
Chromatic Shadows Detection and Tracking

for Moving Foreground Segmentation

Ivan Huertaa,b, Michael B. Holtec, Thomas B. Moeslundc, Jordi Gonzàlezd
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Abstract

Advanced segmentation techniques in the surveillance domain deal with
shadows to avoid distortions when detecting moving objects. Most ap-
proaches for shadow detection are still typically restricted to penumbra shad-
ows and cannot cope well with umbra shadows. Consequently, umbra shadow
regions are usually detected as part of moving objects, thus affecting the per-
formance of the final detection. In this paper we address the detection of both
penumbra and umbra shadow regions. First, a novel bottom-up approach is
presented based on gradient and colour models, which successfully discrimi-
nates between chromatic moving cast shadow regions and those regions de-
tected as moving objects. In essence, those regions corresponding to potential
shadows are detected based on edge partitioning and colour statistics. Subse-
quently (i) temporal similarities between textures and (ii) spatial similarities
between chrominance angle and brightness distortions are analysed for each
potential shadow region for detecting the umbra shadow regions. Our second
contribution refines even further the segmentation results: a tracking-based
top-down approach increases the performance of our bottom-up chromatic
shadow detection algorithm by properly correcting non-detected shadows.
To do so, a combination of motion filters in a data association framework
exploits the temporal consistency between objects and shadows to increase
the shadow detection rate. Experimental results exceed current state-of-the-
art in shadow accuracy for multiple well-known surveillance image databases
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which contain different shadowed materials and illumination conditions.
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Detecting moving objects, Chromatic shadow detection, Temporal local
gradient, Spatial and Temporal brightness and angle distortions, Shadow
tracking.

1. Introduction

A fundamental problem for all automatic video surveillance systems is de-
tecting objects of interest in a given scene [1]. A commonly used technique
for segmentation of moving objects is background subtraction [2, 3]. De-
tection of moving regions (i.e., the foreground) is achieved by comparing the
current image from a reference background image in a pixel-by-pixel manner.
There have been many segmentation problems already tackled in the litera-
ture related to motion segmentation [4], such as bootstrapping [5, 6], chang-
ing background [7, 8, 9] and sudden illumination changes [10], to cite but
a few, but one of the critical challenges is still shadow detection. Although
this issue has been widely studied in [11, 12, 13], shadow segmentation is still
far from being solved. The focus of this paper is to cope with the shadows
problem.

Shadows can be divided into two categories: static and dynamic (moving)
shadows. Static shadows occur due to static background objects (e.g., trees,
buildings, parked cars, etc.) blocking the illumination from a light source.
Static shadows can be successfully incorporated into the background model
thus being properly detected. However, the impact of dynamic shadows is
critical for foreground segmentation, since objects can be merged or hidden
by other objects, and both their size and shape can be distorted. This results
in a reduction of the performance of foreground detection approaches applied
in scene monitoring, object recognition, target tracking and people counting.

Dynamic shadows are more problematic, since they are due to the moving
objects (e.g., people, vehicles, etc.). Dynamic shadows can take any size and
shape, and can be penumbra (soft) or umbra (hard) shadows. Penumbra
shadows exhibit low values of intensity but similar chromaticity values w.r.t.
the background. Umbra shadows can exhibit different chromaticity than
the background, and their intensity values can be similar to those of any new
object appearing in a scene. When the chromaticity of umbra shadows differs
enough from the chromaticity of the global scene illumination, we define this
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as chromatic shadow. Consequently, umbra shadows are significantly more
difficult to detect, and therefore usually detected as a part of moving objects
by current state-of-the-art approaches.

This paper presents an approach which successfully detects umbra and
penumbra shadows. First a bottom-up approach for detection and removal
of chromatic moving shadows in surveillance scenarios is presented based on
our previous work [14]. We apply a multi-stage approach combining multiple
cues, namely colour, gradient information, and shadow statistics. Secondly,
a top-down architecture based on a tracking system is proposed to enhance
the chromatic shadow detection presented in [14]. This step is required since
shadows can be lost for a number of frames due to camouflage. In these
cases the use of motion filters allows our proposed system to track shadows,
thus improving the accuracy and robustness of the final foreground detection
performance. Experimental results show that applying the top-down shadow
tracking, the shadow detection rate is improved by approximately 13%.

Secondly, a top-down architecture based on a tracking system is proposed
to enhance the chromatic shadow detection, where motion filters are used for
tracking. This step is required since shadows can be lost for a number of
frames due to camouflage, so in these cases the use of basic motion filters
allows our proposed system to track shadows thus improving the accuracy
and robustness of the final foreground detection performance.

The remainder of the paper is organised as follows. Next section reviews
the field in shadow detection and tracking, along with our contributions to
this subject. In section 3, the theoretical concept of our approach is outlined.
The algorithm for foreground segmentation, along with the detection and
removal of chromatic moving shadows are described in section 4. The top-
down process used to enhance the shadow detection is described in section 5.
Finally, we present experimental results in section 6 and concluding remarks
in section 7.

2. Related Methodology

Shadow detection is a major field of research within computer vision.
Even though many algorithms have been proposed [11, 12, 13], the prob-
lem of detection and removal of shadows in complex environments is still
far from being completely solved. A common direction in the research is to
assume that shadows decrease the luminance of an image, while the chromi-
nance stays relatively unchanged [15, 16]. However, this is not the case in
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many scenarios, e.g., in outdoor scenes. Other approaches apply geometri-
cal information. Onoguchi [17] uses two cameras to eliminate the shadows
of pedestrians based on object height, where objects and shadows must be
visible to both cameras. Ivanov et al. [18] apply a disparity model, which is
invariant to arbitrarily rapid changes in illumination, for modelling the back-
ground. However, to overcome rapid changes in illumination at least three
cameras are required. In [19], Salvador et al. exploit the fact that a shadow
darkens the surfaces on which it is cast, to identify an initial set of shadowed
pixels. This set is then pruned by using colour invariance and geometric
properties of shadows. Hsieh et al. [20] first separate the objects of inter-
est and assume that the objects and their shadow have different orientation.
Then, several features like orientation, mean intensity and center position of
a shadow region are used to parametrize a shadow model. It should be noted
that most of the approaches which apply geometrical information requires
shadows to be cast on a flat plane, and give strong assumptions that need to
be fulfilled.

