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Abstract 

 

Robots are no longer confined to factories, but they are progressively 

spreading to urban, social and assistive domains. In order to become handy 

co-workers and helpful assistants, they must be endowed with quite 

different abilities than their industrial ancestors. Research on service robots 

aims to make them intrinsically safe to people, easy to teach by non-experts, 

able to manipulate not only rigid but also deformable objects, and highly 

adaptable to non-predefined and dynamic environments. Robots worldwide 

will share object and environmental models, their acquired knowledge and 

experiences through global databases and, together with the internet of 

things, will strongly change the citizens' way of life in so-called smart cities. 

This raises a number of social and ethical issues that are now being debated 

not only within the Robotics community but by society at large. 

 

 

1. From industrial to service robotics 

 

In the early twenty-first century, the growing need for labor in the healthcare and 

service sectors –partly motivated by the ageing of population in the more developed 

countries– has widened the range of robot applications. In the coming years we will see 

robots attending elderly and disabled people, performing household tasks, acting as 

support teachers, assistants in shopping malls, receptionists, guides at trade-fairs and 

museums, and even as nannies and playmates. Not only will robots find increased 

application in human-centered domains such as healthcare, education and entertainment, 

but also in service areas like city logistics, cleaning and recycling, surveillance and 

environmental monitoring. Moreover, robots will also increase their range of activities 

in factories by working not just in production lines, but also collaborating with human 

operators as co-workers. 

 

In Europe the ambitious SPARC program
2
 has been launched to cope with the research 

needs arising in this scenario. This is a contractual partnership of the European 

Commission and euRobotics AISBL, an association of companies and academia, to 

facilitate the growth and empowerment of the robotics industry and value chain, from 

research through to production. With €700M in funding from the Horizon2020 program 

for 2014-20, and triple that amount from European industry, SPARC is the largest 

civilian robotics innovation program in the world. It is structured in eight application 

areas: manufacturing, healthcare, home care, agriculture, security, environment, 

transport and entertainment. 

 

This move of robotics towards de service sector is in line with the upsurge of smart city 

technologies. Applications as diverse as garbage collection and recycling, surveillance 
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and security, logistics and elderly assistance, require both ambient intelligence and 

autonomous robots. Ambitious projects in this direction are underway, such as the 

development of a web for robots
3
, where they would share data and procedures, i.e., 

maps of visited buildings, acquired manipulation skills, and other learned expertise, in a 

common hardware-independent format. This web will be connected to the internet of 

things, from which robots could get object models and instructions of use for all kinds 

of commercial products. 

 

2. Challenges and research approaches 

 

Service robots working in human environments
4,5

 have considerably different 

requirements than the industrial robots included in production lines. Since they cannot 

be caged, their safeness to people must be intrinsically guaranteed. In many cases there 

won’t be expert programmers around and, for example, robot assistants should be easy 

to be taught by non-experts. Deformable objects such as clothing, upholstery and cables 

pervade human environments and robots should be able to perceive and manipulate 

them; this is much harder than dealing with the usual rigid workpieces in factories, 

because flexible shapes have a much higher dimensional state space than the six 

variables of position and orientation. The high accuracy required in many industrial 

operations can often be dispensed in this context, but in return robot performance needs 

to be robust in front of noisy perceptions and inaccurate actions. And, of course, 

service robots must be highly adaptable to non-predefined and dynamic environments.  

 

Underlying these requirements, there is a common trait: it is impossible to program 

service robots by anticipating all possible circumstances in which they will have to 

operate, thus some form of learning is needed, although the particular technique applied 

will vary largely from the low-level skills (e.g., function approximation to fit 

trajectories) to the high-level competences (e.g., semantic labeling and symbolic 

reasoning), as we will explain in the following subsections. 

 

Several research groups are conducting projects on service robotics at universities and 

research centers worldwide. At our institute (IRI, CSIC-UPC), two European projects 

addressing the aforementioned core competences in this area have been completed: 

URUS and PACO-PLUS, aimed at developing robots to work as urban guides and 

cooking assistants, respectively. Other related European projects in which we were 

involved are GARNICS and IntellAct, which deal with the perception and manipulation 

skills needed by a robot gardener and a robot performing maintenance tasks. In 

particular, at IRI’s Perception and Manipulation group, we do research at the frontier of 

Robotics and AI, integrating computer vision, machine learning and planning to address 

several of the requirements sketched above. Hence, some of our works will be described 

below to illustrate the research challenges posed by service robots as well as promising 

ways to tackle them. 

