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Abstract

Background: The characterization of proteins in families and subfamilies, at different levels, entails the definition and
use of class labels. When the adscription of a protein to a family is uncertain, or even wrong, this becomes an instance
of what has come to be known as a label noise problem. Label noise has a potentially negative effect on any
quantitative analysis of proteins that depends on label information. This study investigates class C of G
protein-coupled receptors, which are cell membrane proteins of relevance both to biology in general and
pharmacology in particular. Their supervised classification into different known subtypes, based on primary sequence
data, is hampered by label noise. The latter may stem from a combination of expert knowledge limitations and the
lack of a clear correspondence between labels that mostly reflect GPCR functionality and the different representations
of the protein primary sequences.

Results: In this study, we describe a systematic approach, using Support Vector Machine classifiers, to the analysis of
G protein-coupled receptor misclassifications. As a proof of concept, this approach is used to assist the discovery of
labeling quality problems in a curated, publicly accessible database of this type of proteins. We also investigate the
extent to which physico-chemical transformations of the protein sequences reflect G protein-coupled receptor
subtype labeling. The candidate mislabeled cases detected with this approach are externally validated with
phylogenetic trees and against further trusted sources such as the National Center for Biotechnology Information,
Universal Protein Resource, European Bioinformatics Institute and Ensembl Genome Browser information repositories.

Conclusions: In quantitative classification problems, class labels are often by default assumed to be correct. Label
noise, though, is bound to be a pervasive problem in bioinformatics, where labels may be obtained indirectly through
complex, many-step similarity modelling processes. In the case of G protein-coupled receptors, methods capable of
singling out and characterizing those sequences with consistent misclassification behaviour are required to minimize
this problem. A systematic, Support Vector Machine-based method has been proposed in this study for such purpose.
The proposed method enables a filtering approach to the label noise problem and might become a support tool for
database curators in proteomics.
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Background
Proteins have a rich taxonomy of families and subfamilies,
for which the definition and use of class labels is necessary.
The adscription of a protein to a family may be uncertain,
or even wrong, thus becoming an instance of what has
come to be known as a label noise (LN) problem. Label
noise, which is commonplace in many scientific domains
[1], has a potentially negative effect on any quantitative
analysis of proteins that requires the use of label informa-
tion. In fact, there are few domains in which the effects of
LN are so pervasive as in biomedicine and bioinformatics
[2]. The problem of LN may take many forms: from the
human expert subjectivity in the labelling process, which
is difficult to avoid, to bounds on the available information
and communication noise [3].
In medicine, for instance, the reliability of diagnostic

labels is often bounded by the natural limitations of the
specialists’ expertise [4], or even by the formal require-
ments of majority-based decision-making procedures, or
consensus guidelines (for the latter see, for instance,
[5]). In bioinformatics, protein subtype characterization
is a task that is riddled with this problem, despite
good practices in curation of genomic and proteomic
databases [6].
In the specific field of G protein-coupled receptors

(GPCRs), which are the target of the current study, this
problem is magnified by the fact that subtyping can be
performed at up to seven levels of detail [7]. GPCRs
are cell membrane proteins of relevance both to biology,
due to their role in transducing extracellular signals and
regulating signaling pathways, and to the pharmaceuti-
cal industry for being the target for many new thera-
pies, including pathologies related to the cardiovascular,
neural, endocrine, and immune systems, as well as in
cancer [8].
The current study concerns class C of these recep-

tors, which has become an increasingly important target
for new therapies, particularly in various central ner-
vous system disorders such as Alzheimer disease, anx-
iety, drug addiction, epilepsy, pain, Parkinson’s disease
and schizophrenia [9]. Whereas all GPCRs are character-
ized by sharing a common seven transmembrane helices
(7TM) domain, responsible for G protein activation, most
class C GPCRs include, in addition, an extracellular large
domain, the Venus Flytrap (VFT) and a cystein rich
domain (CRD) connecting both [10]. The VFT comprises
two opposing lobes with a cleft where endogenous ligands
bind. Significant synthetic efforts are currently devoted by
academia and pharmaceutical companies to the design of
compounds that, by binding to the 7TM domain, mod-
ulate the function of endogenous ligands allosterically.
This multi-domain structural and functional complex-
ity makes class C GPCRs an atractive target for both
basic and applied (drug discovery) research. It is worth