Another popular approach is to exploit colour differences between shadow
and background in different colour spaces. In [21], Cucchiara et al. consider
the hypothesis that shadows reduce surface brightness and saturation while
maintaining the hue properties in the HSV colour space. Liu et al. [22]
propose another approach working in the HSV colour space, which combines
local and global features for shadow removal. Schreer et al. [23, 24] adopt
the YUV colour space, while Horprasert et al. [25], Kim et al. [16] and
[26] build a model in the RGB colour space to express normalised luminance
variation and chromaticity distortions. However, these methods require il-
lumination sources to be white, and assume shadow and non-shadow have
similar chrominance.

Several authors use textures to obtain a segmentation without shadows.
The idea is that the structure of the texture/gradients/edges of regions lit by
shadow are unchanged. Leone et al. [27] propose a texture-based approach
using a preliminary procedure in order to evaluate the photometric informa-
tion for all pixels marked as foreground. This process shows how much darker
the segmented regions are with respect to the background model. Next, tex-
ture analysis is performed by projecting the neighbourhood of pixels onto a
set of Gabor functions. Another algorithm for detection of moving cast shad-
ows, based on a local texture descriptor called Scale Invariant Local Ternary
Pattern (SILTP), is presented by Qin et al. [28]. Zhang et al. [29] use ratio
edges to detect and locate where the shadows are, and in Chen et al. [30]
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HOG descriptors of shadows are learned using SVMs to locate shadow re-
gions. Sanin et al. [31] propose a method similar to Huerta et al.[14] where
gradient magnitude and gradient orientation are used to detect shadows, but
based on the gradient direction correlation. However, this paper [31] does
not take into account cases where there are no texture/gradient in the bac-
ground model. Whereas, Heikkila et al. [32] apply Local Binary Patterns. It
still fails to detect umbra shadows.

To overcome these shortcomings, a number of approaches apply colour
constancy methods, combine different techniques or use multi-stage approaches.
In addition to scene brightness properties, Stauder et al. [33] extract edge
width information to differentiate penumbra regions from the background.
In [34], Finlayson et al. use shadow edges along with illuminant invariant
(intrinsic) images to recover full colour shadow-free images, and in [35] the
authors propose an entropy-based approach. Even so, a part of the colour
information is lost in removing the effect of the scene illumination at each
pixel in the image. Weiss [36] computes the reflectance edges of the scene to
obtain an intrinsic image without shadows. However, this approach requires
significant changes in the scene, and the reflectance image also contains the
scene illumination. Huang et al. [37] adopt a bi-illuminant model and ap-
ply a Gaussian Mixtures Model (GMM) and confidence-rated learning, while
Martel et al. introduce a parametric approach based on Gaussian mixtures
(GMSM) [38]. Additionally, they propose a nonparametric framework based
on the physical properties of light sources and surfaces, and apply spatial
gradient information to reinforce the learning of the model parameters [39].
Nadimi et al. [40] propose a multi-stage approach for outdoor scenes, which
is based on a spatio-temporal albedo test and dichromatic reflection model.
Finally, a number of authors have introduced methods for shadow removal
using only one single image [41, 42, 43, 44, 45, 46], however, the focus of
this work is shadow detection and removal in video sequences. Comparative
studies of shadow detection techniques can be found in [11, 47].

Exploiting temporal information for shadow detection has been rarely
used. Liu et al. [22] use temporal information in order to avoid misclas-
sifying the object under segmentation as shadow. To solve this, a nearest
neighbour match method is used to track the object by checking if it is a
foreground object in the previous frames. However, the authors only use
tracking to recover miss-detected objects and thus loose the shadow infor-
mation. In our case, we take advantage of this information to track shadows,
resulting in both improved object and shadow detection. In the previous
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papers, when a shadow has successfully been detected it is usually removed
instantly, since only the object is of interest for further processing and not
the shadow. As a result, the shadow information is lost. Our idea is to use
this information to improve other aspects of object and shadow detection
and tracking. Specifically, if a detected shadow is tracked over time instead
of being discarded, it could be used to improve the shadow detection and
possibly the object detection and tracking as well.

Summarizing the contributions of this paper compared with the reviewed
literature: (i) a shadow detection technique is designed to cope with chro-
matic moving cast shadows, by grouping potential shadow regions and consid-
ering the bluish effect, edge partitioning, temporal similarities between local
gradient, and spatial similarities between chrominance angle and brightness
distortions; (ii) both objects and shadows are tracked, thereby establish-
ing data association between them. We use the mutual information and
data association of both object and its shadow for improving the robustness
of the detection by recovering misdetected shadows due to shadow camou-
flages. Consequently, foreground detection does not take into account nei-
ther penumbra and umbra shadows, thus improving current state-of-the-art
performance without any assumption about camera location, surface geome-
tries, surface textures, shapes and types of shadows, objects and background
properties.

3. Analysis of Shadow Properties

The colour information ρ at a given pixel a obtained from a recording
camera supposing Lambertian surfaces depends on four components: the
Spectral Power Distribution (SPD) of the illuminant denoted E(λ), the sur-
face reflectance R(λ), the sensor spectral sensitivity Q(λ) evaluated at each
pixel a and a shading factor σ.