2.1. Easy programming 

If non-experts are to instruct robots to perform tasks, very natural ways of doing so 

must be provided. Learning from demonstration
6 

has emerged as a powerful approach 

by means of which robots can acquire the desired skills by just being shown a 

demonstration from a human. Initial research relied on vision for teaching object pick-

and-place sequences, whereas now the focus is on accomplishing force-based dynamic 
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tasks. Indeed forces play an important role in many skills that service robots should 

have, such as opening doors, pulling drawers, assembling things, and cutting slices of 

some foods, to name a few.  

 

We have proposed a learning framework
7
, where teacher demonstrations are encoded in 

a Hidden Markov Model (HMM), and robot execution is implemented through a 

modified version of Gaussian Mixture Regression that uses the temporal information 

from the HMM. Such information is needed when tackling tasks in which force 

perceptions may be ambiguous, e.g., taking out a piece through a hole, where the same 

force may be sensed in the point where trajectories from different origins cross. 

Experimental results with our framework have demonstrated that the robot is able to 

learn and reproduce two tasks of this nature, namely dispensing pills and pouring 

drinks, with a performance comparable to the teacher’s one. 

 

Learning more elaborate skills (e.g., those involving complex dynamics) just from 

demonstrations may prove very time consuming or even impossible. Hence, it has been 

suggested that starting from a demonstration to bootstrap behaviour, the robot should 

explore slightly modified versions of the acquired skill so as to improve its performance 

through reinforcement learning (RL)
8
. The difficulty is to scale RL to the high-

dimensional continuous motion spaces of robot manipulators or, even more generally, 

humanoid robots. To surmount this difficulty, different ways to parameterize movement 

primitives have been proposed, coupled with efficient policy learning procedures
9
, as 

well as strategies to reduce the dimensionality of the parameter space on which 

exploration needs to be carried out
10

. Recently, probabilistic movement primitives
11

 

have been put forward to capture the essentials of several demonstrations, and again 

ways to reduce the dimensionality of the search space have been developed
12

. 

 

So far we have described research on learning approaches to transfer skills from humans 

to robots. A step further is to teach robots not just to reproduce skills on their own, but 

to accomplish tasks cooperatively with humans. In a joint work with the Istituto Italiano 

di Tecnologia, we have proposed a framework to transfer impedance-based behaviours 

to a torque-controlled robot through kinaesthetic teaching
13

. The collaborative assembly 

of a wooden table is used as test-bed (see Fig. 1). The perception system consists of 

vision markers in the table legs and forces sensed at the robot end-effector. In the 

demonstration stage, the teacher makes the robot follow compliantly the guidance of the 

user to place the table board in a comfortable position to perform the assembly and, as 

soon as the user starts screwing a leg, the teacher firmly holds the robot so that the 

board remains stiff. The demonstrations are encoded as a task-parameterized statistical 

dynamical system and stiffness estimation is formulated as a convex optimization 

process, thus guaranteeing optimal stiffness gain matrices. The results show that the 

framework successfully modifies the robot impedance along task execution to facilitate 

collaboration, by triggering stiff and compliant behaviours in an on-line manner to adapt 

to the user’s actions. Note that when the user erroneously tries to screw a leg upside 

down or in the middle of the table, the robot behaves compliantly. 
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Figure 1. Easy robot programming by demonstration. Top: Two people 

collaborating to assemble a wooden table. Bottom-left: The teacher (DT) instructs 
the robot to hold the board stiff only while the human operator (DL) is screwing a 

leg. Bottom-right: The robot stops behaving compliantly when the human operator 

starts screwing a leg. (Adapted from Ref. 13.) 

 

 

2.2. Safety 

Service robots often have to operate near humans or even in physical contact with them 

as in the collaborative tasks mentioned above. Therefore, safeness to people is a sine 

qua non for such robots. In the manufacturing context, the usual approach has been to 

limit robot velocity as a function of distance to people, leading to very conservative 

speed or torque bounds to the detriment of productivity. Recently, a kinematic control 

strategy has been proposed
14

 that enforces safety (included as a hard constraint) while 

maintaining the maximum level of productivity of the robot. 

