, based on the multfunction where we optimize different independent criteria

objective costs to calculate distances between statasamhs A Multi-Objective Optimization (MOO) method [5], [6] has

of a Euclidean-based distance. The cost-to-go metric demdnspired a solution to the minimization problem.

strates to greatly enhance the area covered by the set af pathA joint calculation of people’s path and the robot’s path
calculated by the planner. has been proposed in [7] using Gaussian processes and a
distance-basednteraction potential between people. This
The authors are with the Institut de Robotica i Informatien- method is able to provide anticipatively, with respect to
dustrial, CSIC-UPC. Llorens Artigas 4-6, 08028 BarcelorBpain. the scene, the less occupied robot’s trajectory, but unlike
{gf errer,sanfeliu}@ri.upc. edu. h bl ity th tude of th
This work was supported by the Spanish Ministry of Science anOUr approac , We are able to_ quant'fyt € mag”'“_l e ot the
Innovation project DPI2013-42458-P. alterations to nearby pedestrians and plan accordingly.




The prediction method used in the present work is &lgorithm 1 AKP(q9°%, sini, thorizon, K)
geometrical-based predictor [8], [9] that infer human mo- 1 Initialize T(V, €) « {o}
tion intentions to subsequently predict human motion in az. Y « g,
continuous space. 3 {qgf“l} = PEOPLEINTENTIONALITY ()
Some state of the art approaches in robot navigation [10]4: for j =1 to K do
[11], [12] use a wide variety of techniques such as potentials:  [¢9, 3] = sampLE(¢9°%)
fields, samplinggtc. We follow a sampling-based technique ¢: Sparent = FIND_NEAREST.VERTEX(q?, T, 3)
to solve the planning problem. In general, sampling methodsy: [, 57| = EXTEND(S parent, 4%, {49°*'})
[13], [14] can take into account kinematic and dynamicg.  Jrew — cosT.To.Go(U"ew, Snew ggoal T
constraints, which is of great relevance in dynamical envi-g:  if No_coOLLISION(S,e) then
ronments. However, the distance function used can changg: Y YU {grew Jrewy
completely the outcome of the planner. Several works [15}1: £+ EU{U™™}
[16], [17] make use of cost-to-go functions as a distances. end if
function between states. We propose a cost-to-go functiofs: end for
based on the same multi-objective cost function mentionegh: return miniMum _coST.BRANCH(T)
above and calculate distances between states for the RRF
planning framework.
Modern optimal approaches [18], [19] provide a collision
free path for multiple dynamic obstacles. Steering methods « Anticipative planning: prediction information is depen-
are used in state of the art approaches, such as feedback dent on the robot path calculated by considering the

control [20] or analytical solutions through relaxation of joint states = [s,, sp,, . .., Spy| CONsisting of the robot
constraints [17]. The objective is the same, reducing time-co and all he pedestrians.

putational cost drastically. Although it may seem appeglin « At each iteration, the AKP provides a locally valid set
the price to pay may be a reduction of the search space. We of commandsJ = {u(t),...,u(t + h)}, and only the
propose a technique to minimize this problem by introducing ~ first command is executed.

some randomness into the steering function. « The path computed minimizes the perturbations on the

scene, according to a cost function.
IIl. ANTICIPATING KINODYNAMIC PLANNING

: . o . Despite the contributions and the overall novelty of the
Before presenting the planning contributions, we W’I\|/I\é:‘

briefly d ibe th ded " del ork, there were important limitations that have motivated
riefly describe the Extended Social Force Model (ESF e present paper. The cost function defined as a weighted-

[3]’_ pasgd on [?]' since it provides a real!st|c quel de,éum of heterogeneous terms was not able to correctly handle
scribing interactions among humans in typical social envige ¢ost of the robot navigation and its impact towards the

ronments [9]. environment in multiple scenarios. We learned the pararsete

_ The ESFM cor_ls_iders humans and rob(_)ts as free particlposr certain configurations, which in general did not hold to
in a 2D space abiding the laws of Newtonian mechanics, ang| scenarios.

