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Abstract

Symmetry breaking has been a hot topic of research in the past years, leading
to many theoretical developments as well as strong scaling strategies for dealing
with hard applications. Most of the research has however focused on discrete,
combinatorial, problems, and only few considered also continuous, numerical,
problems. While part of the theory applies in both contexts, numerical problems
have specificities that make most of the technical developments inadequate.

In this paper, we present the rlex constraints, partial symmetry-breaking
inequalities corresponding to a relaxation of the famous lex constraints exten-
sively studied in the discrete case. They allow (partially) breaking any variable
symmetry and can be generated in polynomial time. Contrarily to lex con-
straints that are impractical in general (due to their overwhelming number) and
inappropriate in the continuous context (due to their form), rlex constraints
can be efficiently handled natively by numerical constraint solvers. Moreover,
we demonstrate their pruning power on continuous domains is almost as strong
as that of lex constraints, and they subsume several previous work on breaking
specific symmetry classes for continuous problems. Their experimental behav-
ior is assessed on a collection of standard numerical problems and the factors
influencing their impact are studied. The results confirm rlex constraints are
a dependable counterpart to lex constraints for numerical problems.

Keywords: Constraint programming, Symmetries, Numerical constraints,
Variable symmetries

1This paper is an extended version of [1] presented at the conference CP 2011.
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1. Introduction

Numerical constraint solvers are nowadays beginning to be competitive and
even to outperform, in some cases, classical methods for solving systems of equa-
tions and inequalities over the reals. As a consequence, their application has
raised interest in fields as diverse as neurophysiology and economics [2], bio-
chemistry, crystallography, robotics [3] and, more generally, in those related to
global optimization [4]. Symmetries naturally occur in many of these applica-
tions, and it is advisable to exploit them in order to reduce the search space
and, thus, to increase the efficiency of the solvers.

Numerical solvers follow the Branch&Prune scheme, similarly to discrete
constraint solvers: At each iteration, a sub-domain is selected, pruned accord-
ing to the constraints, and then split into several sub-domains to be further
explored. The main differences with discrete solvers are that (sub)domains be-
ing continuous only their boundaries are contracted, and that a sub-domain is
declared to be a solution whenever it reaches some prescribed computational
precision. Because of the resemblance of the solving processes, it is tempting to
port symmetry breaking methods designed for discrete Constraint Satisfaction
Problems (CSPs) to numerical ones.

Considerable work on symmetry breaking has been done for discrete CSPs
in the last decades [5, 6, 7]. Two main symmetry-breaking strategies have
been pursued: 1) to devise specialized search algorithms that avoid symmetric
portions of the search space [8, 9]; and 2) to add symmetry-breaking constraints
(SBCs) that filter out redundant subspaces [10, 11]. Contrarily, there exists very
little work on symmetry breaking for numerical problems. For cyclic variables
permutations, an approach divides the initial space into boxes and eliminates
symmetric ones before the solving starts [12]. SBCs have also been proposed, but
only for either specific problems [13, 14] or specific symmetry classes [15, 16, 17],
and often only partially breaking the considered symmetries.

In this paper, we propose the first general SBCs for numerical constraint
problems that (partially) break any variable symmetry. These SBCs take the
form of simple binary inequalities of the form xi ≤ xj where xi and xj are two

distinct variables of the problem and i < j. Thus, at most n(n−1)
2 inequalities

are generated to deal with any symmetry. They can be generated in polynomial
time knowing a generator of the symmetry group, using classical group theory
algorithms. Moreover we demonstrate that these SBCs are suitable and optimal
for numerical problems, i.e., they enclose tightly an asymmetric search subspace
and thus have a better, or similar, pruning power than other SBCs.

The outline of the paper is as follows: Section 2 provides the necessary
background on numerical problems and symmetries; Section 3 introduces our
SBCs as a relaxation of the lexicographic-ordering based SBCs [18] widely used
by the discrete CSP community, and it also establishes the good properties of
this relaxation; Section 4 introduces the state-of-the-art and compares our SBCs
to existing alternatives; Section 5 assesses the practical interest of our SBCs on
a benchmark of standard problems and analyzes the factors influencing their
impact. Section 6 concludes the paper with future research directions.
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2. Principles of Variable Symmetry Breaking

A CSP is defined as a triple 〈x, d, c〉, where x = (x1, . . . , xn) is a list of vari-
ables, d = (d1, . . . , dn) is a list of domains for the variables, and c = (c1, . . . , cm)
is a list of constraints. The focus of this paper is on numerical CSPs (NCSPs),
whose variables are continuous, and thus domains are subsets of R, typically rep-
resented as a set of intervals (box) x. To conform mathematical notations in use
for numerical problems, the same symbols are used for variables and their valu-
ations, i.e., x will often denote a point in Rn. For the same reason, we adopt a
functional notation for the evaluation of a constraint ci : Rn → {true, false} and
for the evaluation of the conjunction of the constraints c : Rn → {true, false}.
Hence a solution of a NCSP is a point x ∈ x that satisfies c(x), and its solution
set is χ = {x ∈ x : c(x)}.

A bijective function s : Rn → Rn is a symmetry of a (N)CSP if it maps
solutions to solutions2, i.e., for any x ∈ x such that c(x) = true, s(x) ∈ x
and c(s(x)) = true. We say x and s(x) are symmetric points and, in case they
are solutions, symmetric solutions. The symmetries of a (N)CSP form a group
for the composition law. This symmetry group is denoted Σ in the following.
Though the identity function is forcibly part of Σ, since it is a trivial symmetry
of any CSP, it is not considered in the following as it is irrelevant to break.

In this paper, we consider only symmetries that are permutations of vari-
ables. Let Sn be the set of all permutations of {1, . . . , n}. The image of i by a
permutation σ is denoted by iσ. Any permutation σ is completely defined by
the image of each integer in {1, . . . , n}, and it is usually described as a vector
[1σ, 2σ, . . . , nσ]. A symmetry s is a variable symmetry iff there is a permutation
σ ∈ Sn such that for any point x ∈ x, s(x) = (x1σ , . . . , xnσ ). We identify such
symmetries with their associated permutations and denote both by σ in the fol-
lowing. Consequently, the group of variable symmetries of a CSP is isomorphic
to a permutation subgroup of Sn, which are both identified and denoted by Σ in
the following. The application of a variable symmetry σ to a point x is denoted
by xσ, this notation being extended to sets (discrete or continuous) of points
X ⊆ x by Xσ = {xσ : x ∈ X}.

Example 1. The 3-cyclic roots problem consists in finding all (x1, x2, x3) ∈ R3

satisfying (x1 + x2 + x3 = 0) ∧ (x1x2 + x2x3 + x3x1 = 0) ∧ (x1x2x3 = 1).
This problem has six variable symmetries (including identity):

Σ = {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}, (1)

i.e., Σ = S3. Indeed, all the variables are syntactically interchangeable within
all the constraints by the commutativity laws of product and sum.

We can define the symmetry class of any point x ∈ x as the set of the images
s(x) for all the symmetries s of the problem. In the case of variable symmetries,

2Nothing is required for non-solution points, i.e., we consider only solution symmetries [19].
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it can be noted xΣ = {xσ : σ ∈ Σ}. Provided that the domain satisfy the
symmetries, i.e. x = xσ for all σ ∈ Σ, being in the same class is an equivalence
relation and thus the symmetry classes form a partition of x.

The symmetries of a (N)CSP are broken when a single representative in
each symmetry class is retained. To this end, it is possible to add symmetry-
breaking constraints (SBCs) which exclude all but a single representative in each
symmetry class [5, 7, 20]. Crawford et al. [18] proposed lexicographic ordering
constraints (lex) to address variable symmetry breaking. Recall that given x
and y in Rn, the lexicographic order is defined inductively as:

for n = 1, x �lex y ≡ (x1 ≤ y1)

for n > 1, x �lex y ≡ (x1 < y1) ∨
(

(x1 = y1) ∧ (x2:n �lex y2:n)
)

(2)

where, given a list z = (z1, z2, . . . , zn), zi:j denotes the sublist (zi, zi+1, . . . , zj).
Given a variable symmetry σ, Crawford et al. define the corresponding SBC

lexσ(x) ≡ x �lex xσ. (3)

Intuitively, this constraint imposes a total order on the symmetric points, hence
allowing to retain a single one w.r.t. a given symmetry σ. One such constraint
is thus imposed for each of the symmetries of a problem in order to break them
all, yielding the complete symmetry-breaking constraint

lexΣ(x) ≡
∧
σ∈Σ

lexσ(x) (4)

Example 2. The lex constraints for the symmetries of the 3-cyclic-roots prob-
lem are:

(x1, x2, x3) �lex (x1, x3, x2) , (x1, x2, x3) �lex (x2, x1, x3)

(x1, x2, x3) �lex (x2, x3, x1) , (x1, x2, x3) �lex (x3, x1, x2)

(x1, x2, x3) �lex (x3, x2, x1).

lex constraints can be efficiently propagated over finite domains (e.g., [21]).
However, this approach has the critical drawback that the number of symmetries
in Σ can be factorial in the number of variables even in some simple situations
(e.g., |Sn| = n!). While in general the corresponding SBCs cannot be simplified
to a polynomial number of constraints (in line with the NP-hardness of sym-
metry breaking proved in [18] and further explored in [20]), simplifying specific
symmetry groups into tractable ones has been the topic of several works in the
symmetry breaking literature (e.g., [18, 11, 22]). For instance, Crawford et al.
noted that when Σ = Sn, the n! terms in lexΣ can be simplified to the n − 1
inequalities

∧
i∈{1,...,n−1} xi ≤ xi+1.