noting that, although no GPCR allosteric modulators have
yet been approved for psychiatric or neurological disor-
ders, a number of GPCR allosteric modulators including,
particularly, some from class C, are under clinical devel-
opment [11]. Allosteric modulators are of especial interest
in comparison to orthosteric ligands due to their reduced
desensitization, tolerance and side effects as well as higher
selectivity among receptor subtypes and activity depend-
ing on the spatial and temporal presence of endogenous
agonist [11].
Class C has been further subdivided into seven subtypes

[12]: Metabotropic glutamate (mG), Calcium sensing
(CS), GABAB (GB), Vomeronasal (VN), Pheromone (Ph),
Odorant (Od) and Taste (Ta) receptors. mG receptors
are activated by the glutamate amino acid (AA), which is
the major excitatory neurotransmitter in the brain; they
comprise eight subtypes (mGlu1 to mGlu8) in turn sep-
arated into three groups: Group I (mGlu1 and mGlu5),
Group II (mGlu2 and mGlu3) and Group III (mGlu4,
mGlu6, mGlu7 and mGlu8). Group I mGs signal through
Gq whereas Groups II and III signal through Gi/Go
signaling pathways. The mG receptors are involved in
major neurological disorders such as Alzheimer’s and
Parkinson’s diseases, Fragile X syndrome, depression,
schizophrenia, anxiety, and pain [13]. It is noteworthy
that, although development programs related to the mG
drugs Pomaglumetad (Lilly), Mavoglurant (Novartis) and
Basimglurant (Roche) for the treatment of schizophrenia,
Parkinson’s disease and Fragile X syndrome have recently
been discontinued, some of these drugs are still expected
to be beneficial for targeted patient sub-populations with
neurological and psychiatric disorders [14].
The CS receptor is activated by the calcium ion and

plays a key role in the regulation of extracellular calcium
homeostasis. Abnormalities of the extracellular calcium
sensing system lead to a disease exhibiting abnormal
secretion of parathyroid hormone and hypo- or hypercal-
cemia. Cinacalcet is a marketed positive allosteric modu-
lator of the CS receptor that has proved useful for primary
or secondary hyperparathyroidism [9].
The metabotropic GB receptor is activated by GABA, a

neurotransmitter which mediates most inhibitory actions
in the nervous system. From a structural point of view,
the GB receptor distinguishes itself from other class C
GPCRs for its lack of CRD. The GB receptor is involved in
chronic pain, anxiety, depression and addiction. Baclofen
is an orthosteric agonist of the GB receptor that is com-
monly used as a muscle relaxant in multiple sclerosis and
as analgesic. Because of their recognized pharmacological
advantages, a number of positive allosteric modulators of
the GB receptor are currently the goal of programs under
development [9].
The investigation of protein functionality and signalling

mechanisms is often based on the knowledge of crystal
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3-D structures. In eukaryotic cell membrane proteins such
as GPCRs, this knowledge is partial and fairly recent: The
first GPCR crystal 3-D structure was fully-determined in
2000 [15] and only over the last decade, the structures of
some other GPCRs, most belonging to class A, have been
solved [16].
No class C full 3-D structure has yet been solved.