is based on attractors and repulsors. The resultant force is

defined as In the present work, we maintain all the advantages of the

previous AKP, and we overcome the previous limitations by
f = f90U(D,) + Z fimt+ Z fint 4 Z finf, (1) developing and integrating the following novel contrilouts

jEP\n 0€0 reR to our approach:

where interactions with people, obstacles and robots arel) A multi-objective cost function to consider different
considered for theth person. We will use (1) in the planning and independent criteria in a well-posed procedure.
algorithm and it is presented in more detail in [3]. 2) A cost-to-go function to measure the cost to connect

The output of the ESFM are forces that describe human  a pair of states, instead of a Euclidean distance.
trajectories. We can calculate the corresponding acdglaga ~ 3) Introducing randomness into the steering method to
and the differential constraint sample more effectively the solution space.

5, = dc(s,,uy) (2) As stated before, our main objective is to navigate in urban

environments where there are dynamical obstacles (péedestr

that describes the propagation of the statedepending on ans). We use the basic mechanics of the kinodynamic RRT
z being a robot or a person. [13] to extend paths, in order to generate a large set of
In our previous work [1] we presented the basic structurgasible paths and chose the best path according to multiple

of the AKP (Alg. 1), which produces a set of path candidategjinimization criteria. Some of the proposed contributions
in an RRT fashion. The main features can be summarized &gm to obtain more distinct paths and thereby improve the
« A kinodynamic solution is calculated satisfying timesearch for a better trajectory, since we dispose of a more
restrictions due to pedestrians uptiQ,ion =t + h. representative sample of the solution space. In Sec. VI is
« Prior requirement: the calculation of a valid global pathdescribed the improvement of our contributions



IV. RRT EXTEND: ESFMSTEERING HEURISTIC V. MULTI-OBJECTIVE COSFTO-GO FUNCTION

The ESFM serves for the prediction algorithm used by Commonly, cost functions are built after a direct weighted-
our approach, and as an inspiration for the steering heurissum of different variables, that may be expressed in differ-
in order to connect the pair of poses,; and g¢, in @ ent units, and they are projected into the real space as a

computationally fast manner. scalarization/ : R” — R. Our previous work [1] followed a

We calculate using (1) the resultant robot for€g which  similar approach: at the end, it becomes a problem of tunning
takes into account its environmep,, , ..., s,,], while at parameters and that solution only works on limited scesario
the same time tries to reach the given random ggal which is a very sensitive and non-robust solution.

TheexTenp function is depicted in Alg. 2, where it firstly  There are multiple objectives to be minimized in dynamic
propagates the robot statg(s,qn¢) according tou* and planning, and we use different and independent criteria
integrates the differential equation (2) by using numéricanstead of a single-objective composed of different vaeiab
integration. Then, for every person on the scene, and if the goal
person has not reached its inferred gqﬁ;?‘” (line 5 in IS, 7, U) = [ 1, oy, T, (4)
Alg. 2), an actionu;= is calculated depending on the rest g stated before, we aim to obtain a navigation algorithm
of the dynamical obstacles on the scene and the new rolfkt considers different cost functions, and combines them

states;* (line 6 in Alg. 2) in a cooperative way. independently of the configuration of the scene. In this
subsection these costs functions are defined. The cost to
Algorithm 2 EXTEND(Sparent, ¢, {¢9°*'}, B) reach a goall, is
1 Whlle t(sparent) < tho’rizon & Sr(sparent) ,Q_ qf dO tend
2: uZ}ew — fr(spa'renta qg)/mr Jd(S, Sgoal) _ Z er(t) _ XgoalHQ, (5)
3: S:}ew = Sr (Sparent) + jAt ‘ér (Sparenta u?ew) t=tin;
4 for. i=1,..,Ndo oal where we obtain the accumulated square distance value from
5 i Slze(jp‘mnt) %a?gi thennew the initial state at time,,,; in the set of state$), to the final
6: upe = f(gf; » Sparent Sp- )/mi state at timet.,q. The cost orientation/,, expresses the
T Sp, . = Sp: (sparent) + Jas 3p: (SPT"t’“wa) difference between the desired orientation and the current
8 end if orientation
9: end for .
. — new new new
nl R N N TS5 = 3 100 =0 )
122 U™ = U™ U [upe, ul®, ... une?] _ o o
13: end while representing the accumulated distance to the desired geal o