3. Symmetry-Breaking Constraints for Numerical CSPs

In this section we first explain the reason why lex SBCs are impractical for
numerical CSPs. We also point out the intuition behind the partial SBCs we
introduce, and we discuss their properties in the rest of the section.
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(a) x1 < x2

∪

(b) x1 = x2

=

(c) L[2,1]([0, 1]2)

Figure 1: The lex[2,1] constraint components in 2D (blue=included, red=excluded).

3.1. lex intractability and impracticality for NCSPs

The first and foremost reason why lex SBCs are intractable, whether do-
mains are continuous or discrete, is because they can be overwhelmingly numer-
ous. However, even when the symmetry group is of reasonable size or when lex
SBCs can be reduced to a reasonable number, they remain impractical in the
context of NCSPs.

A geometric interpretation of lex constraints highlights their complexity and
indicates the intuition behind the relaxation we propose in the next section. Let
us denote Lσ(x) (resp. LΣ(x)) the solution set of a lex constraint breaking a
symmetry σ (resp. a whole symmetry group Σ) on a domain x, i.e.,

Lσ(x) := {x ∈ x : lexσ(x)}, (5)

LΣ(x) := {x ∈ x : lexΣ(x)}, (6)

For convenience, we will omit the domain x when it spans the whole set of real
vectors Rn.

Breaking the symmetries of a NCSP by adding the SBC lexΣ(x) to its
constraints allows restricting its search space to LΣ(x), hence retaining only one
solution by symmetric class. We first remark that lexΣ(x) being the conjunction
of all lexσ(x), LΣ(x) is thus the intersection of all Lσ(x), i.e.,

LΣ(x) =
⋂
σ∈Σ

Lσ(x) (7)

Second, the recursive definition of the lexicographic relation in Equation (2)
indicates that the form of each lexσ(x) is the union of 1) an open half-space
(x1 < x1σ ) and 2) a portion of its boundary “plane” (x1 = x1σ ), this portion
being itself recursively defined similarly as the union of 3) a half-plane (x2 < x2σ )
and 4) a portion of its boundary “line”, etc. Hence, the structure of Lσ(x)
becomes more and more complicated as the number of variables increases.

Example 3. When n = 2 the only possible symmetry is the interchangeability
of x1 and x2, i.e., permutation [2, 1]. It yields the lex constraint

x1 < x2 ∨ (x1 = x2 ∧ (x2 < x1 ∨ (x2 = x1))), (8)
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(a) x1 < x2

∪

(b) x1=x2 ∧ x2<x3

∪

(c) x1 = x2 = x3

=

(d) L[2,3,1]([0, 1]3)

Figure 2: The lex[2,3,1] constraint components in 3D (blue=included, red=excluded).

which boils down to x1 ≤ x2, i.e., the union of 1) the open half-plane x1 < x2

with 2) the line x1 = x2, as depicted in Figure 1.
Things get more complicated when n = 3. Consider for instance permutation

[2, 3, 1] and the corresponding lex SBC

x1 < x2 ∨ (x1 = x2 ∧ (x2 < x3 ∨ (x2 = x3 ∧ (x3 < x1 ∨ (x3 = x1))))), (9)

which simplifies to

(x1 < x2) ∨ (x1 = x2 ∧ x2 < x3) ∨ (x1 = x2 = x3), (10)

i.e., the union of 1) the open half-space (x1 < x2) with 2) the open half-plane
(x1 = x2∧x2 < x3) and with 3) the line (x1 = x2 = x3) as depicted in Figure 2.

Though it becomes impossible to depict the geometry of a lex constraint
when n > 3, one can easily imagine its general structure, and thus its complexity
in the numerical context.

As a consequence, the geometric shape of LΣ(x) is the intersection of a (po-
tentially factorial) number of complex asymmetric subspaces Lσ(x), resulting in
a very complex subspace having the form of a polyhedral cone, whose essential
complexity lies on the boundaries while its main part is the simple intersection

of open half-spaces xi < xj , whose number is at most n(n−1)
2 in dimension n.

Example 4. LC3 for the cyclic symmetry group in 3D is the intersection of two
subspaces corresponding to lex[2,3,1] and lex[3,1,2], as depicted in Figure 3.

In conclusion, the complexity of lex SBCs3, which makes them impractical
for NCSPs, lays in the boundaries of their solution sets while these bound-
aries are somehow negligible in numerical domains (this will be formalized in
Subsection 3.3). In the following subsection, we propose a relaxation of lex
constraints that consists in accepting all their boundaries, leading to partial
SBCs much better suited to NCSPs.

3Note that various formulations of lex constraints are proposed in the literature, but in
the continuous context they are either equivalent to the considered formulation (3) and thus
define an identical, complex, half-open, subspace, or they are not equivalent (see Section 4.4
for more details).
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(a) L[2,3,1]([0, 1]3)

∩

(b) L|3,1,2]([0, 1]3)

=

(c) LC3([0, 1]3)

Figure 3: The lex constraint components for the cyclic symmetry group in 3D. In blue, inner
components, in red, excluded boundaries.

3.2. Definition of the rlex partial SBCs

Partial symmetry-breaking constraints (PSBCs) can be defined by consider-
ing a tractable subset of complete symmetry-breaking constraints [22]. The key
idea of our approach is instead to simplify every lex SBC by considering the
closure of the geometric space it defines, i.e. the main open half-space together
with its boundary. The main half-space of an SBC lexσ corresponds to the
inequality xσ̂ < xσ̂σ , where σ̂ is the smallest integer in {1, . . . , n} such that
σ̂ 6= σ̂σ (e.g., for σ = [1, 2, 3, 5, 4] we have σ̂ = 4). Note that this integer is
well-defined for all symmetries except the identity permutation, which cannot
be broken and is thus disregarded in the following. We define the relaxed lex
constraint by

rlexσ(x) ≡ xσ̂ < xσ̂σ ∨ xσ̂ = xσ̂σ ⇐⇒ xσ̂ ≤ xσ̂σ . (11)

Accordingly, the acceptance of x by the whole set of rlex constraints is

rlexΣ(x) ≡
∧
σ∈Σ

rlexσ(x). (12)

The following proposition shows that this is indeed a relaxation of lex, and
that it can thus be used as a PSBC.

Proposition 1. lexσ(x) =⇒ rlexσ(x)

Proof. Since i < σ̂ implies i = iσ, we have xi = xiσ for all i < σ̂. Therefore
lexσ(x), which is x �lex xσ, is actually equivalent to xσ̂:n �lex xσ̂:n

σ, i.e.,
(xσ̂ < xσ̂σ ) ∨

(
(xσ̂ = xσ̂σ ) ∧ (xσ̂+1:n �lex xσ̂+1:n

σ)
)
, which logically implies

(xσ̂ < xσ̂σ ) ∨ (xσ̂ = xσ̂σ ), that is rlexσ(x). �

Similarly to what we have done for lex constraints, we define the portions
of a domain x satisfying rlex constraints as

Rσ(x) := {x ∈ x : rlexσ(x)}, (13)

RΣ(x) := {x ∈ x : rlexΣ(x)}, (14)

For convenience, we will omit the domain x when it spans the whole set of real
vectors Rn.
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(a) RC2([0, 1]2)

(b) R[2,3,1]([0, 1]3)

∩

(c) R[3,1,2]([0, 1]3)

=

(d) RC3([0, 1]3)

Figure 4: rlex constraints for the cyclic symmetry groups in 2D and 3D.

Example 5. The rlex constraint for the cyclic symmetry groups C2 is just
rlex[2,1] := x1 ≤ x2. That for C3 are rlex[2,3,1] := x1 ≤ x2 and rlex[3,1,2] :=
x1 ≤ x3. The corresponding domains are depicted in Figure 4, which illustrates
their relation to the corresponding lex constraints (see Figures 1 and 3 above).

Also, the rlex constraints corresponding to Example 2 are the two inequal-
ities x1 ≤ x2 and x2 ≤ x3 (x1 ≤ x3 also appears, but is redundant).

3.3. Properties of the rlex PSBCs

The rlex PSBCs are now compared to the lex SBCs. We first show in Sub-
section 3.3.1 that rlex are suitable for NCSPs. We also provide a detailed anal-
ysis of the difference between rlex PSBCs and lex SBCs in Subsection 3.3.2,
indicating that the former are in fact complete SBCs, just as powerful as the
latter, in many cases.

3.3.1. On the suitability of rlex constraints for NCSPs

We now establish some properties of the rlex PSBCs that make them suit-
able for breaking variable symmetries in NCSPs, i.e., both reasonable in num-
ber whatever the symmetry group, natively handleable by numerical constraint
solvers, and optimal in terms of pruning capabilities.

Number of constraints and their generation. There are at most n(n−1)
2 rlex

constraints whatever the symmetry group since they all have the form xi ≤ xj
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with i < j. This number can even be reduced to n − 1 using transitivity
reduction [23] and according to Theorem 4 in [24].

The naive way of generating rlex PSBCs is to generate all lex SBCs and
relax them. However, this entails generating all lex SBCs, which is intractable.
The very same indexes of variables are used in [24] where SBCs of the form
xσ̂ < xσ̂σ are derived for discrete CSPs including an alldiff global constraint. In
that paper, a polynomial-time algorithm is proposed to generate these variables
index, based on Shreier-Sims group theory algorithm [25]. This method can
be used to generated rlex constraints as well. The relationship between rlex
PSBCs and the SBCs proposed in [24] is further investigated in Subsection 4.1.

Pruning optimality for numerical solvers. At the heart of the unsuitability of
lex constraints lies the open-set nature of the subspace they delimit. Numerical
constraint solvers based on intervals4 cannot take advantage of the difference
between the subspace defined by the problem constraints and its closure. We
now prove that rlex constraints define just the closure of the subspace defined
by lex constraints, which implies that numerical constraint solvers cannot dis-
tinguish lex and rlex constraints in general5.