Up until the time of writing, only two transmembrane
(TM) domains and several extracellular domains of class
C GPCRs have been independently determined [17, 18].
This means that, in the absence of tertiary structure infor-
mation, investigations on their functionality from the pri-
mary structure (that is, from the AA sequences), in this
case publicly available from several curated databases, can
be particularly useful.
As mentioned in previous paragraphs, Class C GPCRs

belong to different subtypes, with their corresponding
labels. The occurrence of LN is unavoidable in this context
because the assignment of individual sequences to one of
these subtypes is itself, in most cases, a model-based pro-
cess, which follows a complex many-step procedure that
can only guarantee limited success [19].
GPCR subtype discrimination, as a computer-based

automated classification procedure, may use aligned
(through Multiple Sequence Alignment, or MSA [20]) or
unaligned [21] versions of the sequences. One approach
to sequence alignment-free analysis is the transformation
of the primary sequences according to the physicochem-
ical properties of their constituent AAs. Transformation
methods based on the sequence composition information
result on data feature vectors whose processing entails
comparatively low computational costs. A review of sev-
eral such methods can be found in [22].
Building from preliminary results presented in [23], we

focus our investigation on the classification of data result-
ing from several alignment-free transformations of class C
GPCR sequences, using Support Vector Machines (SVM).
The sequences with the most consistent misclassifica-
tion patterns are further analyzed to discover non-random
LN effects, as a way to explore their possible biological
explanation.
The candidate class C GPCR mislabelings detected

using such approach are further validated through
sequence visualization with phylogenetic trees (PT),
dendrogram-like graphical representations of the evolu-
tionary relationship between taxonomic groups which
share a set of homologous sequence segments [24]. The
visualization of the evolutionary relationship through PTs
helped in this study to confirm the correctness of the
detected persistent mislabelings.
The reported experiments using data from a curated

GPCR database are meant to be the proof of concept for
a systematic approach to assist the discovery of GPCR
database labelling quality problems, which would in turn

become the core of a label filtering decision support sys-
tem [3], a useful tool for database curators in proteomics.
The remainder of the paper is structured as follows: The

next section describes the analyzed class C GPCR data
and the data transformation and classification methods,
including the validation procedure. This is followed by a
report of the experimental results and their discussion.
The study wraps up with some conclusions.

Methods
This section starts with a brief description of the data
analyzed in our experiments, which is followed by an
explanation of the machine learning-based classification
procedure used in their analysis.

Materials
As described in the previous section, GPCRs are cell
membrane proteins with the main role of signal trans-
mission between the intracellular and extracellular spaces.
The GPCRDB is a curated, publicly accessible “molecular-
class information system that collects, combines, validates
and stores [. . . ] data on G protein-coupled receptors” [12].
This database divides theGPCR superfamily into several

major classes, namely A (rhodopsin like), B (secretin like),
C (metabotropic glutamate/pheromone), cAMP recep-
tors, vomeronasal receptors (V1R and V2R) and Taste
receptors T2R, based on the ligand types, functions and
sequence similarities. Also as previously mentioned, the
current study focuses on class C GPCRs.
The primary sequence data analyzed in this study were

extracted fromGPCRDB version 11.3.4, as of March 2011,
and comprise a total of 1,510 class C GPCR sequences,
belonging to the seven aforementioned subtypes (mG, CS,
GB, VN, Ph, Od and Ta), including: 351 mG , 48 CS, 208
GB, 344 VN, 392 Ph, 102 Od and 65 Ta receptors. The
lengths of these sequences varied from 250 to 1,995 AAs.

Methods - alignment-free data transformations
As the AA primary sequences have a variable length, it
is necessary to transform the sequence data to fixed-size
vectors in order to use them with supervised classifiers.
Here, we describe the different transformation methods
applied to the analyzed class C GPCR dataset.
In this study, four different transformations were used,

where we distinguish between those based on theN-gram
representation built on the AA alphabet and those based
on the physicochemical properties of the AAs. The use
of the N-gram representation is common in protein char-
acterization and has been investigated in, for instance,
[25–27]. Here, we use the AAC and Digram methods,
which transform the data according to the frequency of
appearance of N-grams of, in turn, length one and length
two in the sequence. On the other hand, we decided
to use more complex transformations based on the
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physicochemical properties of the AAs and the sequenc-
ing information such as Auto-Cross Covariance (ACC)
[28] and Physicochemical Distance-Based Transforma-
tion (PDBT [22]). Beyond computational convenience, the
use of transformations based on the physico-chemical
properties of the AAs is justified by the fact that, as
stated in [22], “because protein structure and function are
more conserved during evolutionary process, the similar-
ity between two distantly related proteins may lie in the
physicochemical properties of the AAs rather than the
sequence identities”. In the following, we describe each of
the transformations in some detail:

