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Abstract—This work evaluates by simulation the performance
of the Unfalsified Adaptive Control (UAC) for Multiple Degree of
Freedom (MDoF) serial manipulators. The UAC is a data-driven
technique that addresses stability issues of model-based con-
trollers for robot arms with inertial uncertainties. The unfalsified
controller selects the most suitable controller from a set, based
on performance, to decide whether the controller in the closed
loop should be changed, using only system inputs and outputs, i.e.,
torques and joint variables of the robotic arm, respectively. In this
work, performance and robustness is evaluated by simulation on a
5-DoF manipulator showing the ability of the UAC to accomplish
tracking tasks in the presence of inertial parameters disturbances.

I. INTRODUCTION

For the last decades, both model-based and data-driven
control techniques has been used for manipulators. Tradi-
tional model-based strategies are often applied dealing with
imprecise model identification or measurement of inertial and
friction parameters [1], [2], [3], [4]. But, the identification
or measurement of parameters is a demanding task, with
difficulties on excitation functions, validation of results [5], [6],
[7], [8] and possible unexpected performance of the plant [5].
Due to the increasing complexity of robot arm applications like
lifting or lowering objects, picking up objects from shelves or
helping people with personal care activities, careful evaluation
of control performance in novel approaches becomes an issue
of interest, considering the analysis of the ability to handle
payloads in common daily situations due to sudden changes
or unstructured environments [9], [10], [11].

The Unfalsified Adaptive Control (UAC or UC) theory
is a data-driven approach in the field of adaptive control
[12], [13], [14]. The main advantage with respect to other
techniques relies on its independence of the system model,
with reliance only on the measurement of inputs and out-
puts of the plant (the robotic manipulator in this case). The
basic elements of an UAC controller are a set of stabilizing

controllers, a performance criterion and a switching strategy.
The performance of each controller within a set is evaluated
outside the closed loop by using measures of system inputs and
outputs. If any tested controller shows a better performance, a
switching strategy conveniently replaces the controller in the
loop. The UAC technique has been proposed for the control of
2-DoF planar robotic manipulators [13], [15], [14], using linear
programing methods for parameter adaption. Unfortunately,
the internal stability of the closed-loop system provided in
[15] is not fully formal. Moreover, in [16] and [17] cases of
instability are analyzed and in [18] simple stability tests are
proposed for closed-loop stability. The use of UAC for more
complex manipulators is studied by simulation in [19], based
on the proposed methods in [15]. In particular, the authors
analyzed performance of specific manipulators with bounded
disturbances. Recent works present applications of UAC for
fuel cell systems [20], secondary mirror positioning control
for ground-based telescopes [21], inertial navigation systems
[22], pressure drilling for oil [23] [24], temperature tracking of
the Chylla-Haase reactor [25] and inverted pendulum systems
[26].

In this work, we evaluate in simulation both performance
and robustness of the UAC technique for MDoF manipulators,
considering the effects due to inertial parameters disturbances
and payload changes. To this end, it is used the traditional
model-based computed torque technique to design the candi-
date controller set. The used UAC strategy includes fading
memory introduced in [27] to emphasize the significance
of new data in the performance evaluation, improving the
ability to detect destabilizing controllers. Three situations
for performance evaluation have been considered: two fixed
payloads, periodic non-smooth payload variations and worst-
case disturbances to the inertial parameters to test robustness.
The UAC controller has shown acceptable performance and
low dependency to inertial parameters perturbations.

The remainder of the paper is organized as follows: Sec-
tion II introduces UAC definitions, basic concepts and the
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application to MDoF manipulators. In Section III, the UAC
controller is evaluated in simulation using a 5-DoF manipulator
dynamical model. Finally, the main conclusions are drawn in
Section IV.

II. UNFALSIFIED ADAPTIVE CONTROL FOR
MDOF MANIPULATORS

The UAC is inspired by [28] standing that learning is
achieved by using experimental data to falsify hypotheses.
To this end, three sets are defined: P of signals (r,u,y)
related with past measurements of inputs u, outputs y and the
reference r; M of signals (r,u,y) related to the behavior of
the controller K in the closed loop; and T of signals (r,u,y)
that accomplish the expected performance [14].