Proposition 2. RΣ = cl(LΣ)

Proof. Consider the interior and closure sets of the subspace defined by a single
lex constraint. Both int(Lσ) = {x ∈ Rn : xσ̂ < xσ̂σ} and cl(Lσ) = {x ∈ Rn :
xσ̂ ≤ xσ̂σ} = Rσ obviously hold for any permutation σ. By definition, RΣ =
∩σ∈ΣRσ and LΣ = ∩σ∈ΣLσ, therefore RΣ ⊇ cl(LΣ) is a direct consequence of
the property that the closure of an intersection is a subset of the intersection of
the closures. For the reverse inclusion, note that y = (1, 2, 3, 4, . . . , n) ∈ int(LΣ),
and consider an arbitrary x ∈ RΣ. For each σ ∈ Σ we thus have yσ̂ < yσ̂σ

and xσ̂ ≤ xσ̂σ . For λ ∈ [0, 1], define zλ = λx + (1 − λ)y, and note that for
0 ≤ λ < 1 we have both λxσ̂ ≤ λxσ̂σ and (1− λ)yσ̂ < (1− λ)yσ̂σ , which implies
zλσ̂ < zλσ̂σ and thus zλ ∈ int(Lσ). As this holds for each σ ∈ Σ, we conclude that
zλ ∈ int(LΣ). As a consequence, x = limλ→1 z

λ ∈ cl(int(LΣ)) ⊆ cl(LΣ), which
proves the reverse inclusion. �

Finally, we remark that rlex constraints must be more efficient to propa-
gate than lex constraints. Indeed, they are just binary inequalities while lex
constraints involve all the variables of the symmetries in a large combination of
logical operations. Hence, pruning rlex constraints requires no specific algo-
rithm since simple non-strict inequalities are natively handled by most numerical

4Interval computations are typically based on closed intervals, computations with open
sets being complicated, expensive, and often useless due to outward rounding necessity. Note
that typical numerical algorithms do not handle strict inequalities neither.

5Singular cases, e.g., when the considered box has some interval dimensions degenerated
into a single real, could in theory make a difference between lex and rlex constraints, provided
the solver implements lex constraints filtering which is not the case of any numerical solver
we know of.
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solvers; and their propagation, following the AC3-like fix-point process in use in
most numerical constraint solvers, triggers only constraints depending on two
variables at most instead of n at most (entailing all constraints are enqueued).

Search-space reduction factor. In the context of NCSPs, the size of the search
space cannot be measured using the number of elements it contains, since
there are infinitely many elements in any continuous set S. Instead, we can
quantify it using its hypervolume6, denoted volS. For example, the search
space ([−1, 1], [−1, 1], [−1, 1]) has a (hyper)volume equal to 8, while its half
([0, 1], [−1, 1], [−1, 1]) has a (hyper)volume equal to 4.

The aim of this section is to study the hypervolume reduction of the search
space provided by the rlex constraints in comparison to the corresponding lex
constraints. As rlex is a relaxation of lex, we have LΣ(x) ⊆ RΣ(x). In fact, we
have a more accurate relationship between these sets: Informally, any solution
accepted by some rlexσ constraint and rejected by the corresponding lexσ
constraint has to have at least two equal components, namely xσ̂ = xσ̂σ . We
define the set of vectors that have at least two equal components as H := {x ∈
Rn : ∃(i, j), i 6= j ∧ xi = xj}, and note that volH = 0 since it is only composed
of (hyper)planes, i.e., flat sets. We therefore see that lexΣ and rlexΣ solution
sets have the same hypervolume, which is proved in the following proposition.

Proposition 3. volLΣ(x) = volRΣ(x).

Proof. Since LΣ(x) ⊆ RΣ(x) we have volLΣ(x) ≤ volRΣ(x). Now note that
x ∈ RΣ(x) ∧ x /∈ LΣ(x) obviously implies x ∈ H, so RΣ(x) ⊆ LΣ(x) ∪ H
and hence using the rule for measuring unions of sets volRΣ(x) ≤ volLΣ(x) +
volH − vol (LΣ(x) ∩H). Since volH = 0, vol (LΣ(x) ∩H) = 0 and we obtain
volRΣ(x) ≤ volLΣ(x). �

The following proposition quantifies the reduction performed by the lex
constraints, therefore by rlex constraints as well by Proposition 3, in term of
hypervolume.

Proposition 4. Provided the domain x is symmetric, i.e. x = xσ for all σ ∈ Σ,

volLΣ(x) =
volx

|Σ|
.

Proof. We suppose that |Σ| ≥ 2, otherwise Σ = {id} and the statement is
trivial. First note that volLΣ(x) = vol (LΣ(x)σ) because the map x → xσ is
an isometry and thus preserves the measure. Now note that for x ∈ LΣ(x) and
σ, φ ∈ Σ, σ 6= φ obviously implies xσ 6= xφ or x ∈ H (indeed if xσ = xφ then

x = xφσ
−1

and hence x ∈ H). Therefore, LΣ(x)σ ∩LΣ(x)φ ⊆ H. Recalling that
volH = 0, we obtain using the rule for measuring unions of sets

vol
(⋃
σ∈Σ

LΣ(x)σ
)

= |Σ| volLΣ(x). (15)

6A generalization of the area in 2D and the volume in 3D, also called Lebesgue measure.
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It remains to prove that
⋃
σ∈Σ LΣ(x)σ = x. Since the symmetry classes form a

partition of x and LΣ(x) contains exactly one representative of each symmetry
class, we have ⋃

x∈LΣ(x)

⋃
σ∈Σ

xσ = x. (16)

The proof is concluded by commuting the two unions. �

By Proposition 3, we can conclude that the same hypervolume reduction is
enforced by the rlex constraints. In other words, rlex and lex constraints
reduce the search space to a portion with identical hypervolume, the difference
lying only on the boundaries of the remaining search space. The rlex PSBCs
are optimal in this regard.

3.3.2. A detailed look at the difference between rlex and lex filtering powers

lex are always SBCs while rlex are PSBCs, hence the former have in princi-
ple a superior filtering power than the latter. However, in a continuous context,
rlex act as SBCs in a set of points occupying the whole domain volume. In-
deed, we have already explained that a point retained by rlex and not retained
by lex must belong to the set H. Note also that all points of a class lies either
in H or in H. Hence rlex are SBCs in H. Since H has no volume, the set
H for which rlex can be guaranteed to be SBCs has the same volume as the
domain. At the end of this section we will further conclude that rlex are also
SBCs in a non-empty subset of H.

The number of symmetric points of x satisfying rlex constraints is |RΣ(xΣ)|,
and we denote by |xΣ| = |{xσ : σ ∈ Σ}| the number of different elements in
the symmetry class of x. Both indicators are indeed properties of the symmetry
class of the point rather than properties of the point itself. The pruning power
of a PSBC on the symmetry class of a point x is optimal when |RΣ(xΣ)| = 1 and
|xΣ| = |Σ|. Indeed, in this case the PSBC acts as an SBC (|RΣ(xΣ)| = 1) and

allows the greatest possible reduction ( |RΣ(xΣ)|
|xΣ| = 1

|Σ| ). By abuse of language, we

say a point x is rlex-optimal if it belongs to an optimally reduced symmetry
class. Therefore, any point x in H is rlex-optimal since rlex being SBCs
means that |RΣ(xΣ)| = 1, and x ∈ H means x does not have equal components,
thus implying that all its permutations are different, i.e., |xΣ| = |Σ|.

With a more detailed analysis we will show that rlex-optimality, and there-
fore the fact rlex perform as SBCs, can be guaranteed for a set larger than H,
i.e., even in a subset of H. At the same time we will characterize completely
rlex-optimal points.

From a topological point of view, we can divide the subspace RΣ(x) into
two sets: interior points and frontier points. Interior points are those satisfying
the strict part of the inequalities of rlex (i.e., points satisfying the constraints
in [24]). Frontier points are those for which the equality in some of the rlex
holds. The main result we will prove in this subsection is that interior points
and optimal points are coincident.

11



For this purpose, we will rely mainly on an intermediate characterization,
Proposition 6, stating that the class of a point is optimal if and only if every
symmetry of the point but one is rejected by rlex. Another interesting result
in the way is Proposition 7: any symmetry of an interior point (except identity)
will be rejected by rlex. Combined with the former it implies directly the main
result, Proposition 8. The following statement is required by Proposition 6:

Proposition 5. All elements of xΣ are generated with the same number of
symmetries of Σ, i.e., |{σ ∈ Σ : xσ = y}| = |{σ ∈ Σ : xσ = z}|, ∀ y, z ∈ xΣ.

Proof. Let Ξ = {σ ∈ Σ : xσ = y} and Υ = {σ ∈ Σ : xσ = z} and let σ1 ∈ Ξ,
σ2 ∈ Υ be elements of these sets, i.e., xσ1 = y, xσ2 = z. Then φ = σ−1

1 · σ2 is

a permutation that transforms y into z, because yφ = yσ
−1
1 ·σ2 = (xσ1)σ

−1
1 ·σ2 =

xσ2 = z. As a consequence, ∀σ ∈ Ξ we have xσ·φ = yφ = z. Therefore, every
permutation in Ξ φ belongs to Υ. The application fφ(σ) = σφ from Σ to Σ is
known to be bijective, hence it must also be bijective in the restricted Ξ domain,
which implies |Ξ φ| = |Ξ|. Therefore Υ has at least |Ξ| symmetries, |Υ| ≥ |Ξ|.
Inverting the roles of y and z and those of Υ and Ξ at the beginning of the
proof, we get |Υ| ≤ |Ξ|, leading to |Υ| = |Ξ|. �

In the next step we characterize optimal and non-optimal classes with the
following proposition.

Proposition 6. The class xΣ of a point x ∈ Rn is optimal, i.e.,

1. |xΣ| = |Σ| and |RΣ(xΣ)| = 1
if and only if

2. ∃σ1 ∈ Σ : rlexΣ(xσ1) = true and ∀σ2 ∈ Σ \ σ1, rlexΣ(xσ2) = false.