• N-gram representations: These transformations
partially disregard sequential information to reflect
only the relative frequency of appearance of AA
subsequences. In the case of AAC, the frequencies of
appearance of the 20 AAs (1-gram) are calculated for
each sequence (i.e., a N × 20matrix is obtained,
where N is the number of items in the dataset). In the
case of the Digram (2-gram) method, we calculate the
frequency of each of the 400 possible AA pair
combinations from the AA alphabet (i.e., a N × 400
matrix is obtained).

• Auto cross covariance transformation: The ACC
[28, 29] is a more sophisticated transformation,
capturing the correlation of the physico-chemical
descriptors along the sequence. First, the
physico-chemical properties are represented by
means of the five z-scores of each AA, as described in
[30]. Then, the Auto Covariance (AC) and Cross
Covariance (CC) variables are computed on this first
transformation. These variables measure, in turn, the
correlation of the same descriptor (AC) and the
correlation of two different descriptors (CC) between
two residues separated by a lag along the sequence.
From these, the ACC fixed length vectors can be
obtained by concatenating the AC and CC terms for
each lag value up to a maximum lag, l. This
transformation generates a N× (z2 · l) matrix, where
z = 5 is the number of descriptors. In this work we
use the ACC transformation for a maximal lag value
of l = 13, which was found in [31] to provide the best
accuracy for the analyzed data set.

• Physico-chemical distance-based transformation:
The PDBT transformation [22] is a complex
transformation that uses a large set of
physicochemical properties: 531 values representing
physicochemical and biochemical properties of AAs
are taken into account. Furthermore, sequence-order
information is incorporated in the representation in
the form of the correlation of each property between
two AAs separated by a maximal lag l. In the current
study, we use the PDBT transformation for a

maximal lag of 8, which yields a N × 4248matrix that
was previously analyzed in [32].

Methods - SVM-based classification
SVMs have become commonplace in different problems
related to the classification of proteins from their primary
sequences. A non-exhaustive list of examples includes
SVM-HUSTLE [33], SVM-I-sites [34], SVM-n-peptide
[35], and SVM-BALSA [36]. In [22, 37], SVMs were
reported to be top-performing techniques for the classifi-
cation of sequences from similar transformations to those
used in the current study.
These methods have their foundations on statistical

learning theory and were first introduced in [38]. They
map the D-dimensional vectors xi, i = 1, . . . ,N , where
xiεRD and N is the number of instances, into possibly
higher-dimensional feature spaces by means of a function
φ. The goal is finding a linearly-separating hyperplane that
discriminates the feature vectors according to class label
with a maximal margin, while minimizing the classifica-
tion error ξ .
The most simple version is the linear SVM, where a

linear hyperplane that separates the examples from two
classes is assumed to exist. Such hyperplane is defined
by a set of points x that satisfy w · x − b = 0, where
w is a normal vector to the hyperplane and b

||w|| is the
perpendicular distance from the hyperplane to the ori-
gin. In consequence, the SVM algorithm, when search-
ing for the hyperplane with largest margin, assumes that
yi(xi ·w+ b) − 1 ≥ 0,∀i, where yi are the class labels. The
objective of the SVM algorithm is finding the separating
hyperplane that satisfies this expression while minimiz-
ing ||w||2. This problem can be translated to a Lagrange
formulation in which the following objective function
Lp (primal Lagrangian) must be minimized with respect
to w, b:

LP ≡ 1
2
||w||2 −

l∑
i=1

αiyi(xi · w + b) +
l∑

i=1
αi (1)