ρa = σ

∫
E(λ)R(λ)Qa(λ)dλ (1)

The surface reflectance R(λ) depends on the material, i.e., materials have
different response to the same illumination.

3.1. The bluish effect

In outdoor scenes, the environment is mainly illuminated by two light
sources: a point light source (the sun) and a diffuse source (the sky) with
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Figure 1: A sketch of the four main cases (c1 to c4: blue ellipses) and two anomalies (c1-2
and c2-2: red ellipses) that can occur, when performing foreground segmentation with the
influence of shadows, using the temporal local gradients. The ellipses represent detection
of potential chromatic shadows. They are grouped by considering an intensity reduction,
the bluish effect and an edge partition.

different SPD E(λ). Besides a reduction in the intensity, an outdoor cast
shadow results in a change of the chrominance. The illumination of the sky
has higher power components in the lower wavelengths λ (450 - 495 nm) of the
visible spectrum, and it is therefore assumed bluish as argued in [40]. When
the direct illumination of the sun is blocked and a region is only illuminated
by the diffuse ambient light of the sky, materials appears to be more bluish.

3.2. Temporal local gradient information

By applying gradient information we can obtain knowledge about object
boundaries, and thereby improve the foreground segmentation. Addition-
ally, the gradient provides textural information about both the background
and foreground image. Although shadows result in a intensity reduction of
the illumination, and the texture of a given object or the background has
lower gradient magnitude, the structure remains the same, i.e., the gradient
orientation is unchanged.

3.3. Shadow scenario and solutions

When performing foreground segmentation with the influence of shadows,
and taking the temporal local gradients into account, four main cases can
occur as illustrated in Fig. 1. The ellipses represent detection of potential
chromatic shadows. They are grouped by considering an intensity reduction,
the bluish effect and an edge partition.

Case1 : Similar local gradient structures are present in the background
model and in the current image. By examining similarities between
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the local gradients, and the fact that there is no foreground object in
the current image, potential shadows can be detected and identified as
shadow regions (case1-1 ). However, if a foreground object is present,
it can be misclassified as shadow if the gradients of the background
and the foreground region considered as possible shadow are similar
(case1-2 ).

Case2 : There are no available local gradients in the background model
nor in the current image. Since, the change in illumination of all the
potential shadow regions has to be similar, temporal and spatial sim-
ilarities between chrominance angle and brightness distortions within
the potential regions are analysed to detect chromatic shadows (case2-
1 ). However, a foreground object can be misclassified as shadow if the
foreground object has no gradients, and the chrominance angle distor-
tion is similar among the pixels in the region of the object (case2-2 ).

Case3 : Local gradient structure is present in the background model but
not in the current image. If there is no gradient in the current image
but in the Bg. model there is, there must be a new foreground object
in the current image. So, by examining similarities between temporal
gradients, the potential shadow will be considered a foreground object.

Case4 : Local gradient structure is present in the current image but not
in the background model. Therefore, there must be a new foreground
object in the current image. In this case, the gradients in the current
image are employed for object detection. Hence, there is no need to
analyse the potential region further.

The described characteristics are not sufficient to address the anomalies
in case1-2 and case2-2. Therefore, we make further assumptions and apply
some additional steps, which are explained next.

4. Bottom-Up Chromatic Shadow Detection

Our approach, depicted in Fig. 2 is a multi-stage approach. The first
three stages (4.1, 4.2 and 4.3) remove the pixels which cannot be shadow.
The fourth step (4.4) divides the regions of potential shadows. Chromatic
shadow detection is performed in stage 5 (4.5) and 6 (4.6) based on gradients
and chrominance angles, respectively. In stage 7 (4.7) the edges belonging to
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Figure 2: A schematic overview of the chromatic shadow detection approach.

the shadows deleted in stage 4 (4.4) are considered shadows again. The last
step (4.8) avoids foreground regions being erroneously detected as chromatic
shadows. An example is given in Fig. 3.

4.1. Moving foreground segmentation

In this stage, foreground objects, shadows and some erroneous pixels are
segmented. In order to achieve moving foreground segmentation, a hybrid
approach presented in [48], which fuses invariant colour and gradient models,
is used (please refer to [48] for further details). This approach can cope with
several motion segmentation challenges, e.g., illumination changes, achro-
matic shadows, since it is based on a chromatic colour model [25]. Note that
any other algorithm can also be used to generate this mask [4, 5, 6, 7, 8, 9, 10],
however, the method proposed in [48] has been selected, since it is able to
avoid achromatic shadows by fusion of different cues (chromatic, colour cone
and gradient models). Additionally, the colour and gradient models presented
in [48] are used for the next steps of our chromatic shadow detection, which
requires the use of the gradient model in order to create the edge masks.

After this initial detection, moving foreground objects, chromatic shad-
ows and some isolated pixels are represented by a binary mask named M1.
Furthermore, a mask is created using the gradient model in [48] and divided
into three masks (Edneg, Edpos, and Edcom), which are used for the next
steps. The Edneg mask contains the edges from the background model which
are occluded by the foreground object. The Edpos mask contains the edges
of the foreground object for the current image, which are not in the back-
ground model. The Edcom mask contains the edges that are shared between
the foreground object and the edges occluded in the background model for
the current image.
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Figure 3: An example of chromatic shadow detection. The numbers added to the image
captions correspond to the respective sub-sections in section 4.

4.2. Shadow intensity reduction

In this step the M1 mask is reduced to avoid pixels which cannot be
shadows. A foreground pixel cannot be a shadowed pixel if it has a higher
intensity than the background model. Hence, a new mask M2 is created
according to equation 2.

M2a,t = M1a,t ∧ (IRa,t < µR
a ) ∧ (IGa,t < µG

a ) ∧ (IBa,t < µB
a ) (2)

where I corresponds to the image, a to a pixel position, and µ is the median
value for the RGB pixel of the background model.

