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Abstract— In our previous work [1] we introduced the
Anticipative Kinodynamic Planning (AKP): a robot navigati on
algorithm in dynamic urban environments that seeks to mini-
mize its disruption to nearby pedestrians. In the present paper,
we maintain all the advantages of the AKP, and we overcome
the previous limitations by presenting novel contributions to our
approach. Firstly, we present a multi-objective cost function to
consider different and independent criteria and a well-posed
procedure to build a joint cost function in order to select the
best path. Then, we improve the construction of the planner
tree by introducing a cost-to-go function that will be shownto
outperform a classical Euclidean distance approach. In order to
achieve real time calculations, we have used a steering heuristic
that dramatically speeds up the process. Plenty of simulations
and real experiments have been carried out to demonstrate the
success of the AKP.

I. I NTRODUCTION

A great interest has grown lately in the deployment of
service robots in urban environments. However, the complex-
ity of these scenarios is notable, since there exist multiple
interactions between pedestrians, static obstacles, and robots.

In this paper, we discuss in depth the importance of the
different cost functions in navigation algorithms and we
present a method to systematically reduce the complexity
associated to consider multiple criteria while performing
robot navigation, such as avoiding collisions, minimize the
impact to pedestrians, reach the goal efficiently,etc.

In our previous work [1] we presented a novel navigation
algorithm, the Anticipative Kinodynamic Planner (AKP), that
calculates the reaction produced by its planned trajectoryand
provides the minimum impact to nearby pedestrians. Unfor-
tunately, there were some limitations that have motivated the
present work: the navigation algorithm was highly condi-
tioned by the learning environment used, while we desire a
more general approach for different kinds of scenarios.

To alleviate this problem, we present a multi-objective
function that considers different and independent objectives,
and a technique to correctly handle and compare these
different objectives into a single and well-posed function.

We propose a cost-to-go function, based on the multi-
objective costs to calculate distances between states, instead
of a Euclidean-based distance. The cost-to-go metric demon-
strates to greatly enhance the area covered by the set of paths
calculated by the planner.
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Fig. 1. Anticipating kinodynamic planning performing in a real scenario.
The robot goal (red cylinder) is between two people.

In order to speed up the calculations, we use a steering
heuristic to connect states, and at the same time, we introduce
a randomness factor to the steering function, to obtain more
distinct paths. The Social Force Model (SFM) [2], and the
Extended SFM [3] have been used in the present work as
the steering method.

As can be seen in Fig. 1, the AKP predicts people’s
positions (green cylinders) with respect to time (z axis) and
calculates a set of paths (blue lines), taking into account time
restrictions, since dynamical obstacles change their positions
over time. Among the set of calculated paths, we chose the
minimum cost path.

II. RELATED WORK

Finding a cost function to correctly characterize robot
navigation among people is not an easy endeavor, and may
become an ill-posed problem,e.g. local minima,etc. In [4],
the authors have addressed this problem and proposed a set
of homotopically distinct trajectories. Sharing this samegoal,
we tackle this problem by proposing a multi-objective cost
function where we optimize different independent criteria.
A Multi-Objective Optimization (MOO) method [5], [6] has
inspired a solution to the minimization problem.

A joint calculation of people’s path and the robot’s path
has been proposed in [7] using Gaussian processes and a
distance-basedinteraction potential between people. This
method is able to provide anticipatively, with respect to
the scene, the less occupied robot’s trajectory, but unlike
our approach, we are able to quantify the magnitude of the
alterations to nearby pedestrians and plan accordingly.



The prediction method used in the present work is a
geometrical-based predictor [8], [9] that infer human mo-
tion intentions to subsequently predict human motion in a
continuous space.

Some state of the art approaches in robot navigation [10],
[11], [12] use a wide variety of techniques such as potential
fields, sampling,etc. We follow a sampling-based technique
to solve the planning problem. In general, sampling methods
[13], [14] can take into account kinematic and dynamic
constraints, which is of great relevance in dynamical envi-
ronments. However, the distance function used can change
completely the outcome of the planner. Several works [15],
[16], [17] make use of cost-to-go functions as a distance
function between states. We propose a cost-to-go function
based on the same multi-objective cost function mentioned
above and calculate distances between states for the RRT
planning framework.