This is equivalent to the maximization of the dual
Lagrangian form Ld:

LD =
∑
i

αi − 1
2

∑
i,j

αiαjyiyjxi · xj (2)

subject to the restriction that w and b vanish (and all
αi ≥ 0), which leads to a closed solution.
A modification of the algorithm was introduced in [39],

allowing a so-called “soft-margin” to account for misla-
beled data when a linear separating hyperplane could not
be found. A classification error ξ is admitted and a param-
eter C controlling the trade-off between those errors and
margin maximization is defined (Note that, for C −→ ∞,
the model becomes equivalent to a hard-margin SVM).
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The SVM can be extended to nonlinear classification
[40] by applying the so-called kernel trick [41]. The use
of nonlinear kernel functions allows SVMs to separate
input data in higher-dimensional feature spaces in a way
they would not be separable with linear classifiers in the
original input space. The use of kernel functions allows
to solve the problem without explicitly calculating the
mapping φ (that is, without calculating data coordinates
in the implicit feature space). This is possible due to
the following property: k(xi, xj) = φ(xi) · φ(xj), which
means that any dot product in the optimization proce-
dure can be replaced by a nonlinear kernel function k. In
this study we use the radial basis function (RBF) kernel,
specified as k(xi, xj) = e(−γ ||xi−xj||2), which is a popu-
lar nonlinear choice for SVM and has been used in the
experiments reported in the following sections. With it,
the model requires adjusting two parameters through grid
search: the error penalty parameter C and the γ param-
eter of the RBF function, which regulates the “space of
influence” of the model support vectors and, therefore,
controls overfitting.
The discrimination of the seven subtypes of class C

GPCRs requires extending the original binary (two-class)
classification approach of SVMs to a multi-class one. To
that end, we chose the “one-against-one” approach to
build the global classification model, implemented as part
of the LIBSVM library [42].
This approach performs class prediction according to

the results of a voting scheme applied to the binary clas-
sifiers, i.e., according to the number of times a class is
predicted in each binary classifier. Therefore, this multi-
class classifier internally usesK(K−1)/2 binary classifiers
for distinguishing K classes. A total of 21 binary classifiers
were thus built for the 7 class C GPCR subtypes in our
study.

Classification performancemeasures
Two different figures of merit were used to evaluate the
test performance of the multi-class trained classifiers,
namely the Accuracy (Accu), which is the proportion of
correctly classified instances, and the Matthews Correla-
tion Coefficient (MCC), which involves all the elements
of the confusion matrix [43] and it is therefore consid-
ered a more complete figure of merit; being defined as a
correlation coefficient between the observed and the pre-
dicted classification its value ranges from –1 to 1, where
1 corresponds to a perfect classification, 0 to a random
classification and –1 to complete misclassification.
In our experiments, we measure the Precision, Recall

and MCC at class or subtype level (i.e. at the level
of the binary classifier) and measure the Accuracy and
MCC at the global level (i.e., at the level of the multi-
class classifier). All these figures of merit, described in
Tables 1 and 2, are based on the concept of true and false

Table 1 Performance measures for binary classifiers

Measure Formula Meaning

Accuracy tp+tn
tp+fn+fp+tn Measure of correctness

Precision tp
tp+fp Measure of quality

Recall tp
tp+fn Measure of completeness

MCC tp∗tn−fp∗fn√
(tp+fp)(tp+fn)(tn+fp)(tn+fn)

Correlation coefficient

predictions in binary classification with “positive” and
“negative” classes. True positives (tp) an true negatives
(tn) are correctly classified cases of, in turn, the positive
and negative classes. Accordingly, false positives (fp) an
false negatives (fn) are misclassified cases of, in turn, the
negative and positive classes.
By using a 5-fold cross-validation (CV) procedure to

evaluate the multi-class trained classifier, the reported
measures are the mean values of the respective metrics
over the five iterations of the 5-CV.