4.3. The bluish effect

The effect of illuminants, which are different than white lights, provokes
chromaticity changes, since the intensity varies differently for each color chan-
nel. In outdoor sequences the main illuminants are the sky and the sun (nei-
ther of them white illuminant). The sky is the only source of illumination on
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shadowed regions, and it is assumed to be bluish, as argued in [40]. There-
fore, the intensity changes in the red and green channels are larger than in
the blue channel. This knowledge is used to reduce the potential shadow
region detected in the previous step:

M3a,t = M2a,t ∧ (IRa,t − µR
a ) > (IBa,t − µB

a ) ∧ (IGa,t − µG
a ) > (IBa,t − µB

a ) (3)

where a corresponds to a pixel position. Obviously, the bluish effect cannot
be applied for indoor sequences, however the entire approach can be applied
without this mask for indoor sequences as it has shown in the experimental
results with the Hallway sequence.

4.4. Potential chromatic shadow regions

It is assumed that shadow regions have similar intensity changes for each
channel, since the illuminant is the same. However, different surfaces have
different reflectance characteristics, hence, the intensity change depends on
the surface material. Therefore, we apply edges to describe region borders.
Specifically, we build a new mask M4 using the foreground edges detected
in the current image (Edpos) to separate the potential shadow regions from
the moving foreground objects:

M4a,t = M3a,t ∧ ¬Edposa,t (4)

The ¬ symbol before Edpos in equation 4 means negation. M3 contains the
foreground blobs after being corrected by the shadow intensity and the bluish
effect, and Edpos contains only the edges of foreground objects in the current
image, not the edges of the background model. Since shadow regions do not
contain any edges which are not in the background model, we use the Edpos
mask to divide the foreground blobs into smaller regions, and to evaluate if
these regions are shadows or not. Consequently, based on Edpos, the holes in
M3 will not correspond to shadows. A minimum area morphology is applied
to avoid smaller regions, which do not contain enough information for the
subsequent steps of the shadow analysis.

4.5. Chromatic shadow gradient detection

Next, the temporal gradients of the regions in M4 are analysed to identify
which case of the theoretical shadow analysis (see section 3) each of the re-
gions complies with. A region will be considered a shadow if it complies with
case 1. The negative foreground edges (Edneg) of the region are compared
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to the common foreground edges (Edcom) to check if the region is a shadow
and avoid the anomaly case 1-2.

Txb =

1 if

( ∑
a∈Rb

(Rb,a∧Ednega)

|Rb∧Edtot| · kn <
∑

a∈Rb

(Rb,a∧Edcoma)

|Rb∧Edtot|

)
0 otherwise

(5)

where a is the pixel position; Rb is the evaluated region and b is the number of
the region; |Rb| denotes the number of pixels of region b; |Rb∧Edtot| denotes
the number of pixels representing the edges detected in the background model
and the current image; kn corresponds to a confidence region, set at 1.5
for all the different sequences in the experimental results, which is equal to
the probability that the region belongs to a shadow or a foreground object
based on the local gradients of the image. Note that Txb is not a mask,
but a boolean expression that will be 1 if the region Rb is a shadow, and 0
otherwise. If the region is not a shadow, the evaluation will be performed by
the chromatic shadow angle and brightness detection in the next stage (4.6).

4.6. Chromatic shadow angle and brightness detection

In this step temporal and spatial similarities of the chrominance angle and
brightness distortion for all pixels belonging to regions which have so far not
been classified as shadow, are analysed. A region will be considered a shadow
if it complies with case 2. The only regions analysed in this stage are those
without gradients, neither in the background model nor in the current image.
If the pixels do not have a significant gradient, but have similar chrominance
angle distortion and similar brightness distortion, the region is classified as
shadow.

ABdb =



1 if

((( ∑
a∈Rb

(Rb,a∧Ednega)

|Rb∧Edtot| ∧

∑
a∈Rb

(Rb,a∧Edcoma)

|Rb∧Edtot|

)
= 0

)

∨

( ∑
a∈Rb

(Rb,a∧Edtota)

|Rb| < kt

))
∧ (σ(Rb ∧ ᾰ) < ka) ∧

(
σ(Rb ∧ β̆) < kb

)
0 otherwise
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where σ is the standard deviation of ᾰ and β̆ which are the chrominance angle
and brightness normalised distortions calculated for each pixel in the region
Rb, respectively; kt is a confidence region to avoid noise gradients; ka and
kb are minimum thresholds used to determine if the angle and brightness
distortion are similar among the pixels of the evaluated region. From the
experiments of different sequences, a stable detection has been achieved using
the following range of values: ka = [3-7], kb=35, and kt = 0.1 so if more than
10% of the pixels are considered edges then it cannot be noise.

4.7. Chromatic shadow edge removal

Pixels of the potential shadow regions, which were neglected in section
4.4, since they were part of the Edpos mask, are included again in the new
set of shadow regions.

4.8. Shadow position verification

A moving cast shadow is always caused by a moving foreground object.
Therefore, in this section it is ascertained if a detected shadow has an asso-
ciated foreground object, in order to avoid the anomaly in case 2-2. Only
shadows detected in the chrominance angle and brightness distortion analysis
(section 4.6) will be tested. During a training period T2, the angles between
the detected shadows and the foreground objects are calculated. The train-
ing period T2 is used to learn the initial position of shadows. In the first
frames of a shadow detection, the angle between the detected shadow and
the foreground object is calculated based on the shadows detected in stage
(4.5). In order to guarantee that these angles will be consistent with the
illumination changes during long periods of time, the angle is updated using
a first order recursive filter. Hereafter, the most probable angle obtained in
the training period is used to discard detected shadows, which do not have
any foreground object in its direction.