Modern optimal approaches [18], [19] provide a collision
free path for multiple dynamic obstacles. Steering methods
are used in state of the art approaches, such as feedback
control [20] or analytical solutions through relaxation of
constraints [17]. The objective is the same, reducing the com-
putational cost drastically. Although it may seem appealing,
the price to pay may be a reduction of the search space. We
propose a technique to minimize this problem by introducing
some randomness into the steering function.

III. A NTICIPATING KINODYNAMIC PLANNING

Before presenting the planning contributions, we will
briefly describe the Extended Social Force Model (ESFM)
[3], based on [2], since it provides a realistic model de-
scribing interactions among humans in typical social envi-
ronments [9].

The ESFM considers humans and robots as free particles
in a 2D space abiding the laws of Newtonian mechanics, and
is based on attractors and repulsors. The resultant force is
defined as

fn = fgoaln (Dn)+
∑

j∈P\n

f int
n,j +

∑

o∈O

f int
n,o +

∑

r∈R

f int
n,r , (1)

where interactions with people, obstacles and robots are
considered for thenth person. We will use (1) in the planning
algorithm and it is presented in more detail in [3].

The output of the ESFM are forces that describe human
trajectories. We can calculate the corresponding accelerations
and the differential constraint

ṡz = dc(sz , uz) (2)

that describes the propagation of the statesz, depending on
z being a robot or a person.

In our previous work [1] we presented the basic structure
of the AKP (Alg. 1), which produces a set of path candidates
in an RRT fashion. The main features can be summarized as:

• A kinodynamic solution is calculated satisfying time
restrictions due to pedestrians up tothorizon = t+ h.

• Prior requirement: the calculation of a valid global path.

Algorithm 1 AKP(qgoalr , sini, thorizon,K)

1: Initialize T (V , E)← {ø}
2: V ← sini
3: {qgoalpi

} = PEOPLE INTENTIONALITY()
4: for j = 1 to K do
5: [qgr , β] = SAMPLE(qgoalr )
6: sparent = FIND NEAREST VERTEX(qgr , T , β)
7: [Unew, Snew] = EXTEND(sparent, q

g
r , {q

goal
pi
})

8: Jnew = COST TO GO(Unew, Snew, qgoalr , T )
9: if NO COLLISION(Snew) then

10: V ← V ∪ {Snew, Jnew}
11: E ← E ∪ {Unew}
12: end if
13: end for
14: return MINIMUM COST BRANCH(T )

• Anticipative planning: prediction information is depen-
dent on the robot path calculated by considering the
joint states = [sr, sp1

, . . . , spN
] consisting of the robot

and all he pedestrians.
• At each iteration, the AKP provides a locally valid set

of commandsU = {u(t), . . . , u(t + h)}, and only the
first command is executed.

• The path computed minimizes the perturbations on the
scene, according to a cost function.

Despite the contributions and the overall novelty of the
work, there were important limitations that have motivated
the present paper. The cost function defined as a weighted-
sum of heterogeneous terms was not able to correctly handle
the cost of the robot navigation and its impact towards the
environment in multiple scenarios. We learned the parameters
for certain configurations, which in general did not hold to
all scenarios.

In the present work, we maintain all the advantages of the
previous AKP, and we overcome the previous limitations by
developing and integrating the following novel contributions
to our approach:

1) A multi-objective cost function to consider different
and independent criteria in a well-posed procedure.

2) A cost-to-go function to measure the cost to connect
a pair of states, instead of a Euclidean distance.

3) Introducing randomness into the steering method to
sample more effectively the solution space.

As stated before, our main objective is to navigate in urban
environments where there are dynamical obstacles (pedestri-
ans). We use the basic mechanics of the kinodynamic RRT
[13] to extend paths, in order to generate a large set of
feasible paths and chose the best path according to multiple
minimization criteria. Some of the proposed contributions
aim to obtain more distinct paths and thereby improve the
search for a better trajectory, since we dispose of a more
representative sample of the solution space. In Sec. VI is
described the improvement of our contributions



IV. RRT EXTEND: ESFM STEERING HEURISTIC

The ESFM serves for the prediction algorithm used by
our approach, and as an inspiration for the steering heuristic
in order to connect the pair of posesqini and qf , in a
computationally fast manner.