 

The European project SAPHARI
15

 aims to go a step further and address safety in close 

contact collaborative situations by relying on human-friendly hardware design and 

interaction control strategies that would enable robots to track, understand and predict 

human motions in real-time, and to react accordingly. To this end, a hierarchical 

architecture
16

 has been devised that generates robot behaviours organized in three layers 

for active collaboration, co-existence, and safety. At the upper layer, an intentional 

contact by a human user to request collaboration should be distinguished from an 

accidental collision. Human-robot co-existence requires workspace monitoring and 

efficient collision avoidance methods based on exteroceptive sensors. Despite these 

controls, unavoidable physical contacts may eventually occur anywhere on the robot 

body, which should be reliably detected and a fast robot reaction triggered, preferably 

on the basis of only proprioceptive sensing. 
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We devised a method to estimate external forces exerted on a manipulator during 

motion based exclusively on propioception
17

, i.e., avoiding the use of tactile or force 

sensors. This estimator has been used together with a friction-aware controller in an RL 

approach to learn safety-critical tasks
18

, such as helping to dress people with reduced 

mobility, whereby the robot needs to behave compliantly but still adhere to a reference 

trajectory. 

 

Note that to program a robot to behave compliantly, a trade-off between precision and 

safety needs to be considered, since augmenting robot precision (usually with a high 

error-compensating term) will make its motion increasingly stiff and, therefore, 

potentially dangerous for humans in its vicinity. This trade-off is handled by using 

impedance or direct force controllers that rely on an inverse dynamic model of the 

robot, i.e., which map position, velocity and acceleration to the torques acting on the 

robot. However, most approaches to build such a model do not consider the possibility 

of having hystheresis on the friction, which is the case for robots like the Barrett WAM. 

For this reason, we derived an analytical model of friction in the seven robot joints, 

whose parameters can be automatically tuned for each particular robot (Ref. 18). This 

permits compliantly adhering to reference trajectories in the entire workspace. 

 

Experimental results demonstrate that using such friction-aware controller within a RL 

approach based on movement primitives, the robot is consistently capable of learning 

simple dressing tasks, such as wrapping a scarf around the neck of a mannequin and, 

afterwards, of a person
19

 (see Fig. 2). 

 

 

 
 

Figure 2. Using a safety-aware controller in the execution of tasks that entail 

physical interaction with a human. Left: The teacher demonstrates how to wrap a 

scarf around the neck of a mannequin by physically guiding the robot. Middle: The 
robot autonomously explores parameterized trajectories close to the demonstrated 

one within an RL approach so as to optimize performance. Right: The robot 

reproduces the best motion found and, as can be observed in the video in Ref. 19, 
despite being insistently disturbed by the user, it shows a nice compliant behaviour 

while at the same time persistently pursuing the task. 
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2.3. Handling deformable objects 

Whereas handling a rigid object changes only its pose, namely six parameters (three for 

position and three for orientation), the manipulation of a deformable object takes place 

in a potentially infinite-dimensional shape-state space. This huge dimensionality jump 

renders geometry-based perception techniques developed for rigid objects non-

applicable in this context, and calls for the use of machine learning approaches as well 

as applying motions to the object to aid perception. The latter has been the dominant 

trend in robotic handling of garments
20,21

, where clothes are manipulated and re-grasped 

until reaching a configuration that can be easily recognized with simple perception 

algorithms.  

 

Since re-graspings are time consuming, we have explored the alternative approach of 

applying more complex computer vision and machine learning algorithms for informed 

(task-oriented) one-shot grasping. For instance, to hang a shirt or a coat, we should pick 

them up by the collar. Thus, we need to detect suitable parts of garments. To this end, 

we have built and made publicly available a dataset
22

 that includes hundreds of 

manually annotated RGB-D scans of clothing items, such as collars of polo shirts, hips 

and hemlines of pants, shirt cuffs, etc. Besides the annotated colour image, each entry in 

the database includes also the depth image and a template for background subtraction 

(see Fig. 3-left). 

 

Figure 3. Perception and manipulation of deformable objects. Left: Two entries in 

the clothing database showing the annotated parts (top), as well as the colour and 

depth images, and the template for background subtraction (bottom). Right: 

Grasping a polo shirt by the collar for hanging. 

 

 

Then, we have devised a pipeline
23

 where, from the colour and depth images, we extract 

some descriptors and, in a training phase, a dictionary of codewords is built using a 

Bag-of-Words approach. Next, a Support Vector Machine is used to classify garment 

parts. In execution, the descriptors are computed using a sliding window procedure to 

generate a map of part (e.g., collar) likelihood, which is then used to place boxes around 

the most probable part locations. Within the best box, a novel 3D descriptor
24

 is applied 

to find the most suitable grasping point on the suitable part (e.g., the collar lapel for 
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hanging purposes, as shown in Fig. 3-right). Experimental results
25

 demonstrate the 

suitability of the approach for task-oriented informed grasping of clothes. 