5. Top-Down Shadow Tracking

When a shadow has successfully been detected it is usually removed, since
only the Fg. object is interesting for further processing. As a result, the
shadow information is lost. Our idea is to use this information a posteriori,
in order to improve the shadow detection when it fails (e.g., due to camouflage
problems). Specifically, if a detected shadow is tracked over time instead of
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Figure 4: A schematic overview of the top-down shadow tracking process to enhance the
chromatic shadow detection.

being discarded, it can be used to recover misdetected shadows, and hereby
improve shadow detection.

In this section a top-down approach is applied to enhance the chromatic
shadow detection using a Kalman Filter (KF) based tracking. We choose a
basic Kalman filter because we are interested in showing how the temporal
consistence in the data association step used in tracking can be exploited to
improve shadow detection. However, our proposed method can be applied
to other different (non-linear) tracking methods. Hence, Extended Kalman
filter or Unscented Kalman filter which are non-linear could be perfectly used
with almost no modification of the proposed method.

Fig. 4 shows an overview of the top-down tracking process. First, the
tracking module tracks objects and shadows through the scene. As input,
the tracking module receives a binary mask from the object and shadow
detection described in the previous section. The standard tracker and Prob-
abilistic Appearance Models (PAMs) are explained in sections 5.1, and 5.2,
respectively. The output of the tracker is a list of tracks for each object and
shadow, and their mutual association. Secondly, in section 5.3 the associ-
ation between foreground objects (FG) and shadows (SH) is described and
updated for the Kalman filters (KFs). Thirdly (sec. 5.4), temporal consis-
tency is investigated in the association between FG and SH blobs, and their
assigned KFs, in order to identify possible lost shadows. Once the shadows
are detected and tracked, the information is used as feedback for the chro-
matic shadow detection to recover misdetected shadows in the original image
(sec. 5.5). Finally, the KF and the PAM are updated by taking the infor-
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Figure 5: An example of the top-down tracking process. The figure illustrates the steps,
within the tracking and motion segmentation, applied to enhance the shadow detection
when a shadow is lost. See the main body text for further details.

mation from the new data association into account, and used for tracking in
the next frames (sec. 5.6). An example of the entire process can be seen in
the Fig. 5.

5.1. Tracking using Kalman filters

The detected foreground objects and shadows are tracked using first order
Kalman filters. The tracking and data association are based on a number of
estimated parameters for the detected objects and shadows:

• The centroid of an ellipse fitting.

• The major and minor axis length of the ellipse.

• The probabilistic Appearance Model.

Each track is associated with these parameters, and a standard Kalman
filter is used to predict the object’s location using a first order motion
model. Hence, the target state is defined by xt = (posxt, posyt, velxt, velyt,
majt,mint, θt), which establishes a state vector for every observation, and
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adds the target speed and the size deformation rate at time t. Where posxt
and posyt define the position (the centroid of the ellipse); velxt and velyt
are velocity components; majt and mint are the major and minor axis of
the ellipse, respectively; and θt is the orientation. The KFs are initialised
based on the detected foreground and shadow blobs, and the uncertainties
are empirically estimated according to the precision of the detector. The
foreground blobs extracted and classified as object or shadow (see section 4),
are associated with a list of possible Kalman filters using a modification of
the stable marriage algorithm [49], similar to the tracking system presented
in [50], see them for details.

5.2. Probabilistic appearance models

Probabilistic appearance models inspired by [50] are applied for data as-
sociation and to solve inter-object occlusion. Each track has its own PAM,
which consists of an RGB colour model with an associated probability mask.
The colour model, which is denoted MRGB(x), shows the appearance of each
pixel of an object. Pc(x) denotes the probability mask and represents the
probability of the object being observed at that pixel. The use of PAMs can
be viewed as weighted template matching, where the template is MRGB(x)
and the weights are given by Pc(x). The coordinates of x are expressed us-
ing the coordinate system of the model, which is normalized to the object
centroid. For each new track, a new PAM is created. In the object match
situation, a track refinement step is applied before updating the model by
finding the best fit in a small neighbourhood, e.g. 5 × 5 pixels. Track re-
finement increases the accuracy of the model; especially the colour model
becomes sharper. Detail on building the model can be found in [50].

5.3. Object-shadow association

After the blobs (belonging to a FG or a SH) have been assigned to the
KF, the association between which shadow belongs to which FG and vice
versa is saved in the KF info for use in the next frames. This information is
used to identify the possible cases in the association between FG and SH. An
example showing the data association between the blobs and the KFs, and
how the data association between FG and SH is saved in the KF info, can be
seen in Fig. 6. The first image of Fig. 6 represents the FG detection provided
in section 4.1. The second image shows the shadow detection presented in
previous section 4, and how the FG segmentation is further analysed and
divided into FG and SH blobs. These blobs are associated, since both are
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Figure 6: An example of the data association between FG, SH and the assigned KFs. The
first image represents the FG detection. The second image shows the shadow detection,
and how the analysed FG is divided into FG and SH blobs. In the third image the tracker
has assigned one KF to each blob.

part of the same FG object. In the third image the tracking system has
assigned one KF to each blob, and the data association between the FG and
the SH blobs is saved in the KF info.

5.4. Temporal consistency in the data association

The information related to the association between FG and SH saved in
the KF is analysed to check the possible data association cases, e.g., if a
shadow has been lost.

When testing for temporal consistency in the data association between
FG and SH with their respective KF, three main situations can occur:

• FG and SH match:
The association created at time t-1 continues at time t, which is the
ideal case.

• New shadow: FG/SH splitting.
A new association between the FG and SH is created at time t. Tem-
poral association of a splitting shadows is applied to avoid misdetected
shadows in posterior frames.

• Lost shadow: FG-SH merging.
The association between the FG and SH at time t-1 is lost at time t,
since the shadow is misdetected (Fig. 5).