Then, the controller K is not falsified if the intersection
between the set of past measurements of inputs, outputs and
reference signals and the set of controller K signals is a
subset of the performance evaluation signals (PNM C T),
meaning that the controller stays in the loop since it has the
best performance compared with a set of different controllers.
Otherwise, the controller in the loop is falsified and changed.

The main advantage of UAC as a supervisory robust con-
troller is that a model of the plant is not necessary [29], [13],
[14]. The controller in the loop can be falsified or not just with
the information given by the input and output data z = (u,y).
Besides, this may be applied to the controllers outside the loop.
To this end, the controllers should be causally left invertible,
i.e., it should be possible to compute a fictitious reference
signal ¥ from the inversion of the controller expression and
the data z (see pag. 20 of [14]).

The performance criterion for the UAC strategy is based on
a cost function capable of detecting from the data z whether or
not the controller is stabilizing. The cost-detectable function
used here is presented in [27] and justified in [14], which takes
advantage of the fading factor to reduce the probability of
a large transient and is bounded if there exists at least one
stabilizing candidate controller in the set. The cost function is
defined as

Fy(e(1),1) + Fo (u(t),1)
Fy (F(1),t) + o

where e(r) = F(t) —y(¢), a > 0 prevents division by zero and
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; ey

&M&ﬂ?ﬂ@h@#”, @
=0

where 0 is the evaluation time period, 11 < 1 is a fading factor
to emphasize the significance of new data. This function allows
the UAC algorithm to select which controller has the best
performance based on current operating conditions [27].

The UAC technique may use any control theory to design
a finite controller set K= {K;,i=1,...,N}, and a switching
algorithm that, at each time #;, verifies

min(v(Kivzatk)) <V(szvtk—l)+£7 (3)
1
where K € K is the controller in the closed-loop at #;_; and €

is a small hysteresis constant. If the condition (3) holds, the
current controller K is replaced by K; € K [30].
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Fig. 1: Unfalsified Adaptive Control for multiple DoF robotic arms

In the UAC scheme for MDoF manipulators of Fig. 1, the
fictitious reference set ¥ is computed from the control signal
u or torques required at joints, and output positions, velocities
and accelerations as the data y, for each controller K; € K.

The dynamical model of a n-link rigid and non-flexible
joints manipulator (robot arm), based on traditional mechanics
of Newton-Euler or Lagrange-Euler, are highly nonlinear and
might be formulated as

H(0,q)4+C(6,9,4)4+G(6,q) +F(q) =u, 4

where 6 is a parameter vector, function of the inertial
terms; q,q,q§ € R" are position, velocity and acceleration
joint vectors, respectively. H(0,q) is the n X n inertia matrix,
C(6,q,q)q contains the n x 1 vector of Coriolis and centripetal
terms, G(6,q) is the n x 1 vector of gravitational terms, F(q)
is the n x 1 vector of viscous friction and u is the n x 1 vector
of torques applied to the joints of the manipulator.

As a function of a parameter vector 6, the model may be
presented in the form of

Y(q,94,4,4)0 +G(6,q) +F(q) =u. (5)

Therefore, the dynamical model is linear with respect to the
parameter vector O for any n degree of freedom manipulator.

The UAC algorithm checks every sampling time 7 the
condition (3) and decides whether or not the controller in the
loop should be replaced. One disadvantage of this procedure
might be a computational inefficiency when the number of
candidate controllers is large due to the calculation of the
fictitious reference for each controller in the set.

The reference r, input torques u and output positions,
velocities and accelerations y are defined as
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may be easily computed from the inversion of the candidate
controller. In this case, with the traditional computed torque



controller and using the measured data z, the fictitious refer-
ence may be obtained from

—Hij—Cq—G—F).