Proof. We first prove 1 ⇒ 2 by contradiction: suppose ∃ σ1, σ2, σ1 6= σ2

such that rlexΣ(xσ1) = rlexΣ(xσ2) = true. There are two possibilities. If
xσ1 = xσ2 then, since the two symmetries are different, we have |xΣ| < |Σ| and
we have arrived to a contradiction. In the opposite case, xσ1 6= xσ2 , since both
symmetries are accepted, we have |RΣ(xΣ)| > 1, which is again a contradiction.

Second, we prove 2 ⇒ 1: since σ1 is the only symmetry accepted by rlex,
obviously |RΣ(xΣ)| = 1. For the other statement, we note that |xΣ| = |Σ| is
equivalent to xσ1 6= xσ2 ∀ σ1, σ2 ∈ Σ, σ1 6= σ2. Since σ1 is the only permutation
of x that is accepted by rlex, no other permutation can yield the same result
as σ1. Therefore, |{σ ∈ Σ : xσ = xσ1}| = 1. By Proposition 5, this leads to
|{σ ∈ Σ : xσ = xφ}| = 1 ∀φ ∈ Σ, which implies that each φ ∈ Σ yields a result
different from all the other permutations in the group, i.e., xσ1 6= xσ2 ∀ σ1, σ2 ∈
Σ, σ1 6= σ2, as was required. �

As a consequence, the class of x is non-optimal iff ∃ σ1, σ2, σ1 6= σ2 such
that rlexΣ(xσ1) = rlexΣ(xσ2) = true.

Proposition 7. x is interior ⇒ ∀ σ ∈ Σ \ Id, rlexΣ(xσ) = false.

12



Proof. Let’s define x ≺lex y as in (2), but being equivalent for n = 1 to
(x1 < y1). That is, x ≺lex y ≡ (x �lex y)∧ (x 6= y) and y �lex x ≡ ¬(x ≺lex y).
If a point x is interior then xσ̂ < xσ̂σ ∀ σ ∈ Σ \ Id. This means that x 6=
xσ ∀ σ ∈ Σ \ Id, but at the same time x �lex xσ, since x satisfies rlex. Thus,
if x is interior, x ≺lex xσ ∀ σ ∈ Σ \ Id. Now we investigate whether xσ satisfies
rlex ∀ σ ∈ Σ \ Id. When the rlex associated to σ−1 is applied to xσ it results

in xσ �lex (xσ)σ
−1 ≡ xσ �lex x. But, because x is interior, x ≺lex xσ, which

falsifies that rlex. Therefore, xσ does not satisfy rlex ∀ σ ∈ Σ \ Id. �

Let IΣ denote the set of pairs of variable indexes involved in an rlex con-
straint, i.e, IΣ := {(i, j) : xi ≤ xj is a constaint in rlexΣ}. The next proposi-
tion is the main result of this subsection: for a point, being interior is equivalent
to being optimal.

Proposition 8. For any x ∈ x such that rlexΣ(x) = true (i.e., for any x ∈
RΣ(x)), x is interior ⇔ the class xΣ is optimal.

Proof. Interior ⇒ optimal: Applying Proposition 7 to x we obtain the condi-
tions for Proposition 6 to be be applied with σ1 = Id

Optimal⇒ interior: The statement “in an optimal class the member retained
by rlex is interior” is equivalent to “if a point is frontier, its class is non
optimal”. We will prove the latter statement. So we assume that x is a frontier
point, i.e., ∃ (i, j) ∈ IΣ : xi = xj . To prove the non optimality of xΣ

it is enough to show that ∃ σ ∈ Σ \ Id such that rlexΣ(xσ) = true. Let
δ := min{|xr − xs| : xr 6= xs}/2, i.e., half of the smallest non-null difference
between any two components in x, and z = (z1, . . . , zn) such that zk = xk, if
k 6= i and zk = xk + δ, if k = i.

Since zi > zj and (i, j) ∈ IΣ, z must be rejected by rlex. However, at
least one element of its class must by accepted by rlex. Thus, ∃σ ∈ Σ \ Id
such that rlexΣ(zσ) = true. We can show that this same permutation σ of
x is also accepted by rlexΣ. Let E(i) := {r : xr = xi}. We can divide
the set of rlexΣ constraints into two subsets. The first one corresponds to
{(k, l) ∈ IΣ : kσ ∈ E(i) ∧ lσ ∈ E(i)}, and for the elements of this set we know
that xkσ = xlσ and, therefore, the corresponding constraint for xσ, xkσ ≤ xlσ ,
is satisfied. By construction of z, it is easy to verify that for any (s, r) such
that r /∈ E(i) or s /∈ E(i), if zr ≤ zs we have also xr ≤ xs. Therefore, in the
remaining second set of constraints, {(k, l) ∈ IΣ : kσ /∈ E(i) ∨ lσ /∈ E(i)}, the
fact that zσ is accepted by rlex means that zkσ ≤ zlσ , which in turn implies
that xkσ ≤ xlσ . The conclusion is that all rlexΣ constraints are satisfied at xσ

and at x, thus its class is not optimal. �

Example 6. The 4-cyclic roots problem has a formulation similar to that of
Example 1 in R4. It has the following eight symmetries:

Σ = {[1, 2, 3, 4], [4, 3, 2, 1], [2, 3, 4, 1], [1, 4, 3, 2],

[3, 4, 1, 2], [2, 1, 4, 3], [4, 1, 2, 3], [3, 2, 1, 4]}
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One can easily check that the non redundant rlex for this set of permutations
is x1 ≤ x2, x1 ≤ x3, x1 ≤ x4 and x2 ≤ x4. An interior point of the constrained
space RΣ(x) must satisfy x1 < x2, x1 < x3, x1 < x4 and x2 < x4, but can have
some components equal, if they are not linked by the relaxed constraints. For
instance, (0.0, 1.5, 1.5, 2.0) is an interior point even if x2 = x3.

A consequence of the last proposition is that frontier points can be identified
with non-optimal points. Thus, a frontier point must satisfy at least one of these
conditions:

1. It belongs to a class with less than |Σ| members.
2. Some of its symmetries are not broken by rlexΣ.

All the possibilities not forbidden by the above statement can be found in
the set of frontier points:

• Points whose symmetric points have not been completely eliminated by
rlex, and having |Σ| symmetries.

For example, considering again the 4-cyclic roots problem, (0.0, 0.0, 1.5, 2.0)
is a point with eight symmetries, which is retained by rlexΣ jointly with
one of its symmetric points, (0.0, 0.0, 2.0, 1.5).

• Points for which all symmetries are broken and belonging to classes with
less than |Σ| members. For these classes, rlex are equivalent to lex.

Examples for the 4-cyclic roots problem are the points (0.0, 1.0, 0.0, 1.0)
and (−2.0, 5.0, 5.0, 5.0), which are the only members of their classes (of
cardinality two and four, respectively) in the constrained subspace.

• Points that belong to classes with less than |Σ| members for which sym-
metries are not completely broken.

An example for the 4-cyclic roots problem is (−5.0,−5.0, 2.0,−5.0), a
point of a four-members class that has two representatives in the con-
strained subspace, namely the same point and (−5.0,−5.0,−5.0, 2.0).

In sum, the frontier of the constrained subspace RΣ(x) is the union of two
non-disjoint sets of points belonging to classes with either less than |Σ|members,
or whose symmetries have not been entirely broken.

Finally we want to remark that the SBC character of rlex is not limited to
H, or even to interior points, a superset of H. Let’s outline the situation in this
respect. rlex always are, of course, SBCs in H, which has the same volume
as the domain. rlex are also SBCs for two subsets of H: a) Interior points
belonging to H ; b) Frontier points with all symmetries broken. Moreover, at
least one of these subsets is not empty. If the set of rlex imposes a total
order on the variables, they are SBCs in the whole domain including the set
of frontier points, which coincides with H (because in this case rlex and lex
are equivalent) and, thus, the set in b) is not empty. If rlex do not impose a
total order then the set in a) is not empty, because there are interior points with
variables not related by rlex constraints with equal values. The conclusion is
that rlex are SBCs in a set always strictly greater than H.
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4. Related work

The related work we present in this section concerns only variable symmetry
breaking. It can be divided into two categories. The first one (Sections 4.1,
4.2 and 4.3) includes the simplified SBCs or PSBCs for general symmetries
developed in the discrete constraint programing field. In general, they are not
suited to numerical problems and they have never been applied to numerical
solvers. The second group of related works (Sections 4.5 and 4.6) are those
specifically addressing symmetries in numerical problems. They deal only with
particular cases of symmetries and/or problems.

4.1. Puget’s SBCs

In the case where a CSP contains an all-different constraint, Puget has
proved in [24] that the lex SBCs can be drastically simplified. In fact, as
shown in Subsection 3.1, the complexity of lex SBCs lays in their boundaries,
which correspond to some equality between two distinct variables, while the
presence of an all-different constraint implies that there is no solution on these
boundaries. The comparison between Puget’s SBCs and rlex PSBCs is sum-
marized in Figure 5: An arbitrary lex SBC is equivalent to Puget’s xσ̂ < xσ̂σ

SBC under the hypothesis that an all-different constraint is enforced, while this
lex SBC implies the corresponding xσ̂ ≤ xσ̂σ rlex PSBC in general. Since the
same indices are involved in both cases, the polynomial algorithm used by Puget
to generate his constraints, which is based on the Shreier-Sims algorithm, can
also be used for generating rlex PSBCs. Finally, although less natural than the
derivation of rlex PSBCs given in Section 3.2, the following proposition shows
that rlex PSBCs can be derived directly from Puget’s SBCs. It is provided
here for clarifying the relationship between Puget’s SBCs and rlex PSBCs.