The three cases are illustrated in Fig. 7. It is possible that a new shadow
appears or a shadow is lost without merging of the FG object. However,
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Figure 7: The three possible data association situations between FG, SH and their KFs.
A rounded rectangle illustrates an original FG blob before shadow detection, a circle
illustrates a FG and a square illustrates a SH from the shadow detection. A double
red arrow indicates an association between FG and SH, and a black arrow indicates an
association between FG and SH in the next frame.

these cases are not of interest, since they do not have any FG-SH association,
hence, they will be tracked in the usual manner by the KFs.

The shadow region can be recovered by evaluating the FG blob (which
contains the merged FG and SH), the blob prediction for the FG KF, and
the blob prediction for the lost SH KF. The next subsections explains the
recovery process for the lost shadow case and an example of the entire process
is shown in Fig. 5.

5.4.1. Recovering lost shadows

The FG blob which belongs to the FG KF, associated in the previous
frame with the shadow considered lost, is analysed in order to recover the
possible shadow region. To do so, the mask of the positives edges (Edpos
mask) plus morphological operators are applied, to divide the FG blob into
FGs and possible shadow regions. Multiple regions can be found but theo-
retically only one is the shadow. This happens because the positive edges are
used to divide the image, and these edges come from the current image. As
explained in sec. 3, one of the characteristics of shadows is that they can only
have negative edges, i.e., the edges from the background image. Therefore,
theoretically several FG regions can be found but only one SH region. Fig. 5
shows how the original FG blob, detected as described in section 4, is subdi-
vided into possible chromatic shadow regions using the Edpos mask (image
Chr.Sh.Regions in the figure; the regions in the image are shown in differ-
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ent colours). In the following, the new divided blobs from the regions are
associated with the predictions of the KFs to recover the chromatic shadows.

5.4.2. Correspondence matrix for the new divided blobs

The weights of the blob prediction for the FG KF and the SH KF are
calculated w.r.t. all possible regions found in the previous step. Therefore,
two correspondence matrix are computed, where one contains the euclidean
distance between the new blobs and the FG and SH KF predictions, and the
other the overlapping (matching) between the new blobs and the FG and SH
KF predictions. Next, these weights are applied to associate the SH and FG
KF predictions with the blobs.

5.4.3. Association between KF predictions and the new blobs

The best match (shortest distance and best overlap) between the SH KF
predictions and the blob will be considered as the shadow region, while the
other blobs will be considered as FG blobs, since only one region can be
shadow. Hence, the other blobs have to be FGs. In this way, by using
the tracking information, the original FG blob can be segmented into FG
and SH regions, and thereby recover misdetected chromatic shadows. This
information is used as a feedback from the tracking to the shadow detection
step. Fig. 5 shows how the blobs extracted from the divided regions are
associated with the predictions of the KFs to detect the chromatic shadow.

5.5. Feedback to the chromatic shadow detection

Once the chromatic shadows are detected, the original image (original FG
blob) is divided into one blob for the FGs and one blob for the SHs, using
the information from the positive edges and the shadow tracking. Hence,
the FG blob will be associated with the FG KF and the SH blob will be
associated with the lost SH KF. Next, the original image is updated, so the
misdetected chromatic shadows are now marked as detected. Fig. 5 shows
how the detected chromatic shadow is updated according to the original blob
after the feedback from the shadow tracking.

5.6. Managing and updating KFs and PAMs

Finally, the information related to the new associations between the FG
and SH blobs, and their respective KFs must be updated. Additionally, the
KFs must be updated with the new associated blobs, and the PAMs must
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Figure 8: Moving foreground segmentation images; mask M1 in sec. 4.1from [48] copes
with achromatic shadows as it can be seen in ATON Intelligentroom, ATON Campus,
ATON Laboratory, CAVIAR, and NEMESIS database images (from left to right), because
these databases does not present chromatic shadows. See text for details.

be updated considering the new blobs. It is possible that a new KF is erro-
neously created because one object together with its shadow were considered
a new object. Therefore, the new KFs created in the data association be-
tween the blobs and the KFs must be checked. Any unused KFs, which were
assigned to blobs considered as lost shadows, are deleted. In Fig. 5 also can
be seen the output of the tracker with and without our Top-down approach
(the last two images at the left called “Tracker End”). Top-down Tracker
End image shows how the system recovers the detected chromatic shadows,
hence the FG KF and SH KF are correctly updated. On the other hand, the
image of the tracker without Top-down approach shows how the FG and SH
KF are lost, and a new wrong KF is created.

Consequently, due to the data association between FG and SH we have
achieved: (i) an enhancement of the chromatic shadow detection by recov-
ering misdetecting shadows, which were incorrectly detected by the shadow
detector (sec. 4). (ii) An improvement of the segmentation for high level
processes, such as detection and tracking, by avoiding shadows. (iii) A more
robust tracking by exploiting FG and SH association.

6. Experimental Results

The results presented in this section are from tests conducted on datasets
selected from well-known databases. Our approach is tested on sequences of
outdoor and indoor scenarios, and compared to other statistical approaches
when results are available. The test sequences are relatively long and umbra
and penumbra shadows are cast by multiple foreground objects. We have con-
sidered two different types of databases. On one hand, shadows datasets like
ATON Intelligentroom, ATON Campus, ATON Laboratory, CAVIAR, and
NEMESIS do not exhibit chromatic shadows as it is stated in [14, 13, 51].
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(a) (b) (c) (d)

Figure 9: (a) An original image from the Outdoor Cam1 sequence, and foreground results
after shadow removal using (b) Huerta et al. approach [48], (c) Zivkovic et al. approach
[5] using a shadow detector [15] and (d) using only our bottom-up approach.