14: return [Smew, Urew) entationf9°*. We additionally measure the cost associated
to the robot controlJ,. in the following way

The exTenD function propagates the state of the system tend )
UP t0 ¢horizon OF Until the robot reaches the random goal LU) = Y Ju ()] (7)
t=tini
A. Randomness in the steering function .
g that sums the robot inputs, throughout the calculated

Steering methods present excellent characteristics E}drft‘rajectory. Similarly, we define the cost function for the
tically reduce the computational cost of kinodynamic planpedestriansip as

ners, both in th&xTenD function as well as theos+To-Go.

However, there is an important drawback in such methods: bena N )

the set of trajectories that can be obtained is highly depeind Jp(U) = Z Z [[up: (D117, (8)

on the environment configuration and thus, we may bias the t=tini =1

search space into only a subset of it. where the inputs:,, are due to the robot influence to other

Since we need a set of paths that cover as much pgdestrians while they walk towards their goals. We also
the solution space as posible, we propose to overcort@ke into account the cost produced by nearby obstacles to
this problem by introducing randomness into the steerintjie robot.J, as

function, the ESFM. The resultant force tona O
: : LoU)= D > llue @) ©)
fr = ﬂl fﬁ?oal + 52 f;};i)le + 53 folbrfsiacles (3) t=tin; i=1

determines the generated trajectory, befhg= [01, 82, 83] where again we consider the perturbations to the robot as
a set of random variables sampled as part of the function & result of nearby obstacles,,, since we want to avoid
Alg. 1, line 5. Sampling3 enriches the coverage of a highercollisions.

area in the solution space, that is, we can obtain more distin Our main purpose is to combine these cost functions into
solutions by introducing random parameters, which is vergt well-posed function. To this end, we are inspired in multi-
usefull for the selection of the best path. objective optimization techniques to solve the problem of



finding a set of optimal solutions. The scaling effect of the VI. EXPERIMENTS
simple weighted-sum method can be avoided by normalizing e have divided the experiments in three parts. We firstly

the objective functions according to: learn the navigation parametensin a simulated environ-
- T — ment. In the second part, we show the importance of a correct
Ji(X) = erf(E=E2) (10) i i i i
¢ - o, cost-to-go function, compared to a Euclidean metric, and in

the final part, we evaluate the general performance of the
improved algorithm.

The simulation framework used is a custom project built
around ROS. Human motion is simulated using the work
presented in [3], where we generate people tracks, that is, a
sequence of positions over time with constahtand model
them as random variables. The robotic platform is simulated
- according to a unicycle model that is controlled by the AKP.

J(S, 89001, U) = Y wiJi(S, 5g0a1, U)- (11) We have carried out all the simulations in a Intel Core2
i Quad CPU Q9650 @ 3.00GHz and memory 3.8 GiB, at an

The final cost function is the accumulated cdshrough- average rate of 5Hz, which is thanks to the steering heatristi
out the path, where each cost has been correctly normalizétie hardware used for simulations is similar to the PC on-
and combined according to theparameters. An interesting board the real robot. The simulated scenarios are as fallows
conseguence of the proposed normalized weight-sum is tithe robot receives a query to a goal, in different scenarios
the navigation algorithm presents similar performance fdhat are built combining a different number of obstacles and
very different scenarios, that is, we have carried out al thpedestrians walking in the area (see attached video or at
experiment without changing to different situations. wwy. i i upc. edu/ groups/ | robot s/ akp/ i r 0s2015. np4).