Proposition 9. The fact Puget’s constraints are SBCs in conjunction with an
all-different constraint implies that rlex are PSBCs in general.

Proof. Consider a CSP with n variables and an arbitrary variable symmetry
group Σ. Let x be an arbitrary variable instantiation. We are going to prove
that the constraints rlexΣ retain at least one element of xΣ, hence that they
are PSBCs, only using the fact that Puget’s constraints are SBCs.

Let δ := min{|xi − xj | : xi 6= xj}, i.e. the smallest non-null difference
between any two components in x, and y = (y1, . . . , yn) such that yi = xi + iδ

n .

Then all the components yi are different. Indeed, yi− yj = (xi−xj) + (i− j) δ
n

is not zero for i 6= j, since when xi − xj = 0 the second summand is not null
and, otherwise, we have |i− j| < n and |i− j| δn < δ ≤ |xi − xj |, which implies

(xi − xj) 6= −(i− j) δ
n .

Because y satisfies the all-different constraint, Puget’s SBCs on Σ retain
exactly one element of its symmetric class, i.e., there exist σ ∈ Σ such that
yσ satisfies all Puget’s constraints. We now show that xσ satisfies all rlex
constraints on Σ as well.
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x �lex xσ

⇐
⇒

xσ̂ < xσ̂σ
∨ ( A︷ ︸︸ ︷

xσ̂ = xσ̂σ
∧ B︷ ︸︸ ︷

xσ̂+1:n �lex xσ̂+1:n
σ
)

AllDiff(x) |= ¬A

⇐⇒ =⇒ A ∧ B ⇒ A

xσ̂ < xσ̂σ =⇒ xσ̂ ≤ xσ̂σ

Figure 5: Parallel derivation of Puget’s SBCs and rlex showing both the similitude and the
difference of the two approaches.

Consider the application to yσ of an arbitrary Puget’s constraint yiσ <
yjσ and suppose that the corresponding rlex constraint does not hold, i.e.,
xiσ > xjσ . By definition of y, Puget’s constraint yiσ < yjσ is equivalent to

xiσ + iσδ
n < xjσ + jσδ

n , which is equivalent to xiσ − xjσ < δ j
σ−iσ
n . Since we

supposed xiσ − xjσ > 0 and by definition of δ, we have δ ≤ xiσ − xjσ < δ j
σ−iσ
n ,

but because jσ − iσ < n this is contradictory. �

4.2. Jefferson’s PSBCs

PSBCs in the discrete context follow two distinct principles: either (1) they
completely break a subset of the symmetry group, or (2) they partially break
the whole symmetry group7. Jefferson and Petrie have investigated the two
approaches in [22]: following principle (1), they use lex constraints to com-
pletely break random subsets of permutations, or the generators computed by
Nauty [26], or the generators obtained using a modification of Nauty ; following
(2), they use rlex constraints (called ArityOne in their work and informally de-
rived from Puget’s SBCs) to partially break all symmetries. Their experiments
show that, in the context of discrete CSP, rlex are quite efficient but not the
best PSBCs : the lex constraints on the generators computed using their mod-
ification of Nauty appears more efficient in general. These conclusions cannot
however be transposed to the continuous context, since approaches following
principle (1) are not suitable for continuous solvers due to the impracticality of
lex constraints in this context (see Section 3.1).

4.3. Friedman’s PSBCs

Friedman et al. introduce the notion of fundamental domains for (binary)
integer programs [27] then for continuous domains [28]. They are defined as

7Though it is also possible to partially break a subset of the symmetry group, this approach
is in general inferior to the two others.
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(a) Fĉ(C2)
fd[2,1] := 2x1 + x2 ≤
2x2 + x1

(b) Fĉ([2, 3, 1])
fd[2,3,1] := 4x1+2x2+x3 ≤ 4x2+

2x3 + x1

∩

(c) Fĉ([3, 1, 2])
fd[3,1,2] := 4x1+2x2+x3 ≤ 4x3+

2x1 + x2

=

(d) Fĉ(C3)

Figure 6: Universal fundamental domains for the cyclic symmetry group in 2D and 3D.

subsets F of the initial domain D such that FΣ = D, i.e., F contains at least
one representative of the symmetry class of any point by Σ in D. This definition
applies in particular to LΣ(D) and to RΣ(D). They also define minimal fun-
damental domains as fundamental domains with no proper closed subset being
itself a fundamental domain, a property which also applies to LΣ(D) and to
RΣ(D) (see Proposition 2).

Considering domains restricted to [0, 1]n for simplicity8, they propose a
method for constructing a fundamental domain Fc considering an ordering vec-
tor c ∈ Rn (where n is the number of variables of the problem)9:

Fc(Σ) = {x ∈ [0, 1]n : cTx ≤ cTxσ,∀σ ∈ Σ}. (17)

It is easy to see that the constraint fdσ := cTx ≤ cTxσ is a PSBC for the
permutation σ, and fdΣ :=

∧
σ∈Σ fdσ is a PSBC for the symmetry group Σ.

They introduce the universal ordering vector ĉ = (2n−1, 2n−2, . . . , 2, 1) and
prove Fĉ is a minimal fundamental domain. We illustrate the universal funda-
mental domain for the cyclic symmetry groups C2 and C3 in Figure 6.

As this illustration clearly shows, Fĉ(Σ) is equivalent to LΣ and to RΣ in 2D

8Note that continuous domains in the form of intervals can be mapped to [0, 1]n by sub-
tracting to each interval its lower-bound and dividing it by its width.

9The mentioned paper in fact use the relation ≥ instead of ≤, which is strictly equivalent
in terms of symmetry breaking. We change it for an easier comparison to lex and rlex
constraints.
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(see Figures 1 page 5 and 4a page 8). However, contrarily to the situation for
discrete domains, where they are also equivalent for higher dimensions, Fĉ(Σ)
is in general not directly related to LΣ (nor to RΣ) in higher dimension. For
instance, Figure 4d (page 8) shows RC3([0, 1]3), which is significantly different
from Fĉ(C3) shown in Figure 6d. Still, it has the property of being a (closed)
minimal fundamental domain and thus benefits from the same properties as
rlex constraints. For instance, the volume of Fĉ(C3) can be formally computed
and shown to be equal to 1

3 , which is the same volume of RC3([0, 1]3), computed
using Proposition 3 and Proposition 4. We however consider rlex PSBCs
superior to fd PSBCs for several reasons:

• The number of fdσ constraints is by essence equal to the number of sym-
metries σ in the considered symmetry group, i.e., up to factorial, while
there is no obvious simplification of this intractable set of constraint ;

• There is no known efficient (poly-time) way of generating them ;

• Like lex constraints, each individual fd constraint involves all the vari-
ables and is thus costly to prune and propagate ;

• The coefficients in ĉ induce a numerical unstability in floating-point com-
putations since adding 2n−1xn−1 and x0 can yield cancellation when n is
large, leading to inaccurate comparisons.

4.4. Frisch’s SBCs

Frisch et al. propose in [29, 30] several alternative encodings of lex con-
straints. These encodings are equivalent to lex constraints in discrete domains.
Some of them seem appropriate for numerical solvers, but they are in fact not
equivalent to lex constraints in continuous domains.

For instance, the arithmetic encoding is in fact equivalent to a fundamental
domain Fc with c = (dn−1, dn−2, . . . , d, 1), where d is the size of the discrete
variable domains taken as {0, 1, . . . , d − 1}n. Transposed in the normalized
continuous domain [0, 1]n, this encoding thus becomes just the fd constraints,
which we have shown to be different of both lex and rlex constraints in the
previous section. These constraints are still PSBCs (not SBCs) in the numerical
context, but we have explained why rlex constraints should be preferred.

Another example is the Harvey encoding which employs a reification of bi-
nary comparison:

hlexσ := x1 <
(
x1σ + ∆(x2 < (x2σ + ∆(. . .+ ∆(xn < (xnσ + ∆(true)))...)))

)
, (18)

where ∆ is the reification function which maps true to the integer 1 and false
to the integer 0. In the discrete context, hlex constraints are equivalent to lex
constraints, but it is not the case in the continuous context since there is no gap
of size 1.0 between two possible valuations of a variable. hlex constraints can
be adapted by changing the definition of the function ∆, making it closer and
closer to lex constraints in the continuous context as true is mapped to smaller
and smaller values δ ∈ (0, 1], see Figure 7, giving birth to hlexδ constraints
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which are valid PSBCs in the continuous context10. The space they delimit
however strictly contains L and it has a volume strictly larger than R, making
hlexδ a weaker (P)SBC than both lex and rlex.

(a) δ = 1.0 (b) δ = 0.9 (c) δ = 0.5 (d) δ = 0.1 (e) δ = 0.0

Figure 7: Satisfaction domain of hlexδ
[2,3,1]

constraint (blue=included, red=excluded).

Again, and similarly to most proposed lex encodings, the first and foremost
reason why such encodings are not appropriate in the continuous context is
that they come in factorial number with respect to the number of variables in
the worst case, without an efficient (poly-time) method for generating them,
and involve all the variables implied in the symmetry in a formula much more
complex than rlex constraints. These are the reasons why we consider rlex
the most appropriate PSBCs in the continuous context.

4.5. Specific PSBCs for NCSPs

The ad-hoc inequalities proposed in [15, 17, 16] to partially break specific
classes of variable symmetries in NCSPs are just special cases of the rlex
constraints. For instance, Gasca et al. [15] proposed PSBCs xi ≤ xi+1 (i ∈
{1, . . . , n − 1}) for full permutations (Σ = Sn), and PSBCs x1 ≤ xi (i ∈
{2, . . . , n}) for cyclic permutations (Σ = Cn). Similar PSBCs have been pro-
posed for numerical optimization problems with more peculiar symmetry groups,
e.g., Σ = C2 × Sn2 in [17] and Σ =

∏
i Spi in [16].