 

So far we have just dealt with recognition of garments and their parts. Determining the 

pose of clothing is a much more involved problem that requires not just classifying but 

determining shape, which is usually accomplished by matching points between a 

reference garment pose and the current, deformed one. We have developed a 

Deformation and Light Invariant (DaLI) descriptor
26

, which has been shown to 

outperform state-of-art descriptors, such as SIFT and DAISY. 

 

But clothes are not the only deformable objects service robots must be able to perceive 

and manipulate. Upholstered furniture, cables, foods and plants are examples of other 

such items. The European project GARNICS
27

 aimed to automatically monitor large 

botanic experiments to determine the best treatments (watering, nutrients, sunlight) to 

optimize predefined aspects (growth, seedling, flowers) and to eventually guide robots 

to obtain relevant data from plant leaves (e.g., chlorophyll measurements with a spad 

meter as in Fig. 4). For this purpose, a time-of-flight camera was mounted on the robot 

end-effector together with the appropriate measurement tool, so as to move around the 

plant using a next-best-view approach to find a leaf on whose border a suitable sampling 

point could be reached
28

.  

 

 
 

 

 

Figure 4. Setup used to take chlorophyll measures from 

suitable plant leaves, with the Barrett WAM arm carrying 

a time-of-flight camera and a spad meter. Observe that 

the leaf-probing task requires clearance (above and 

below) of a segment in the border of the chosen leaf.  

 

2.4. Adaptivity and learning 

Contrarily to industrial robots, which usually operate in structured, predefined settings 

in a repetitive way, service robots need to work in dynamic environments not 

specifically designed for them and often with humans around. Thus, they should have 

the capability to adapt to new situations and cope with unexpected events. Such 

adaptation takes two rather different forms depending on whether it occurs at the 

sensorimotor or cognitive levels
29

. Sensorimotor adaptation consists in building 

relevant associations between stimuli and responses, while cognitive learning entails 

constructing symbolic representations to guide decision-making. 

 

The visuomotor mapping, relating visual input to motion commands, has been the most 

widely studied, it allowing robots to adapt not only to changes in the environment but 

also to changes in their own geometry due to damage, wear-and-tear or tool 

replacement. Hoffmann et al.
 30

 provide a detailed review of robotics works tackling the 

acquisition of a body schema, a term taken from the neurosciences to denote the 
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correlation of proprioceptive sensory information with the visible shape of the body. For 

articulated robots such representation is often restricted to an inverse 

kinematics/dynamics mapping relating the end-effector pose (position and orientation) 

and velocity to the robot joint angles and torques.  Neural networks have been used to 

acquire the whole kinematics mapping from scratch, and also to encode only the 

deviations from the nominal kinematics embedded in the original robot controller
31

, 

resulting in a significant speed-up that permits online adaptation of the body schema, a 

crucial feature for service robots that need to operate for a long time without assistance. 

In a joint work with Karlsruhe Institute of Technology, the body schema of the 

humanoid robot Armar-III has been updated online to encompass a tool of variable 

length and pose with respect to the robot hand
32,33

 (see Fig. 5). 

 

 

 

Figure 5. Left: The humanoid robot Armar-III used in the experiments to adapt the 
body schema to an extension of the hand with a tool. Right: Close-up of the red ball 

attached to the right hand marking the end of the tool. (Adapted from Ref. 33.) 

 

For tasks involving not just a single skill but sequences of actions in non-predefined 

settings, planning capabilities are needed. In order to develop them, a cognitive 

architecture
34

 should be able to progressively learn an action model from experiences 

and rehearse hypothetical future scenarios on that model so as to determine the best 

course of action. Moreover, such action model must be probabilistic to account for noise 

in perceptions and uncertainties in action outcomes. 
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Relational reinforcement learning has been developed towards this aim. By enhancing 

RL with relational representations of states and actions (i.e., explicitly encoding 

relations in a symbolic data structure), the acquired knowledge can be generalized 

across states and transferred across tasks
35

. 

 

Some robot actions may be irreversible leading to unrecoverable failures (e.g., 

damaging some robot element, breaking an object or losing a tool). On the contrary, a 

planner can always backtrack from a dead-end so as to try to find an alternative 

sequence of actions to reach the goal. Thus, prior experiences can be very helpful for 

safety-aware planning. 