We will refer it as the normalized weighted-sum method.
The variables., o, are estimated after the treis built.
The multi-objective cost function becomes a single-oljject

by applying three steps: calculation of each cdst S x
U — RI, a normalization tq—1,1), and a projection via a
weighted sum/ : RY — R:

A. Cost-to-go A. Parameter learning

Euclidean distance is a good metric in a geometrical plan- In order to correctly char?ctenze tr;]e effect 3f tWeM: ‘

ning problem, nevertheless, it has proven to be less efticie%”d’lwo“w”wpﬁ 1,[”0] para}m;ahers, W;ﬁ ave use ta onte

in certain planning schemes while cost-to-go functionskwor arlo approach to sample the weightscarrying out more
than 20k simulations. We have used many different scenarios

better in kinodynamic planning, as we will show later. We hich ist of bl ber of | d obstacl
have defined a multi-objective cost function that can also pahich consist of a variaple number of people and obstacles,
d we have calculated the costs associated to the sampled

used to evaluate the cost-to-go from a state to another. statl

. W parameters for each configuration.
Most of the works [15], [16], [17] calculate the cost-to The results of the simulations have been averaged in order

go in the absence of obstacles. In our case, we consiqg)r address the fact that the scenario is dvnamic and the
dynamical obstacles and include these interactions, than 10 15 dy Icar
utcome for the same set of parameters can be different

to the ESFM. In Fig. 2 is drawn the process to calculat ) N . o
the nearest vertex in the search tree. We extend a virtu pendl_ng on the |n|t|al_cond|t|ons, t_hose are, th? pasitio
path towards the goal,.,, from each of the vertices, and of the simulated pedestrians and their corresponding goals

. . _In Fig. 3 is depicted the expectation for two costs results
calculate the accumulated cost to reach it plus the prevml(‘&stance and obstacles) depending on the same parameter
cost.

weps. AS it can be seen, there is not a clear value for the

We will discuss in Sec. VI the coverage of the space
explored using a cost-to-go function to find the nearesexert
and we will compare it to a Euclidean approach.

Wweight cost that can minimize simultaneously the obstacles
and people’s costs. In addition, there is a high varianchen t
results, since we are testing a highly dynamic environment.

distance cost vs obstacles param obstacle work cost vs obstacles param

240

Fig. 2. Scheme of the cost-to-go function to reagh., from each of the Fig. 3
vertices in the tree. Each trajectory (dotted lines) is geed using (1),(2), .
and provides the accumulated cost for each criterion, and i named
cost-to-go.

On theleft distance cost and on théght obstacle cost w.r.t. the
weps Weight parameter. Blue dots correspond to single expetsremd the
red line is the calculated expectation using a GaussiatiHdad. In both
graphics appear the interval of ttaeceptable region, intersection around
Wobs = 0.2.
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Fig. 4. Coverage of the workspace according to the cosbtasgd randomness in the ESFM, and the Euclidean metric. Intypitally visited areas
averaged over a large number of iterations, and in bluec&jlgi non visited regions. The obstacles are plotted askhiacles.
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Comparison of the metrics

For these reasons, we have used an heuristic method t o5 ‘ : ‘
select which are the most convenient valuesvofEach of | Euclidean distance
. . . . © 0.7 m——— COSt-t0—go

the costs considered in this work are drawn as a funct|0n§
of a weight parameter, in the case of Fig. 3, the parameteig

065} et .