III. ANALYSIS OF PERFORMANCE AND
ROBUSTNESS

In this section we evaluate in simulation both performance
and robustness of the UAC technique for MDoF manipulators,
considering the effects due to inertial parameters disturbances
and payload changes. To this end, it is used the traditional
model-based computed torque technique to design the candi-
date controller set of the UAC. The cost-detectable function
of the UAC includes fading memory, as presented in Section
II, to emphasize the significance of new data in the perfor-
mance evaluation, improving the ability to detect destabilizing
controllers. Three situations for performance evaluation have
been considered: two fixed payloads, periodic non-smooth
payload variations and worst-case disturbances to the inertial
parameters to test robustness.

The case of study is a 5-DoF rigid manipulator, with the
parameters presented in [31]:

mi=1kg, i=1,...,5,
11 =0.35 m, h=13=022 m, Iy = l5 =0.14 m,
¥%=0.1 Ns/m,i=1,...,5 (Damping friction)
L. — 0.1, ifx=1,....,.5and y=1,2,3,
¥ 0, ifx=1,...,5and y=4,5.

This model was used in [32] to analyze performance with
traditional control techniques. Several simulations showed a
maximum payload capacity of the manipulator for the tracking
task of about 2 kg. The payload is added to the last element of

the manipulator, with mass ms, and is modified in the following
scenarios for analysis.

Periodic articular trajectories with period 7 =5 s are used
for performance analysis:

2 2
?” <1—cos<5”t ) ifi=1,35,

qd; = 2 )

. (1 —cos (S”t) Cifi=2.4.
Simulations started at rest, from initial conditions: g4,(0) =0
and g4,(0) =0, withi=1,...,5. Saturation torques of actuators

are assumed constant for simplicity at 30 Nm.

We used the traditional computed torque controller for
the controller set K related to the UAC, with known inertial
parameters and A = 20 in (8), with stable critically damped
behavior as presented in [32], assuring feasibility for the
stability of the UAC, as requested in [33]. The parameter O
(the sum of the masses of the end-effector and the payload)
takes finite values @ in a set @, taking advantage of the a priori
knowledge of the payload interval, ranging from the no-load
condition to the maximum payload of the manipulator in the
workspace, i.e.,

0 ={1,2,3}. (10)

Considering that ms = 1 kg (the constant mass of the end
effector without payload), the interval for the controller pa-
rameter (payload) is [0,2] kg, with the upper limit of the
interval corresponding to the maximum payload supported by
the manipulator. Three values are used for the set ®, based on
the payload interval of the manipulator, to reduce the on-line
computation time of control signals and fictitious references.

The cost function constants in (1) are: o = 0.001 and
n = 0.9 as the fading constant. This function is evaluated
periodically with 7y = 0.01 s, as stated in the procedure
described in Section II.

The performance of the UAC was evaluated for three
different cases: i) performance of the controller for two fixed
payloads; ii) performance of the controller with periodic
sudden payload changes; and iii) performance with worst-case
disturbances in the inertial parameters.

We used control effort (CE) and integral squared tracking
error (ISE) as performance evaluation indexes, considering
their relation to the cost-detectable function in (1). We used a
moving window for the computation of CE and ISE integrals
for the entire period of the desired trajectories (7' =35 s in this
case), defining the integration interval between ¢ — 7T and f.
The ISE is computed as

t
ISE, (1) = [ eHoydr, an
=T
where ¢;(¢) (i =1,...,5) are the tracking errors.

The CE is computed as
CE, (1) = [ F(ar (12

where 7;(t) (i =1,...,5) are the control torques. Note that
although these calculations are presented in continuous time,
in practice they are computed in discrete time, with relatively
small sampling time compared with the evaluation of the cost
functions in (3).

A. Controller performance analysis for two fixed payloads

Simulations are performed for two constant payloads along
the trajectory, with 1.5 kg and 1.7 kg, and without disturbances
to the inertial parameters.

Figure 2 shows periodic errors that increase at the begin-
ning of each period due to the most effort demanding points
of trajectories for joints 2 and 3. It shows a performance loss
at those points related to the increased payload, but the ability
of the system to recover for an acceptable performance. The
system with the UAC tracks the desired trajectories.