(a) (b) (c) (d) (e) (f)

Figure 10: (a) Original images from the HallwayI and HighwayIII sequences, and fore-
ground results after shadow removal using (b) [48], (c) [16], (d) [5] with a shadow detector
[15], (e) [39] and (f) using only our bottom-up approach.

In these scenarios, the moving foreground segmentation presented in sec-
tion 4.1 already copes well with such shadows, as already demonstrated in
[48]. See Fig. 8 for a selected frames. On the other hand, we have consid-
ered another datasets like Outdoor Cam1 (800 frames, 607x387 pixels), Hig-
wayIII1 (2227 frames, 320x240 pixels), HallwayI2 (1800 frames, 320x240 pix-
els), HERMES ETSEentrance (6500 frames, 640x480 pixels), CDW14 Bun-
galows2 (1700 frames, 360x240 pixels), and CDW14 PeopleInShade (1199
frames, 380x244 pixels) which do exhibit chromatic shadows, and for which
the whole proposed framework presented here is fully tested, as detailed next.

Figure 9 and Figure 10 show qualitative results when comparing our
shadow detector with state-of-the-art approaches [16, 15, 39, 48]. As shown
in these figures our approach outperforms the other analysed methods.

To evaluate our approach in a quantitative way, a comparison to several

1http://vision.gel.ulaval.ca/~CastShadows/
2http://changedetection.net/
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Sequence HallwayI
Method η ξ

Bottom-up approach 0.836 0.913
Qin et al. [28] 0.823 0.911
Martel-Bri [39] 0.724 0.867
Martel-Bri [38] 0.605 0.870

Table 1: Quantitative results: shadow detection rate (η) and shadow discrimination rate
(ξ) for our bottom-up chromatic shadow detection approach and [28], [39], and [38]. Re-
sults using ground-truth from [38].

other shadow detection approaches is conducted, using the most employed
quantitative expressions utilized to evaluate the shadow detection perfor-
mance: the Shadow Detection Rate (η) and the Shadow Discriminate Rate
(ξ). Please refer to [11] for the exact equations. Table 1 and 2 show the
computed η and ξ values of each test sequence, comparing our Bottom-up
(chromatic shadow detection) approach with other successful methods from
the state of the art. Table 1 shows a comparative with [28, 39, 38] approaches,
η and ξ are from their respective papers and the ground-truth is from [38].
Table 2 shows a comparative with [31, 15, 37, 20, 27] approaches, the code
and ground-truth are from [47].

The results in Table 2 show that our bottom-up method outperforms the
other approaches achieving 0.75 shadow average rate over all the sequences
tested. Furthermore, It gives the highest shadow detection rate average (η)
0.60 and the highest shadow discriminate rate average (ξ) 0.91, in other
words it is the most stable and robust approach of all the methods.

For the HallwayI sequence our bottom-up method outperforms the other
approaches. Sanin et al.’s method [31], which is also based on gradient in-
formation, gives very similar performance, while Qin et al.’s method [28]
produces a similar shadow detection rate but at the cost of a markable re-
duction in the shadow discriminate rate, and Hsieh et al.’s [20] method gives
a very poor performance for this particular sequence because of his geometri-
cal approach. Notice this sequence is an indoor scenario, therefore the bluish
effect mask is not used. Nevertheless, our bottom-up method obtains the
highest values outperforming the other approaches.

For the HighwayIII sequence, our method performs the best when it comes
to the shadow discriminate rate, however Sanin et al.’s method [31] gives a
better shadow detection. This is because our approach needs a minimum
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Method
Sequence Bottom-up [31] [15] [37] [20] [27]

HallwayI
η 0.954 0.952 0.938 0.826 0.487 0.961
ξ 0.933 0.911 0.599 0.718 0.511 0.311

HighwayIII
η 0.478 0.622 0.477 0.439 0.427 0.057
ξ 0.864 0.792 0.285 0.320 0.513 0.802

HERMES ETSE
η 0.586 0.023 0.178 0.068 0.800 0.147
ξ 0.983 0.462 0.549 0.506 0.775 0.634

CDW14 Bun
η 0.362 0.546 0.043 0.149 0.677 0.059
ξ 0.876 0.353 0.464 0.669 0.079 0.448

CDW14 People
η 0.289 0.348 0.078 0.07 0.667 0.368
ξ 0.947 0.926 0.920 0.911 0.116 0.658

Mean
η 0.53 0.50 0.34 0.31 0.61 0.32

ξ 0.92 0.69 0.56 0.62 0.40 0.57

η, ξ 0.73 0.59 0.45 0.47 0.51 0.44

Table 2: Quantitative results: shadow detection rate (η) and shadow discrimination rate
(ξ) for our bottom-up chromatic shadow detection approach and a number of other suc-
cessful methods tested on three challenging video sequences. η, ξ is the total average
of both the shadow detection rate and the shadow discrimination rate. Our bottom-up
approach is the most stable and robust for all the sequences. See text for details.

area for the shadow regions, or there might not be enough information for
a proper shadow detection and classification. Our method produces a lower
detection rate in this sequence because the moving cars are very small when
they are far away from the camera.

For the HERMES ETSEentrance sequence, Sanin et al.’s [31] method
gives a very poor performance, since there is no or very little gradient in-
formation in the background, which is crucial for this solely texture-based
approach. Our method performs the best when it comes to the shadow dis-
criminate rate. However, the approach proposed by Hsieh et al. [20] gives a
better shadow detection. This geometric approach performs very well for this
particular sequence, since the people and shadows have different orientations
and are clearly defined. However, this method usually fails when the objects
and shadows are divided, or there are multiple shadows, or the objects and
the shadows have the same orientation. This can be seen in the lower values
obtained for the other test sequences.