We calculate using (1) the resultant robot forcefr, which
takes into account its environment[sp1

, . . . , spN
], while at

the same time tries to reach the given random goalqgr .
The EXTEND function is depicted in Alg. 2, where it firstly

propagates the robot statesr(sparent) according tounew
r and

integrates the differential equation (2) by using numerical
integration. Then, for every person on the scene, and if the
person has not reached its inferred goalqgoalpi

(line 5 in
Alg. 2), an actionunew

pi
is calculated depending on the rest

of the dynamical obstacles on the scene and the new robot
statesnewr (line 6 in Alg. 2) in a cooperative way.

Algorithm 2 EXTEND(sparent, q
g
r , {q

goal
pi
}, β)

1: while t(sparent) < thorizon & sr(sparent) * qgr do
2: unew

r = fr(sparent, q
g
r )/mr

3: snewr = sr(sparent) +
∫

∆t
ṡr
(

sparent, u
new
r

)

4: for i = 1, . . . , N do
5: if spi

(sparent) * qgoalpi
then

6: unew
pi

= f
(

qgoalpi
, sparent, s

new
r

)

/mi

7: snewpi
= spi

(sparent) +
∫

∆t
ṡpi

(

sprnt, u
new
pi

)

8: end if
9: end for

10: sparent = [snewr , snewp1
, . . . , snewpN

]
11: Snew ← Snew ∪ sparent
12: Unew ← Unew ∪ [unew

r , unew
p1

, . . . , unew
pN

]
13: end while
14: return [Snew, Unew]

The EXTEND function propagates the state of the system
up to thorizon or until the robot reaches the random goalqgr .

A. Randomness in the steering function

Steering methods present excellent characteristics to dras-
tically reduce the computational cost of kinodynamic plan-
ners, both in theEXTEND function as well as theCOST-TO-GO.
However, there is an important drawback in such methods:
the set of trajectories that can be obtained is highly dependent
on the environment configuration and thus, we may bias the
search space into only a subset of it.

Since we need a set of paths that cover as much of
the solution space as posible, we propose to overcome
this problem by introducing randomness into the steering
function, the ESFM. The resultant force

fr = β1 fgoalr + β2 f int
people + β3 f int

obstacles (3)

determines the generated trajectory, beingβ = [β1, β2, β3]
a set of random variables sampled as part of the function in
Alg. 1, line 5. Samplingβ enriches the coverage of a higher
area in the solution space, that is, we can obtain more distinct
solutions by introducing random parameters, which is very
usefull for the selection of the best path.

V. M ULTI -OBJECTIVE COST-TO-GO FUNCTION

Commonly, cost functions are built after a direct weighted-
sum of different variables, that may be expressed in differ-
ent units, and they are projected into the real space as a
scalarizationJ : Rn → R. Our previous work [1] followed a
similar approach: at the end, it becomes a problem of tunning
parameters and that solution only works on limited scenarios,
which is a very sensitive and non-robust solution.

There are multiple objectives to be minimized in dynamic
planning, and we use different and independent criteria
instead of a single-objective composed of different variables:

J(S, sgoal, U) = [J1, J2, . . . , JI ]. (4)

As stated before, we aim to obtain a navigation algorithm
that considers different cost functions, and combines them
independently of the configuration of the scene. In this
subsection these costs functions are defined. The cost to
reach a goalJd is

Jd(S, s
goal) =

tend
∑

t=tini

‖xr(t)− xgoal‖2, (5)

where we obtain the accumulated square distance value from
the initial state at timetini in the set of statesS, to the final
state at timetend. The cost orientationJor expresses the
difference between the desired orientation and the current
orientation

Jor(S, s
goal) =

tend
∑

t=tini

‖θr(t)− θgoal‖2, (6)

representing the accumulated distance to the desired goal ori-
entationθgoal. We additionally measure the cost associated
to the robot controlJr in the following way

Jr(U) =

tend
∑

t=tini

‖ur(t)‖
2, (7)

that sums the robot inputsur throughout the calculated
trajectory. Similarly, we define the cost function for the
pedestriansJp as

Jp(U) =

tend
∑

t=tini

N
∑

i=1

‖upi
(t)‖2, (8)

where the inputsupi
are due to the robot influence to other

pedestrians while they walk towards their goals. We also
take into account the cost produced by nearby obstacles to
the robotJo as

Jo(U) =

tend
∑

t=tini

O
∑

i=1

‖uoi(t)‖
2, (9)

where again we consider the perturbations to the robot as
a result of nearby obstaclesuoi , since we want to avoid
collisions.