Liberti et al. [13, 14] suggest some general PSBCs for MINLP(Mixed Integer
NonLinear Programming) problems involving inequality constraints only. How-
ever no analysis is provided regarding the completeness and optimality of these
PSBCs for this class of problems.

4.6. Symmetric boxes for single-cycle symmetries

A very different strategy from the preceding previous works, not relying on
the addition of SBCs, is [12]. From the fact that numerical solvers process only
boxes, the authors suggest the utility of the notion of box symmetry, which is
the set of points symmetric to those belonging to the box. In the context of
variable permutations, the symmetry of a box can be understood as a permu-
tation of its component intervals and, therefore, is another box. Classes of box
symmetry are naturally defined, as well as representatives, a member of the class

10hlex0 is not a valid PSBC since it makes true indistinguishable from false.
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representing the whole class. The approach works by producing a set of repre-
sentatives, whose symmetries cover the whole domain. The solver is launched
with the original problem using each representative as domain, and solutions
symmetric to those found within it are generated according to the symmetries
of the representative. This approach has been followed in [12] in the context of
cyclic permutations. Its main advantage is that the potential burden that SBCs
add to the original problem is avoided. However it needs a small program to
manage the launching of the representatives. A more serious disadvantage of
the algorithm is that the number of representatives grows exponentially with
the dimension, which becomes unmanageable when n is large.

5. Experimental results

In this section, we provide experimental evidence of the important perfor-
mance gains rlex constraints can bring when solving symmetric NCSPs. For
this purpose, we will use a single measure, called gain in the following: the ra-
tio of time11 to solve the problem without rlex over that to solve the problem
with rlex. Indeed, we expect rlex constraints to quickly eliminate symmetric
portions of the search space, isolating an asymmetric search subspace whose
volume is divided by |Σ| w.r.t. the initial search space. As a result, we expect
to observe gains proportional to |Σ|.

All experiments are conducted on a dual-core equipped machine (2.5GHz,
4Gb RAM) using the Realpaver [31] constraint solver with default settings,
i.e., AC3-like fixed-point propagation loop using Hull-consistency and Box-
consistency contracting operators followed by an Interval Newton application,
and balanced bisection splitting following a round-robin principle.

We consider a benchmark composed of standard problems picked from [32,
33, 34, 35]. The selected test set has representative characteristics: fixed or
scalable dimension, various constraint types and complexity, satisfiable or un-
satisfiable problems, discrete or continuous solution sets, and of course various
symmetry groups. Tables 1 and 2 provide the characteristics (columns “n” and
“|Σ|”) of the considered problems and the experimentally obtained gain (column
”time”) and number of solutions (column “|χ|”), summarizing 68 individual ex-
periments on problems instances with (columns “rlex”) and without (columns
“standard”) our PSBCs. For each scalable problem, the obtained ratios are also
graphically depicted in Figure 8 in comparison to their symmetry group order.

We do not compare rlex performances to the related work mentioned in
the previous section because, as explained there, they either do not apply in the
continuous context, or are subsumed by rlex, and are thus identical to rlex
for the classes of symmetry for which they can be applied.

11The ratio in number of search nodes could also be interesting but it has two drawbacks:
First, it does not measure the impact of the additional rlex constraints in the propagation
cost at each node; Second, contrarily to discrete CSPs, the search tree of numerical CSPs
explored when SBCs are added is not a subpart of the search-tree without SBCs since split-
point location are affected by the SBCs’ propagation.
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5.1. Global analysis of the results

Without rlex, the solving time varies from 0.8s to 3 818 828s (44d04h47m
08s12), with a total solving time of 7 851 611s (90d21h00m11s) for the 68 exper-
iments. With rlex, the solving time varies from 0.13s to 132 070s (1d12h41m
10s13), with a total solving time of 228 253.1s (2d15h24m13s) for the 68 exper-
iments. The gain varies from 0.9814 to 10 166.215, for an overall gain (ratio of
total solving times for the 68 instances) of 34.4. These figures are a bit biased
because our test set comprises problems solved in widely different times. In
order to allow a more precise comparison, Table 3 partitions our test set into
three classes with respect to their solving time without rlex: easy instances
solved in less than an hour, hard instances solved in less than day and intractable
instances solved in more than a day. For each category, we provide the total,
minimum and maximum solving times and gains. These statistics are comple-
mented by Table 4 which depicts, for the same three classes, the total number
of instances, those with gains lower than 1.0, between 1.0 and 10.0 (excluded),
between 10.0 and 100.0 (excluded), and larger than 100.0.

A counter-productive performance occur for only 1 run out of the 68 ex-
periments, the instance of problem Eiger at dimension n = 100, and the loss
in solving time is 2% of 22.3s, i.e., 0.3s. A more detailed look at this prob-
lem reveals it has only a cyclic symmetry group (order n), very simple binary
quadratic constraints and only two fully frontier solutions (see Section 5.2.1 for
a detailed analysis of the influence of these features). Another problem in our
benchmark has similar characteristics: Vrahatis. As expected, its gains, though
never counter-productive, also appear very small in comparison to its symmetry
group order. The fact rlex constraints are inefficient for these two problems
is easily explained: the original constraints in both problems are already effi-
ciently filtered (as testified by the very large dimensions that can be tackled,
and the fact their solving require a single split) and thus propagating rlex
constraints (numerous due to the large considered dimensions) does not bring
useful additional reductions while it induces a small additional cost.

Oppositely, very good performances (i.e., gains greater than 10.0) occur for
33 runs out of 68, 17 of them providing gains even greater than 100.0. Such
outstanding gains are obtained for problems Brown, Cpdm, Extended-Powell,
Noon and Wright at large enough dimensions. This is again easily explained:
these problems have factorial-order symmetry groups and, in general16, an ex-
ponentially growing solution set with n, also exponentially reduced by rlex.

To sum up, these general statistics demonstrate that rlex constraints can
provide important gains in solving time and seem harmless to use since the
additional propagation cost they may induce is only slightly counter-productive
in the worst case. In our opinion, this validates their practical relevance.

12Sparse at dimension n = 7
13Reimer at dimension n = 6
14Eiger at dimension n = 100
15Extended-Powell at dimension n = 30
16It is not the case for Brown and Noon
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Problem n |Σ| |χ| time (seconds)
standard rlex ratio standard rlex ratio

Boon 6 4 8 3 2.7 34.7 11.2 3.1
Brown 5 24 3 3 1.0 0.8 0.3 2.7

6 120 2 2 1.0 6.9 0.9 7.7
7 720 3 3 1.0 79.4 2.5 31.8
8 5 040 2 2 1.0 1 419.4 10.5 135.2
9 40 320 3 3 1.0 15 965.7 34.8 458.8

Cpdma 3 6 91 105b 16 489b 5.5 386.7 57.8 6.7
4 24 233 22 10.5 96.9 5.8 16.7
5 120 18 819 212 88.7 2 856.8 43.6 65.5
6 720 30 574 120 254.8 53 587.4 218.8 244.9

Cyclic- 4 8 26 148b 3 319b 7.9 58.8 7.6 7.7
rootsc 5 10 10 1 10.0 23.6 2.8 8.4

6 12 24 7 3.4 3 352.5 284.5 11.8
7 14 56 4 14.0 135 960.1 11 607.7 11.7

Eiger 100 100 2 2 1.0 22.3 22.6 1.0
200 200 2 2 1.0 348.4 281.9 1.4
300 300 2 2 1.0 1 634.7 1 375.0 1.2
400 400 2 2 1.0 4 927.8 4 224.9 1.2
500 500 2 2 1.0 11 636.6 10 285.0 1.1
600 600 2 2 1.0 22 556.3 17 747.4 1.3

Extended 40 2.43E18 1 1 1.0 8.8 1.9 4.6
Freud- 60 2.65E32 1 1 1.0 41.0 8.1 5.1
-enstein 80 8.16E47 1 1 1.0 124.4 23.5 5.3

100 3.04E64 1 1 1.0 291.5 54.6 5.3
120 8.32E81 1 1 1.0 638.3 118.5 5.4
140 1.18E100 1 1 1.0 1 173.2 212.5 5.5

Extended 22 8.78E8 2 048 1 2 048.0 135.5 0.2 677.5
Powell 24 1.15E10 4 096 1 4 096.0 342.8 0.3 1 142.7

26 1.62E11 8 192 1 8 192.0 854.3 0.4 2 135.7
28 2.44E12 16 384 1 16 384.0 2 095.5 0.4 5 238.7
30 3.92E13 32 768 1 32 768.0 5 083.1 0.5 10 166.2

Feigen- 11 11 200 20 10.0 17.2 2.0 8.6
-baum 13 13 522 42 12.4 58.4 5.5 10.6

15 15 1 368 96 14.2 277.3 24.5 11.3
17 17 3 572 212 16.8 712.6 57.5 12.4
19 19 9 350 503 18.5 1 217.0 105.7 11.5

a
Continuous solution set at n = 3, discrete at n = 4, 5, 6

b
Number of enclosing boxes at precision 0.001

c
No solution at n = 3, continuous solution set at n = 4, discrete solution set at n = 5, 6, 7.