Control signals for both payloads are presented in Fig. 3.
For joint g5, the controller recovers from saturation in the most
effort demanding points. Short transients for joint g3 occur
at these same points of the testing trajectories. As shown in
Fig. 4, a change of the controller parameter appears at these
effort demanding points, generating those transients. It also
should be noted from Fig. 4 that one period (from 5 s to 10
s) of periodic cost functions shows a finite number of changes
of the controller parameter (right side of the Fig. 4).
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Fig. 2: Comparison of tracking errors for g and g3. Solid line for
Payload of 1.5 kg. Dashed line for Payload of 1.7 kg.
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Fig. 3: Comparison of control torques for g, and g3. Solid line for
payload of 1.5 kg. Dashed line for payload of 1.7 kg.

Cost functions (1) are shown in Fig. 4 for a complete
period (between 5 and 10 s) and for the 1.5 kg payload. It
also presents the changes of the controller parameter 6 every
time the condition (3) is satisfied by a controller of the set
with better performance and the switching algorithm replaces
the current controller in the loop.

Performance of UAC for joints 2 to 3 is presented in Table
I, using the ISE and CE for a time span of 15 s and an
integration window of 5 s. Normalization is based on the NO
LOAD case, presented at the same table. From the Table I, it
may be concluded that:

e The ISE for the NO LOAD case stays low and with
small standard deviation.

e The ISE stays bounded for both payload values, but
there is a performance loss due to the increased
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Fig. 4: UAC procedure evaluates cost functions and changes the
controller parameter, for a fixed load of 1.5 kg.

TABLE I: Performance for no-load and payloads of 1.5 kg and 1.7
kg. Time span of 15 s. Normalization based on the NO LOAD case.

CONTROLLER UAC
PAYLOAD (kg) NO LOAD 1.5 1.7
ISE ¢ | MAX 1,40 x1073 | 18,21 74,23
MEAN 1,29 x1073 | 16,72 70,02
STD.DEV. | 221 x107° | 69,98 | 372,99
ISE ¢ | MAX 539 x1073 | 1391 | 47,55
MEAN 5,02 x1073 | 12,74 | 44,59
STD.DEV. | 7,78 x107> | 55,10 | 241,64
CE ¢» MAX 4,33 x102 2,16 2,30
MEAN 4,16 x10? 2,15 2,30
STD.DEV. 6,25 2,33 2,43
CE ¢3 MAX 2,43 x10? 2,85 3,13
MEAN 2,40 x10? 2,81 3,08
STD.DEV. 1,85 2,97 3,30

payload. Despite this, the ISE remains relatively low.

e The CE increases for both payloads, but somehow at
the same scale, remaining bounded due to the stability
of the controller. There are no significant differences
in the CE due to the payload change.

B. Controller performance analysis for periodic non-smooth
(sudden) payload changes

In this case, the payload changes periodically (with period
T; =3 s) between 0.5 kg and 1.5 kg and between 0.5 kg
and 1.7 kg. Sudden (non-smooth) load changes can occur in
manipulators for tasks like picking up objects from shelves or
helping people with personal care activities, among others.

Results show similar behaviors to the presented in the
previous section for cost functions and controller parameter
changes for the UAC in Fig. 4, despite of the sudden payload
changes. Hence, the performance of UAC is similar to the first



TABLE II: Controller performance comparison for joints g, and g3
and non-smooth change of payload every 3 s. Normalization based
on the NO LOAD case.

PAYLOAD CHANGE 05-15kg | 05-17kg

ISE rad® (¢2 / q3) MAX 0,01 /2,26 0,01/ 6,84
MEAN 0,01/2,22 0,01/ 6,57

STD. DEV. | 0,09/17,69 | 0,12 /53,54

CONTROL EFFORT | MAX 0,12 /0,24 0,12 /0,24
Nm? (¢2 / g3) MEAN 0,12 /0,23 0,12 /0,23
STD. DEV. | 0,10/ 1,21 0,10/ 1,51

case. For the case of changes between 0.5 kg and 1.5 kg,
similar smooth control signals, with short transients, were
noted when the controller in the loop was falsified.