Our main purpose is to combine these cost functions into
a well-posed function. To this end, we are inspired in multi-
objective optimization techniques to solve the problem of



finding a set of optimal solutions. The scaling effect of the
simple weighted-sum method can be avoided by normalizing
the objective functions according to:

J̄i(X) = erf
(x− µx

σx

)

. (10)

We will refer it as the normalized weighted-sum method.
The variablesµx, σx are estimated after the treeT is built.

The multi-objective cost function becomes a single-objective
by applying three steps: calculation of each costJ : S ×
U → RI , a normalization to(−1, 1), and a projection via a
weighted sumJ : RI → R:

J(S, sgoal, U) =
∑

i

wiJ̄i(S, sgoal, U). (11)

The final cost function is the accumulated costJ through-
out the path, where each cost has been correctly normalized
and combined according to thew parameters. An interesting
consequence of the proposed normalized weight-sum is that
the navigation algorithm presents similar performance for
very different scenarios, that is, we have carried out all the
experiment without changingw to different situations.

A. Cost-to-go

Euclidean distance is a good metric in a geometrical plan-
ning problem, nevertheless, it has proven to be less efficient
in certain planning schemes while cost-to-go functions work
better in kinodynamic planning, as we will show later. We
have defined a multi-objective cost function that can also be
used to evaluate the cost-to-go from a state to another state.

Most of the works [15], [16], [17] calculate the cost-to-
go in the absence of obstacles. In our case, we consider
dynamical obstacles and include these interactions, thanks
to the ESFM. In Fig. 2 is drawn the process to calculate
the nearest vertex in the search tree. We extend a virtual
path towards the goalqnew from each of the vertices, and
calculate the accumulated cost to reach it plus the previous
cost.

We will discuss in Sec. VI the coverage of the space
explored using a cost-to-go function to find the nearest vertex
and we will compare it to a Euclidean approach.

q1

q2

qnew

Fig. 2. Scheme of the cost-to-go function to reachqnew from each of the
vertices in the tree. Each trajectory (dotted lines) is generated using (1),(2),
and provides the accumulated cost for each criterion, and thus is named
cost-to-go.

VI. EXPERIMENTS

We have divided the experiments in three parts. We firstly
learn the navigation parametersw in a simulated environ-
ment. In the second part, we show the importance of a correct
cost-to-go function, compared to a Euclidean metric, and in
the final part, we evaluate the general performance of the
improved algorithm.

The simulation framework used is a custom project built
around ROS. Human motion is simulated using the work
presented in [3], where we generate people tracks, that is, a
sequence of positions over time with constantid, and model
them as random variables. The robotic platform is simulated
according to a unicycle model that is controlled by the AKP.

We have carried out all the simulations in a Intel Core2
Quad CPU Q9650 @ 3.00GHz and memory 3.8 GiB, at an
average rate of 5Hz, which is thanks to the steering heuristic.
The hardware used for simulations is similar to the PC on-
board the real robot. The simulated scenarios are as follows:
the robot receives a query to a goal, in different scenarios
that are built combining a different number of obstacles and
pedestrians walking in the area (see attached video or at
www.iri.upc.edu/groups/lrobots/akp/iros2015.mp4).

A. Parameter learning

In order to correctly characterize the effect of thew =
[wd, wor, wr, wp, wo] parameters, we have used a Monte
Carlo approach to sample the weightsw, carrying out more
than 20k simulations. We have used many different scenarios
which consist of a variable number of people and obstacles,
and we have calculated the costs associated to the sampled
w parameters for each configuration.

The results of the simulations have been averaged in order
to address the fact that the scenario is dynamic and the
outcome for the same set of parameters can be different
depending on the initial conditions, those are, the position
of the simulated pedestrians and their corresponding goals.

In Fig. 3 is depicted the expectation for two costs results
(distance and obstacles) depending on the same parameter
wobs. As it can be seen, there is not a clear value for the
weight cost that can minimize simultaneously the obstacles’
and people’s costs. In addition, there is a high variance in the
results, since we are testing a highly dynamic environment.

0 0.2 0.4 0.6 0.8 1

100

120

140

160

180

200

220

240

260

distance cost vs obstacles param

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
obstacle work cost vs obstacles param

Fig. 3. On theleft distance cost and on theright obstacle cost w.r.t. the
wobs weight parameter. Blue dots correspond to single experiments and the
red line is the calculated expectation using a Gaussian likelihood. In both
graphics appear the interval of theacceptable region, intersection around
wobs = 0.2.
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Fig. 4. Coverage of the workspace according to the cost-to-go and randomness in the ESFM, and the Euclidean metric. In red, typically visited areas
averaged over a large number of iterations, and in blue, typically non visited regions. The obstacles are plotted as black circles.