Methods - A systematic approach to GPCRmisclassification
analysis
Given a transformed dataset, our proposed systematic
approach to the analysis of the classification errors con-
sists of three steps or phases:

1. Estimation of the frequency of misclassification of
each pattern (sequence) using different SVMmodels
to select a subset of frequently misclassified patterns.

2. For each pattern in the subset selected in step 1,
evaluation of the relation of votes of all the SVM
classifiers between its true (label) class and its
most-predicted class.

3. For each pattern in the subset selected in step 1,
assessment of the decision values of the SVM binary

Table 2 Performance measures for multi-class classifiers. tpi , tni ,
fpi and fni are, in turn, tp, tn, fp and fn for class i [59]. The
multi-class MCC is calculated taking into account all the entries of
the confusion matrix CK×K involving all K classes [60]. The ij-th
entry (cij) is the number of examples of the true class i that have
been assigned to the class j by the classifier

Measure Formula

Accuracy
∑K

i=1
tpi+tni

tpi+fni+fpi+tni
K

MCC
∑K

k,l,m=1 CkkCml−ClkCkm√∑K
k=1

[(∑K
l=1 Clk

)(∑K
f ,g=1f 	=k Cgf

)]√∑K
k=1

[(∑K
l=1 Ckl

)(∑K
f ,g=1f 	=k Cfg

)]
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classifiers between its true (label) class and its
most-predicted class.

The aim of the first step is the detection of those pat-
terns that, most of the times, are not classified as belong-
ing to the class defined by their formal database label, but
without considering the distribution of predicted classes
in the misclassifications. Instead, the aim of the second
and third steps is to confirm the consistency of the mis-
classifications to the most-predicted class. The difference
between the two last steps resides on whether only the
votes (i.e. the binary decisions of the SVM classifiers) are
taken into account, or also the confidence (i.e. the decision
values) of the binary SVM classifiers, when confronting
just the class label against the most-predicted class, are
taken into account. The union of patterns obtained as
a result in steps 2 and 3 forms the final subset of fre-
quently and consistently misclassified sequences that are
shortlisted as label noise candidates.
In the following subsections, further details of each one

of the three steps are provided.

Repeated classificationwith different SVMmodels
The first phase entails repeating the following procedure
100 times. Although this constant value could be changed,
100 is adequate both to obtain a statistically reliable result
and to express the frequencies of misclassification directly
as percentages (or error rates, ERs, for each sequence s).
This type of repeated cross-validation approach has been
proposed as well in [44] and applied in [45].

• First, the dataset is randomly reordered and a 5-fold
cross validation (5-CV) is used, so that, for each of
the five training-test partitions, the current training
set is employed to construct an RBF-SVMmodel [42]
with an optimal value for the γ parameter of the
kernel function and with the error penalty parameter
C varying within a small range near its previously
established optimum value.

• Second, a test set classification is carried out using
the trained model, registering which GPCR
sequences are misclassified and generating the
corresponding confusion matrix.

The use of CV in each of the 100 repetitions of this pro-
cedure ensures that each instance is classified exactly one
time as a test pattern in each iteration of the outer loop.
Note that C is slightly modified in each iteration of the
inner loop.
With this, we obtain detailed results of how many times

a sequence was misclassified when included in the test
set and how many of these times it was assigned to
specific classes. Note that all the classification results
when the sequence belongs to the training set are not
taken into account. In order to focus only on the most

recurrent classification errors, a conservative misclassifi-
cation boundary of e = 75 % on the individual error rate
ERs was set (i.e., only sequences s misclassified in at least
a 75 % of the test occasions were deemed to be strong
misclassifications and selected for further analysis). This
threshold e is merely illustrative; in a real application of the
method, it should be set according to the expert analyst’s
decision. A high threshold would ensure that only the
most extrememisclassifications are singled out for further
detailed analysis, whereas low thresholds would be more
adequate in case a more global exploration is required.