A performance comparison of both controllers for joints g
and g3 is presented in Table II, for sudden payload changes
every 3 s between 0.5 kg and 1.5 kg and 0.5 kg and 1.7 kg,
respectively. Normalization is based on the NO LOAD case
presented in Table I. From the Table II, it may be concluded
that both ISE and CE remain similar to those presented in
the previous scenario. This means that the controller might be
used in applications such as those mentioned above, without
presenting a significant loss of performance.

C. Performance analysis as a function of the payload: from
the no-load condition to the maximum of the payload interval

Due to one performance difference between data-driven
and model-based control techniques for manipulators, related
to the need of a precise knowledge of its intrinsic parameters,
we studied the robustness of the UAC applying disturbances
(lack of precision in parameter estimation) to the inertial
parameters of the model, based on the worst case scenario of
parameter identification deviations of 16 and 26 confidence
intervals presented by Swevers et al. [5]. This is possible
by taking advantage of the model-based characteristic of the
computed torque controller applied in this work for the design
of the candidate controller set of the UAC and the fictitious
reference computation.

Robustness was analyzed for the range between no-load
and the maximum load proposed for the case of study (payload
from O to 2 kg), with resolution of 0.1 kg, and considering
worst-case model disturbances of 16 and 26 confidence in-
tervals for the estimated inertial parameters. Results showed
that the behavior from 0 kg to 1.4 kg is consistent and
predictable from the previous cases, even for the proposed
disturbances (the ISE and CE increased at the same rates as in
previous scenarios). Hence, the following analysis is presented
for payloads between 1.4 kg and 2 kg, with a resolution of 0.2
kg.

A performance comparison is shown in Table III, based on
the ISE and CE for joint g3 only (g3 as the elbow joint), given
its significance in the proposed task. Normalization is based
on the No-disturbance case, shown in the same table. Table
IIT presents three cases: the no-disturbance case (supposing
perfect knowledge of inertial parameters), the cases of 1o
disturbance and the 2¢ disturbance of the inertial parameters.
From the Table III, it may be concluded that:

TABLE III: Performance comparison using ISE and CE, for joint 3
(g3). Normalization based on the No-disturbance case.

No-disturbance to the model inertial parameters

PAYLOAD (kg) ISE CE
1,4 1,41 x1072 6,31 x10?
1,6 1,34 x107! 7,00 x102
1,8 325 x107! 7,73 x10?
2 5,49 x107! 8,53 x10?

Disturbance of 10 to the model inertial parameters

PAYLOAD (kg) ISE CE
1.4 0.2 0,99
1,6 0.6 0,99
1.8 0.8 0,98
2 0,9 0,98

Disturbance of 20 to the model inertial parameters

PAYLOAD (kg) ISE CE
1.4 0,04 0,98
1,6 0,54 0,98
1.8 0,75 0,98
2 0,84 0,97

e In the no-disturbance case, the ISE and the CE present
a bounded tendency, showing its ability to handle
the higher loads of the payload testing interval with
acceptable performance.

e In the case of 10 and 20 parameter disturbances,
the behavior is relatively similar to the no-disturbance
case and remains consistent through the entire range.
The performance of the controller remains acceptable
in the entire interval.

e  Therefore, UAC shows independence to this kind of
disturbances and then a robustness characteristic, as
expected. The UAC presents a satisfactory behavior
for the complete load testing interval.

IV. CONCLUSIONS

The UAC strategy for MDoF manipulators adapts the
controller parameters to seek the best performance, based
exclusively on the input-output data. This condition makes
the data-driven controller independent of modeling errors.
Simulation results for the 5-DoF manipulator revealed the
advantages of the UAC for higher loads of the testing interval.
These results have also shown that the proposed controller is
robust against perturbations to system parameters. UAC has
also achieved a proper tracking with smooth control signals
with short transients and bounded control efforts for the higher
loads of the testing interval. This shows a promising chance to
use this controller for different kind of MDoF manipulators,
including different cases of payload handling. For future work,
it is considered the evaluation of the UAC for different kind
of candidate controllers and the application of the strategy



for compliant manipulators like the WAM arm in common
Human-Robot Interactive tasks like pick and place and lift
and lower payloads.
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