Table 1: Characteristics and results for the selected benchmark (part 1). Timings and ratios
rounded to (nearest) one decimal, except when too large.
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Problem n |Σ| |χ| time (seconds)
standard rlex ratio standard rlex ratio

Hénon 20 10 104 14 7.4 15.6 2.3 6.8
30 15 1 082 75 14.4 549.2 50.4 10.9
40 20 10 808 567 19.1 13 070.3 873.6 15.0
50 25 112 452 4 527 24.8 212 440.0 10 291.9 20.6

Ikeda 6 3 9 5 1.8 7.0 3.4 2.1
8 4 17 7 2.4 73.5 24.9 2.9
10 5 23 7 3.3 471.0 137.8 3.4
12 6 53 13 4.1 3 072.1 754.9 4.1
14 7 73 13 5.6 21 806.4 4 447.1 4.9

Noon 5 120 13 3 4.3 35.1 0.7 50.1
6 720 15 3 5.0 61.5 0.5 123.0
7 5 040 9 2 4.5 158.0 0.7 225.7
8 40 320 10 2 5.0 590.4 1.0 590.4
9 362 880 11 2 5.5 1 607.2 1.5 1 071.5

Reimer 4 4 8 2 4.0 4.1 1.1 3.7
5 12 24 2 12 .0 2 193.2 242.0 9.0
6 36 72 2 36.0 3.29E6 132 070.0 24.9

Sparse 4 24 0 0 1.0 1.0 0.1 10.0
5 120 0 0 1.0 62.6 1.7 36.8
6 720 0 0 1.0 6 164.7 29.2 211.1
7 5 040 0 0 1.0 3.82E6 1 845.3 2 070.1

Virasoro 8 8 2 880 1 822 1.58 146 938.6 17 399.1 8.4
Vrahatis 100 100 2 2 1.0 49.1 32.7 1.5

200 200 2 2 1.0 508.4 249.2 2.0
300 300 2 2 1.0 2 088.0 832.4 2.5
400 400 2 2 1.0 5 923.3 1 959.0 3.0
500 500 2 2 1.0 13 454.0 3 827.3 3.5
600 600 2 2 1.0 25 346.7 6 324.8 4.0

Wright 7 5 040 128 8 16 11.5 0.2 57.5
8 40 320 256 9 28.4 117.8 0.5 235.6
9 362 880 512 10 51.2 1 367.0 1.6 854.4
10 3 628 800 1 024 11 93 16 623.1 3.7 4 492.7

Table 2: Characteristics and results for the selected benchmark (part 2). Timings and ratios
rounded to (nearest) one decimal, except when too large.
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(a) Brown (b) Cpdm (c) Cyclic-roots

(d) Eiger (e) Ext.-Freudenstein (f) Ext.-Powell

(g) Feigenbaum (h) Hénon (i) Ikeda

(j) Noon (k) Reimer (l) Sparse

(m) Vrahatis (n) Wright

Figure 8: Results for scalable problems: ratios in number of solutions (o) and in solving time
(+) ; symmetry group order (plain line).
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Easy Hard Intractable
std rlex gain std rlex gain std rlex gain

total 31 353.6 5 062.8 6.19 216 145.3 49 976.2 4.3 7.60E6 1.73E5 43.9
min 0.77 0.13 1.0 4 927.8 0.5 1.1 1.35E5 1 845.3 8.4
max 3 352.5 1 375.0 5 238.7 53 587.4 17 747.4 10 166.2 3.82E6 1.32E5 2 070.1

Table 3: Timings (in seconds) and gains statistics classified in easy (less than an hour), hard
(less than a day) and intractable (more than a day) instances.

gains Easy Hard Intractable
all 50 13 5
[0,1) 1 0 0
[1,10) 26 7 0
[10,100) 12 1 4
[100,+∞) 11 5 1

Table 4: Partition of the benchmark with respect to the observed gains, classified easy (less
than an hour), hard (less than a day) and intractable (more than a day) instances.

5.2. Detailed analysis of the results

A detailed look at Tables 1 and 2 reveals that rlex performance does not
live up to our expectations in many cases, i.e., the gain is often much lower
than, and even not proportional to, the order of the symmetry group of the
considered instance. Apart from the cases where rlex constraints are counter-
productive and that we have already explained, one can note that for most
of the problems with factorial-order symmetry groups, the gains seem smaller
than factorial, apparently exponential for many problems, and even polynomial
for Sparse and constant for Extended-Freudenstein (see Figure 8). In fact the
observed gain is always lower than the order of the symmetry group, with the
exception of Virasoro for which rlex constraints strangely perform even better
than expected.

This leads us to examine more closely the rationale behind our gain expecta-
tion, and to suggest that there are two very general factors affecting such gain,
which emerge from the ways the rationale can be falsified in our benchmark.
Then, we exemplify the dependency of the gain on the features of the solver.
Finally, we offer some insights on the potential effect of using different variations
of rlex, like transitive closure application and lex ordering.

5.2.1. Rationale for the gain expectation

From now on, we will call Constrained Space (CS) the space previously
denoted by RΣ(x). The argument for an expected gain given by the ratio
between the domain volume and the CS volume, |Σ|, relies on the following
assumptions:

A The time for processing a box inside CS is approximately the same with
or without rlex constraints. The base of this assumption is that rlex
constraints are much simpler than typical nonlinear constraints. For this
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reason, the cost of propagating rlex should be negligible compared to the
cost of propagating the constraints of the problem.

B The time for discarding boxes outside CS with rlex can be neglected with
respect to the global solving time. This assumption relies on the fact that
a box outside CS violates some rlex constraint which, when considered
during the propagation loop, will discard the box instantly at a very low
cost. Then we can consider that, when rlex constraints are added, the
domain of the problem is virtually restricted to CS at no cost.

C The processing time is homogeneous across the domain. That is, the time
to process a fixed-size volume is the same everywhere.

If the above assumptions hold, one can then conclude that the time to solve
the problem without and with rlex should respectively be proportional to the
initial domain volume and to the CS volume, yielding a gain equal to |Σ|. The
first two assumptions can be easily trusted for most problems of interest (i.e.,
difficult ones), which are composed of complex nonlinear constraints. The cases
when they are evidently not valid are the counter-performing ones we have
already discussed. The validity of the third assumption is less obvious as the
following paragraphs reveal.

Solution processing prevalence. Assumption (C) gets too far away from reality
in many problems. Indeed, the processing time is often concentrated in the
areas around the solutions whereas large infeasible portions of the domains
are discarded instantly. For that specific kind of problems it is appropriate to
substitute Assumption (C) by:

D A distinct box exists for each solution such that the cost of processing such
boxes of symmetric solutions is the same and that the time to process the
space outside all these boxes is negligible.

If we further assume that the processing cost of such a box is the same for
all classes, assumptions (A), (B) and (D) together yield the conclusion that the
solving time gain should be the ratio of the number of solutions without rlex
over that with rlex. This ratio depends on the cardinality and the number of
elements satisfying rlex for each solution class:∑

x∈lexΣ(χ) |xΣ|∑
x∈lexΣ(χ) |RΣ(xΣ)|

. (19)

For an interior solution x, we have |xΣ| = |Σ| and |RΣ(xΣ)| = 1. Thus, if a
problem has only interior solutions the above ratio is |Σ|. Therefore, in this
kind of problems, homogeneity and solution processing prevalence assumptions
yield the same gain expectation. In our test set, only problems Cyclic-roots in
dimensions n = 5, 7 and Reimer are of this kind.

The gains observed for problems Feigenbaum, Henon and Ikeda are also
clearly influenced by this factor and they follow quite closely (19) though these
problems do not have only interior solutions. In fact, it turns out they have a
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Figure 9: Experimental time ratio (plain) and number of solutions ratio (19) (dashed) for
generated problems (20) of dimension n = 6 under Cyclic symmetry (order n, squares),
2-Cyclic+Mirror symmetry (order n2, circles) and Full permutation symmetry (order n!, tri-
angles).

large majority of interior solutions and only a few frontier solutions, explaining
the observed behavior.

Although the set of frontier points has zero volume, in practice it is not so
rare that symmetric problems have frontier solutions. The existence of fron-
tier solutions makes (19) smaller than |Σ|. This is particularly striking for
problems Brown, Extended-Freudenstein, Eiger and Vrahatis which have only
fully-frontier solutions (i.e., the same set of solutions is found with and without
rlex). The two latter problems have already been discussed as they present
inefficient gains. The two former ones have factorial order symmetry groups but
only exponential and constant gains, respectively.

Problems with continuous solution sets, like Cyclic-roots of dimension n = 4
and Cpdm of dimension n = 3, are another case of the solution prevalence type.
Moreover, in most cases they have a gain not too far from |Σ|. Although their
solution manifolds may intersect with the frontier of CS, it is sufficient that the
dimensionality of the overlap is lower than that of their solution set to have a
majority of boxes enclosing interior solutions. Therefore gains of the order of
|Σ| are generally obtained, sometimes with significant accuracy.

In order to confirm the impact of solution prevalence on the expected gain,
we have prepared a specific problem generator parameterized by the dimension
of the problem n, the number of repetitions r of the smallest coordinate in the
single solution class representative s to the problem, and the symmetry group
Σ. The generated problems have a single constraint of the form

∏
σ∈Σ

 ∑
i∈[1,n]

(xi − siσ )
2

 = 0, (20)
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where the solution class representative s satisfies si = max(0, i − r − 1)2, i.e.,
the solutions are all symmetries of s = (0, . . . , 0︸ ︷︷ ︸

r+1 times

, 1, 4, 9, . . .). When r = 0,

the generated problems have only interior solutions, all members of the same
symmetry class. In this case, we expect the gains to be proportional to the
order of the considered symmetry group at the considered dimension. When r
increases, the size of the solution class decreases, eventually reaching 1 when
r = n − 1, in which case the solution is s = (0, . . . , 0). The gains should
also decrease according to (19). Figure 9 displays the evolution of the gain
in dimension n = 6 for three different symmetry groups when the number of
repetitions r varies. In all cases, it is clear that the gain decreases with the
increase in the number of repetitions, i.e., the degree of frontierness of the
solutions, which in turn determines the numbers of solutions with and without
rlex, having an important impact on the gain. The shapes of gain evolution
and ratios of solution numbers are indeed strikingly proportional. Still they are
not identical and the gains are always worse than the expected ones according
to (19). We explain this phenomenon with another factor: the frontier effect.