For these reasons, we have used an heuristic method to
select which are the most convenient values ofw. Each of
the costs considered in this work are drawn as a function
of a weight parameter, in the case of Fig. 3, the parameter
is wobs. Then, we describe anacceptable region starting at
80% of the maximum cost value to the 20% of the minimum
value. The intersection, if possible, of the different regions
leads to an approximate value for the parameter, after some
adjusting by try and error.

Accordingly, we value the parameters and we will use
them unchanged for the remaining of the workwdistance =
0.7, worientation = 0.4, wrobot = 0.5, wppl = 0.3 and
wobs = 0.2.

B. Coverage of the solution space

In Fig. 4-left are depicted two of the scenarios chosen, to
illustrate the problem. On the top, there is an obstacle free
scenario and on the bottom an scenario with some obstacles.
The tree generated by the Euclidean function, as formulated
in [1], appears in Fig. 4-right and the cost-to-go metric and
randomness, in Fig. 4-center.

The area corresponding to visited regions (in red) and the
non-visited regions (in blue). It is not possible to generate
paths that can visit all the regions, since there is a strong
horizon time restrictionh = 5s. We observe that there are
no significant differences in the obstacle free scenario. Both
approaches visit a similar area. However, in the scenario
with some obstacles there is a great difference: the Euclidean
approach presents more difficulties to scape the obstacle area.
The cost-to-go and randomness improvements make possible
to cover more area and reach the goal.

In order to quantify it, we have run another experiment
that measures the area visited in the obstacle scenario, while
growing the number of vertices in the AKP. The results are
depicted in Fig. 5. Clearly, the cost-to-go and randomness
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Fig. 5. Coverage of the workspace with respect to the number of vertices
used in a scenario with obstacles. Results normalized to thecoverage of a
free obstacle scenario. Dotted lines are the standard deviations.

approach outperforms the Euclidean distance, at least under
this configuration.

In Fig. 6 we can observe the distribution of the cost
parameters, prior to normalization, and the corresponding
normalization function. The magnitudes of the variables
are too different, and any attempt to scale them and sum
(former approach) represents a real challenge and an ill-
posed problem.

C. Performance

We have performed more than5k experiments in the above
described challenging scenarios, comparing our approach,
the AKP with cost-to-go, with our former method, the AKP
with Euclidean metrics and a third approach: a pure reactive
planning [21]. We have set the number of vertices toK =
800 for both AKP approaches, and the planner was able to
provide a path at a rate not lower than 5Hz.

All the objective cost functions are plotted in Fig. 7. Both
of our approaches clearly outperform in all objectives the
reactive approach, which has demonstrated to behave badly
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Fig. 7. Results for the different cost functionsJi for the AKP using
cost-to-go function, compared with the AKP with Euclidean metrics, and
a pure reactive approach. All results have been normalized to sum 1 for
visualization reasons.

in dynamic environments, since we often observed ago-stop-
go strategy. Both AKP behave similarly in simple scenarios,
however the AKP with Euclidean metric presents a more
“straight behavior” towards its goal, specially in complicated
environments (lots of obstacles). Under this circumstances is
where the AKP with cost-to-go really shines; it is able to
adapt to more challenging environments using the same set of
parametersw, thanks to the normalized weighted-sum cost,
and provide a solution in more challenging environments that
the ones used in the learning stage.

Moreover, we have conducted some tests of the AKP in a
real robot platform, as shown in the attached video, where
we carried outgo-to queries in a real scenario while people
were moving freely.

VII. C ONCLUSIONS

In addition to our past contributions to robot naviga-
tion [1], we have overcome past limitations and complete
our approach. One of the main contributions of the present
paper is the formulation of a multi-objective cost function
when there are several objectives contributing to the robot
navigation simultaneously. We have demonstrated that a
direct weighted-sum of costs is not able to provide a general
solution for different scenarios, while our approach, after a
normalization and a correct weighting, is able to provide a
set of parameters valid for many scenarios.

Additionally, we have used this cost function to find the
nearest vertex in the treeT , based on a cost-to-go metric
which we demonstrate to greatly enhance the area covered
by the AKP compared to a classical Euclidean distance.
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