 

We have proposed a relational RL method that allows a robot to reason about dead- 

ends and their causes. If a plan might lead to a dead-end, the robot tries to find an 

alternative safe plan and, if not found, it asks a teacher whether the risky action should 

be executed. This method permits learning safe policies as well as minimizing 

unrecoverable errors during the learning process, and it has been validated on a robot 

learning to clear up a table
36

. 

3. Social and ethical implications 

The fact that service robots are intended to operate among people and often in close 

interaction with them raises many questions concerning their influence on the future of 

society and the role this technology may play in sustainability. Several roboethics 

initiatives and projects are underway in an attempt to address such questions in contexts 

as diverse as the military, labour market, legal liability, and educational fields. 

 

In a study trying to predict how pervasive robotics may shape individual identity, we 

became aware of the serious methodological difficulties involved in predicting 

technological evolution
37

: unforeseen uses of devices always crop up as in the case of 

cell phones; technological development cannot be studied outside its sociocultural 

context; and current language has severe limitations to describe the future (quoting 

Heidegger, it is «through technique that we perceive the sea as navigable»). 

 

Given the difficulty of predicting how a technological society will evolve, a reasonable 

option is to imagine different possible future scenarios and encourage debate on the pros 

and cons to try to guide techno-scientific research in the most desirable direction. In a 

provocative speech at Arizona State University entitled ―Innovation starvation‖
38

, the 

renowned writer Neal Stephenson advocated that we should recur to science fiction not 

only to figure out innovations but, above all, to come up with coherent scenarios of how 

such innovations could be integrated into a society and change peoples lives. Actually, 

classical science fiction anticipated many of the dilemmas we are currently facing. 

 

As an example, the scientific journal Interaction Studies devoted a special issue to 

discuss the influence that the use of robot nannies might have on the psychological 

development of children. The introductory article
39

 draws attention to a number of 

tricky issues that should be addressed. It is fascinating to realise
40

 that several of these 

issues appeared in short stories published more than half a century ago, such as 

―Robbie‖ by I. Asimov, ―Nanny‖ by Ph. K. Dick or ―I sing the body electric‖ by R. 

Bradbury. I gave my opinion on these ethical concerns in the aforementioned special 

issue
41

, so here I will only point out that if robots are to be part of the future educational 

community, it is important that society as a whole forms an opinion on what type of 
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robots they would accept. While there seem to be consensus on robots that increase 

human autonomy or amplify human capacities (e.g., the dexterity of surgeons), robots 

behaving as emotional substitutes raise polemics.  

 

In an attempt to contribute to the debate, I wrote a science-fiction novel
42

, where I 

imagined how being raised by artificial nannies, learning from robot teachers and 

sharing work and leisure with humanoids would affect the intellectual and social habits 

of future generations, their feelings and relationships, enhancing or spoiling them 

depending on each person’s point of view. The novel’s leit motiv is a quotation from the 

philosopher R.C. Solomon: «it is the relationships that we have constructed which in 

turn shape us». He meant human relations with our parents, teachers and friends, but the 

quotation can be applied to robotic assistants and robot companions, if they are to 

pervade people’s lives. 

4. Conclusions 

Service robots are coming to stay. They pose a whole range of challenges not only to 

techno-scientific research, as outlined throughout this paper, but also to the humanities, 

since they raise some intriguing moral dilemmas that are nowadays the subject of heated 

controversies.  

Concerning future research, besides the expected incremental advances in human-robot 

interaction, safety, manipulation of soft materials, adaptivity and learning, we foresee 

that robot self-knowledge will be a key ingredient to significantly increase robot 

autonomy in the years to come. Several degrees of self-knowledge could be 

distinguished progressively enabling more complex functionalities. The simplest body 

schema consisting of a parameterized kinematic/dynamic model has already been 

incorporated into robots through sensorimotor learning. More elaborate self-models 

would include a body image precisely delimiting the robot boundaries acquired through 

exploratory actions, leading to the distinction between a body self and others. This 

would allow robots to construct a model of their own physical/cognitive abilities which, 

for instance, could allow them to ask for help whenever a task goes beyond their 

capabilities or either to explore new actions
43,44

 and try to acquire the required skills if 

no helper is around. 

Developments in this direction will surely lead to more versatile, highly-performing 

robots, but in turn will bring about new issues and, in particular, intensify the debate on 

whether robots should be given more autonomy and decision making abilities, 

especially in critical contexts such as the military
45

. 

In sum, service robots constitute an amazing application that is fostering robotics 

research, while at the same time they pose decisive questions that are triggering an 

exciting social and ethical debate. 
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