Frontier effect. There are problems with no solution prevalence or without so-
lutions at all in which gains are very different from |Σ|. Something besides
homogeneous processing is failing in the premises of Subsection 5.2.1. One
symptom is box classification in inside and outside CS; frontier boxes, partially
inside and partially outside CS are neglected. And they turn out to be a sig-
nificant fraction, or even the predominant type of boxes in some problems, e.g.,
Ext.-Freudenstein, Wright and, in minor degree, Feigenbaum.

The reason is that the assumption of constant time cost for a fixed volume
size can be falsified not only by the position but also by the shape of the volume
when using a box-oriented solver. Suppose we have to pave the domain and CS
with boxes. If only one box is used, the tighest enclosing one, the box is the
same in both cases and coincides with the domain, itself a frontier box. Thus,
there is no difference in the paving despite CS is |Σ| times smaller. If we allow
a greater number of boxes, they become smaller, the volumes covered in the CS
and the domain case differ progressively. Asymptotically, the ratio of volumes
covered tend to |Σ| and the fraction of frontier boxes in CS tends to zero.

Another facet of the same frontier effect phenomenon, is considering the size
of the leaf boxes in the search tree when rlex are added. It can happen that
the size of a leaf is too big to be completely inside CS (because of its shape, the
leaf can be at the same time much smaller than the domain), but small enough
to be discarded or to converge to a solution in the given problem. It is, thus, a
frontier box, eventually one scarcely overlapping CS. This would mean that the
pruning power of rlex has not been exploited effectively. The smaller the CS
size with respect to the domain size, the more easily this may occur. On the
opposite side, given a fixed a symmetry and its associated CS, the smaller the
leaf boxes, the more immune the problem to the frontier effect.

The frontier effect thus depends on two factors: the relative volumes of CS
and initial domain, and the precision at which the problem is solved.
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To sum up, solution processing prevalence overrides the importance of the
volume in the time cost. When there is no solution prevalence, the ratio of
volume processing cost is mainly influenced by the frontier effect.

5.2.2. Impact of rlex variants

The set of rlex constraints for a given symmetry group is in general not
unique. We study here the impact of various possible sets on the observed gains.

Transitive closure. The set of rlex constraints of a given symmetry group can
be minimized, keeping only inequalities which are not transitively implied by
other inequalities in the set. Such a minimal set comprises at most n inequalities
for a problem in dimension n. Conversely, it can be maximized considering
the transitive closure of all inequalities, yielding at most n2 inequalities for a
problem in dimension n. Of course, all intermediate sets between these two
extremes also constitute a valid set of PSBCs.

In theory, the maximal set could be preferred because it may accelerate in-
terval propagation. For instance, the reduction of the domain of x1 in a problem
with full permutation symmetry can be propagated instantly to the domain of
xn if the rlex inequality x1 ≤ xn is imposed, while it will require n− 1 prop-
agation loops if only rlex inequalities of the form xi ≤ xi+1 are considered.
On the other hand, the minimal set could be preferred since it may comprise
significantly less constraints, possibly reducing importantly the number of ap-
plied contracting operators to achieve a fix-point of interval propagation. For
example, in order to realize that no reduction at all is possible on the domain
of any variable, each contracting operator must be applied once, i.e., only n for
the minimal set in contrast with n2 for the maximal set.

In practice, however, we have observed that considering either the minimal
set or the maximal set results in very similar timings for most problems. This
is in particular the case for problems Brown, Cyclohexane, Extended-Powell,
Noon, Sparse and Wright, i.e., problems with very different minimal and max-
imal sets (typically n and n2 inequalities, respectively) and for which the gain
with maximal PSBCs over that with minimal PSBCs vary between 0% and
8%, sometimes in favor of the maximal set, sometimes in favor of the minimal
set. The only exception is for problem Extended-Freudenstein for which solving
times are approximately 3 times faster with the maximal set than with the min-
imal set. This problem, like the Extended-Powell problem, has a very specific
structure: it is made of the repetition n

2 times of a subsystem of 2 equations.
But unlike Extended-Powell, this one has a single solution. Hence, the contrac-
tion of the domain of the variables in any subproblem of 2 equations can be
immediately propagated to the domains of the variables of all other duplicated
subproblems. It appears that the maximal set of rlex, with its redundant in-
equalities, exploits this property to its best, allowing a much faster convergence
of the solver towards the unique solution.

Except for such peculiar cases, we should thus conclude that using a min-
imal set of rlex or a maximal set of rlex has almost no impact, and so we

29



recommend using the minimal, non-redundant, set as it involves a lot fewer
constraints in general.

Lexicographic order. The variable ordering underlying the considered lexico-
graphic order also impacts the set of generated rlex, not only in the name of
the involved variables but even in cardinality. For instance, consider the sym-
metry group generated by compositions of σ = [2, 1, 4, 5, 6, 3]. It is composed of
two synchronized cyclic symmetries, one on the first two variables, the other one
on the last four variables. The two corresponding rlex constraints obtained
with the standard variable order are x1 ≤ x2 and x3 ≤ x5. If the variable order
chosen to build rlex begins by x3 instead of x1, we obtain the rlex constraints
x3 ≤ x4, x3 ≤ x5 and x3 ≤ x6, i.e., a set of three PSBCs instead of two.

Besides the variables involved and cardinality of the generated rlex, the
variable order can influence also the number of symmetries broken for the solu-
tions and, thus, the number of symmetric solutions found with rlex. Indeed,
a variable order can confer a frontier character to a solution while another one
can make it an interior point. However, it is difficult to take advantage from
this in practice because it requires the previous knowledge of the solutions.

For the problems in our benchmark more prone to be impacted by a change in
variable ordering (we have excluded those with full permutation of all variables
and those with full cycle of all variables), we have compared runs with several
variable orderings and it appears this factor does not have a very important
impact on the observed gains: 0% to 10% difference in solving time.

We conclude the variable ordering does not have a very important role in
the performance of rlex constraints in general.

5.2.3. Interest of rlex in other solving contexts

In the whole previous section, we have considered only the problem of find-
ing all solutions (up to a given precision) of the considered problems, whether
they have continuous solution sets, discrete solution sets or empty solution sets.
Another perspective on rlex efficiency consists in searching for a single solution
of the considered NCSPs, i.e., solving them as decision problems.

Part of the answer is already included in Tables 1 and 2 : for problems
having no solution (Sparse), a single solution (Extended Freudenstein), or an
identical (and small) solution set with or without rlex constraints (Brown,
Eiger, Vrahatis), the obtained gains validate their interest in such settings too.

Considering the other problems in our test set, those with large, or largely
varying with and without rlex constraints, solution sets, the figures are very
unstable : for problems with continuous solution sets (CPDM at n = 3, Cyclic-
roots at n = 4), the decision problem is answered identically fast (< 0.05s) with
and without rlex ; For other problems, either the decision problem is solved
faster without rlex (CPDM at n = 4, 5, 6, Cyclic-roots at n = 5, 7, Extended
Powell at n = 22, 24, 26), or it is solved almost as fast with and without rlex
(Feigenbaum at n = 11, 13, Ikeda at all considered n, Noon at n = 5, 6, 7), or
else it is solved faster with rlex constraints (all other 48 instances).
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The fact no predictable behavior is observed is easily interpreted: the search
with and without rlex constraints proceeds in a totally different way since,
due to contracting boxes with rlex constraints, the split points are generally
different in both cases yielding a totally unrelated search tree, unlike what
happens in the discrete case where the search-tree with PSBCs is a subpart of
that without PSBCs.

The overall statistics are however in favor of rlex constraints since when
they are counter-productive the solving time are typically small17 and the gain
remains above 0.2 in all cases, while solving time vary from small to significant
(> 100s) and gains grow up to 81618 when rlex constraints are used. The most
favorable gains are in fact observed when the first solution found is identical
with and without rlex, indicating the search strategy operates similarly in
both cases, just avoiding unnecessary branches that are pruned by our PSBCs.

6. Conclusion and Future Prospects

lex constraints are known to break exactly every variable symmetry retain-
ing only a representative member of each class. They are valid for all kinds of
problems, independently of the nature of the domains. However, the number
of lex constraints is potentially factorial in the number of variables. Moreover,
we have shown they are impractical for numerical solvers.

To overcome these drawbacks, we have proposed the rlex PSBCs, a set
of simple inequalities between two variables. The maximum number of non-
redundant constraints in rlex is linear in the number of variables. Besides
they are easily handled by numerical solvers, which are able to quickly propagate
them. They can be considered a generalization of PSBCs proposed for particular
symmetry groups in some previous works.

We have shown that rlex are a relaxation of lex with optimal properties.
In fact, they enclose a space which is the closure of that enclosed by lex SBCs,
and we have proved both have the same volume. A detailed analysis of rlex
PSBCs also shows that their filtering power is almost identical to complete SBCs
in the context of numerical CSPs.

The experiments we have conducted on a benchmark of standard problems
with various characteristics and sizes demonstrate the practical efficacy of rlex
constraints: (almost) never counterproductive, they induce gains in solving time
which can be factorial for problems with symmetry groups of large orders. Still,
the presented results also demonstrate these gains are not always directly pro-
portional to the symmetry group order, and we have thoroughly analyzed the
reasons why.

All the arguments we have used are also valid for continuous (constrained)
optimization. rlex can also be interesting in discrete domains, though Jefferson
and Petrie [22] have demonstrated there exist superior PSBCs in this context.

17Except for Cyclic-roots at n = 7 solved in 380s without rlex and 1320s with rlex.
18Noon at n = 8 is solved in 490s without rlex and in 0.6s with rlex
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Still, in discrete domains with many values for each variable, the frontier (in
which reside the only symmetry classes not completely broken by rlex) will be
small with respect to the domain. Hence, we should also consider Mixed-Integer
Nonlinear Programming and Integer Linear Programming for which some of the
PSBCs we have generalized have been proposed [17, 36].
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