Overall, our multi-stage approach, which takes advantage of known shadow
properties, texture and invariant colour models, and spatial geometry gives
the most robust and stable performance for all indoor and outdoor scenarios.
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(a) (b) (c) (d) (e)

Figure 11: Top-down shadow recovery examples for the HERMES ETSEentrance,
CDW14 bungalows and CDW14 PeopleInShade sequences. (a) foreground detection im-
ages. (b) bottom-up chromatic shadow detection results (shadows are not correctly de-
tected). (c) output of the tracker without applying our top-down approach (SH KFs are
lost and incorrectly updated). (d) output of the tracker using our top-down process (shad-
ows are detected, FG KFs and the SH KFs are correctly updated, and none of them are
lost). (e) final chromatic shadow detection, where pink pixels correspond to shadows.

The top-down process assists the chromatic shadow detector when it fails
to detect shadows, as shown in Figure 11.c. The tracking system is able to
track the shadows, and use this information as feedback to the chromatic
shadow detector. Hence, the misdetected shadows can be recovered and
correctly detected. Figure 11 presents examples of shadow recovery using
our top-down approach for the HERMES ETSEentrance (Fig. 11 first row),
CDW14 bungalows (Fig. 11 second row), and CDW14 PeopleInShade (Fig.
11 third row) sequences. Fig. 11.a shows the foreground detection results
from section 4.1 (mask M1 ). In Fig. 11.b the chromatic shadow detection
results from our bottom-up approach are shown. Note that the shadows are
not correctly detected. Fig. 11.c shows the output of the tracker without
applying our top-down approach. The KFs associated with the shadows
are lost and therefore falsely updated. While Fig. 11.d shows the output
of the tracker, after the chromatic shadows are recovered, using our top-
down process. The shadows are accurately detected, therefore the FG KFs
and the SH KFs are correctly updated, and none of them are lost. The
a posteriori state is depicted with a red ellipse. Finally, Fig. 11.e shows
how the chromatic shadows are accurately detected after feedback from the
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Sequence HERMES ETSE CDW14 Bungalows CDW14 PeopleInSh
Method η ξ η ξ η ξ

Bottom-up 0.586 0.983 0.362 0.876 0.289 0.947
Top-down 0.669 0.975 0.445 0.839 0.527 0.940

Table 3: Quantitative results: shadow detection rate (η) and shadow discrimination rate
(ξ) comparing our bottom-up: chromatic shadow detection with our top-down: shadow
tracking. With our shadow tracking the shadow detection rate has been improved by
approximately 13%.

tracker to the chromatic shadow detector.
To evaluate quantitatively the results of our shadow tracking we have

hand-segmented 1500 frames from the HERMES ETSEentrance sequence 3.
Table 3 shows the results when applying our top-down shadow tracking to the
HERMES ETSEentrance, CDW14 Bungalows and CDW14 PeopleInShade
from HERMES and Changedetection datasets, the shadow detection rate is
improved by approximately 13%, which effectively means that we detect more
shadow regions using shadow tracking. Additionally, the shadow discriminate
rate is pretty stable.

First, a discussion of the limitations of the current approach is presented.
Later, some remarks on the computational complexity and the execution time
for a possible real-time application are discussed. The tracking method em-
ployed is a basic Kalman filter, which is limited in some aspects (linear, not
multi-hypothesis, not able to track multiple objects in crowded scenes). How-
ever, the main goal of the proposed approach is not to cope with advanced
tracking problems, but to show how shadow detection can be improved by ex-
ploiting the temporal consistence of the data association between foreground
objects and shadows. Other more complex trackers, like the ones presented
in [52], could easily be used with slightly changes of the approach, in order
to tackle problems such as multiple occlusions.

In terms of computational complexity, motion segmentation has a cost
that is linear to the number of pixels in the image. The specific implemen-
tation used in the experiments [48] runs at about 3 fps in Matlab. However,

3Original sequence, foreground and shadows hand-segmented ground truth are avail-
able at http://www.cvc.uab.es/~ivanhc/shadows/huertaShaDows.html for compari-
son purposes
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a faster reimplementation or the use of other algorithms [11, 5] can lead to
realtime performance. The shadow detection (bottom-up) part runs at about
28 fps in Matlab. Since the models are already computed from [48], so there
is no need to calculate them again. If another faster motion segmentation
approach is used, then the colour and edge models should be calculated,
which runs at about 6 fps in Matlab. The shadow tracking (top-down) part
runs at around 10 fps in Matlab. The time will increase with the number of
elements to track, but tracking a shadow will have the same computational
cost as tracking a new object.

7. Conclusion

In this paper, we have presented two main contributions for surveillance
analysis: (i) a novel bottom-up approach removes chromatic moving shad-
ows, and (ii) a top-down approach based on motion filters keeps track of
both objects and shadows to handle chromatic shadow misdetections. Un-
like other approaches, our method does not make any a-priori assumptions
about camera location, surface geometries, surface textures, shapes and types
of shadows, objects, and background properties.

The bottom-up algorithm exploits gradient and colour information for
separating chromatic moving shadows from moving objects. Invariant colour
cone and invariant gradient models are used to detect potential shadow re-
gions. Subsequently, these regions are grouped by considering the bluish
effect together with edge partitioning. Lastly, (i) temporal similarities be-
tween local gradient structures and (ii) spatial similarities between chromi-
nance angle and brightness distortions are analysed to finally identify those
umbra shadows. Unfortunately, there are still shadows incorrectly classified,
mainly due to camouflage.

In order to cope with the camouflage problem, the top-down technique
tracks both objects and shadows using basic motion filters. By performing
data association and exploiting the knowledge from mutual information be-
tween object and shadows, we are able to detect more shadows thus improv-
ing the final segmentation performance compared with the state-of-the-art.
Experimental results obtained in well-known outdoor and indoor sequences
demonstrate the advantages of our proposed approach since its performance
is proven to be more robust and accurate compared to current state-of-the-art
techniques.
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