1
is weps. Then, we describe aacceptable region starting at g0 7 1
80% of the maximum cost value to the 20% of the minimum g oss} h
. . . . . . o
value. The intersection, if possible, of the different et 2 sl |
leads to an approximate value for the parameter, after someg o/ -
. . © L L\ 4
adjusting by try and error. e
Accordingly, we value the parameters and we will use ® oaf 8
them unchanged for the remaining of the wasl;s;qnce = 035 - e e - o .
0-71 Worientation — 041 Wrobot = 05: Wppl = 0.3 and number of vertices
Weps = 0.2. Fig. 5. Coverage of the workspace with respect to the numbeertices
used in a scenario with obstacles. Results normalized t@dkierage of a
B. Coverage of the solution space free obstacle scenario. Dotted lines are the standard timsa

In Fig. 4eft are depicted two of the scenarios chosen, tapproach outperforms the Euclidean distance, at leastrunde
illustrate the problem. On the top, there is an obstacle frafis configuration.
scenario and on the bottom an scenario with some obstacles|n Fig. 6 we can observe the distribution of the cost
The tree generated by the Euclidean function, as formulate@rameters, prior to normalization, and the corresponding
in [1], appears in Fig. 4ight and the cost-to-go metric and normalization function. The magnitudes of the variables
randomness, in Fig. denter. are too different, and any attempt to scale them and sum
The area corresponding to visited regions (in red) and theormer approach) represents a real challenge and an ill-
non-visited regions (in blue). It is not possible to generatposed problem.
paths that can visit all the regions, since there is a stron
horizon time restrictionh = 5s. We observe that there are © Performance
no significant differences in the obstacle free scenaridhBo We have performed more thak experiments in the above
approaches visit a similar area. However, in the scenardescribed challenging scenarios, comparing our approach,
with some obstacles there is a great difference: the Ewlidethe AKP with cost-to-go, with our former method, the AKP
approach presents more difficulties to scape the obstagde arwith Euclidean metrics and a third approach: a pure reactive
The cost-to-go and randomness improvements make possiplanning [21]. We have set the number of verticeshifo=
to cover more area and reach the goal. 800 for both AKP approaches, and the planner was able to
In order to quantify it, we have run another experimenprovide a path at a rate not lower than 5Hz.
that measures the area visited in the obstacle scenaritg whi All the objective cost functions are plotted in Fig. 7. Both
growing the number of vertices in the AKP. The results aref our approaches clearly outperform in all objectives the
depicted in Fig. 5. Clearly, the cost-to-go and randomnessactive approach, which has demonstrated to behave badly
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Fig. 7. Results for the different cost functiong for the AKP using [10]

cost-to-go function, compared with the AKP with Euclideartrits, and
a pure reactive approach. All results have been normaliaesuin 1 for
visualization reasons.

in dynamic environments, since we often observead-atop- 1]

go strategy. Both AKP behave similarly in simple scenarios,
however the AKP with Euclidean metric presents a morg2l
“straight behavior” towards its goal, specially in complied
environments (lots of obstacles). Under this circumstange
where the AKP with cost-to-go really shines; it is able td3l
adapt to more challenging environments using the same set of
parametersv, thanks to the normalized weighted-sum cost{14]
and provide a solution in more challenging environments tha
the ones used in the learning stage. 1

Moreover, we have conducted some tests of the AKP in a
real robot platform, as shown in the attached video, where
we carried ougo-to queries in a real scenario while people[16]
were moving freely.

VII. CONCLUSIONS
[17]

In addition to our past contributions to robot naviga-
tion [1], we have overcome past limitations and complete
our approach. One of the main contributions of the prese
paper is the formulation of a multi-objective cost functio
when there are several objectives contributing to the robot
navigation simultaneously. We have demonstrated that (]
direct weighted-sum of costs is not able to provide a general
solution for different scenarios, while our approach, aéte
normalization and a correct weighting, is able to provide &9!
set of parameters valid for many scenarios.

Additionally, we have used this cost function to find the
nearest vertex in the tre®, based on a cost-to-go metric [21]
which we demonstrate to greatly enhance the area covered
by the AKP compared to a classical Euclidean distance.

I
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