Analysis of misclassifications according to the voting scheme
Since we are facing a multi-class (K classes) classification
problem in which the underlying classification scheme
of the SVM implementation [42] was “one-vs-one”, it is
interesting to analyze the results of the voting scheme as
applied to the K(K − 1)/2 resulting classifiers, including
the votes of each one, for each pattern in each test itera-
tion. According to LIBSVM, the subtype with the highest
number of votes in each case becomes the predicted class
of the test pattern.
For each frequently misclassified sequence s, selected

in the first phase, we focus the analysis on the relation
between the total number of votes VTs obtained by the
true (label) class in the 100 iterations and those obtained
by the most frequently predicted class for that sequence,
VPs. This is, we define the voting ratio

Rs = VTs
VPs

(3)

and, given some threshold θR, we consider that Rs ≤ θR
indicates a consistent (also deemed as large) classification
error, while Rs > θR denotes a more doubtful (or small)
misclassification. We fixed a threshold θR = 0.5 to obtain
our results discussed later.

Analysis ofmisclassifications according to the decision values
In the third and last phase of our proposed approach, we
go deeper into the analysis of misclassifications by tak-
ing into account the confidence (decision values) of the
100 binary SVM classifiers involving only the label class
and the most frequently predicted class, when classifying
a sequence s as test pattern. For each frequently misclas-
sified sequence s selected in the first phase, we define a
cumulative decision value, CDVs, as follows:

CDVs =
100∑
k=1

DVs(i, j, k) (4)

where DVs(i, j, k) is the decision value given by the binary
SVM classifier confronting the class with label i to which s
formally belongs and the most-frequently predicted class
for sequence s, with label j, in the kth test iteration. GPCR
subtype labels were numbered 1 to 7 in the order they are
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presented in the data description section. For subtypes i, j,
a large positiveCDVs value if i > j and a large negative one
if i < j both indicate clear misclassifications. Hence, the
magnitude of the error is deemed large or small depend-
ing on whether theCDVs exceeds a certain threshold θCDV
in absolute value or not. A threshold θCDV = 60 was
chosen for the experiments.
Note that the information conveyed by CDVs comple-

ments that of Rs. For instance, a misclassified sequence
with high Rs would suggest that the voting process dis-
cards all subtypes but the true and the predicted ones,
that is, a very narrow transfer of subtype assignment. If
this is accompanied by a large CDVs in absolute value, the
predicted subtype, even if wrong assuming that the identi-
fying label of the sequence is trusted, is strongly preferred
by the SVM classifiers.

Methods - External validation of SVM-based classification
Mislabeling validationwith phylogenetic trees
For proteins, a PT is a dendrogram-like graphical repre-
sentation of the evolutionary relationship between taxo-
nomic groups which share a set of homologous sequence
segments. This evolutionary relationship is a form
of hierarchically structured similarity-based grouping
process.
In this study, PTs were used to visualize the analyzed

class C GPCR sequences and thus provide an alterna-
tive way to externally validate the misclassification results
reported in the previous sections. There are two sound
reasons why we use PTs for this task: first, because they
have de facto become standard tools in bioinformatics
[24] and, particularly, in protein homology detection, so
that protein database curators are more likely to trust
them. Second, because the protein sequence alignment
that underlies the tree construction has no direct link with
the sequence transformations from which the SVM clas-
sifiers are built, therefore guaranteeing the independence
of the results.
Our software tool of choice, Treevolution1 [46], was

developed in Java and integrates the Processing2 package.
This tool supports visual and exploratory analysis of PTs
in either Newick or PhyloXML formats as radial dendro-
grams, with high-level user-controlled data interaction at
the user request and offers several methods very useful for
large PT: sector distortion, tree rotation, pruning, label-
ing, tracking of ancestors and descendants and text search,
among others.
The color-guided highlighting of protein families helps

the user to focus on sequence groupings of interest and
give an overall idea of groups with the same ancestor
within the tree. The PT is created from a MSA obtained
with Clustal Omega [47]. This application, in which
sequences data are introduced in FASTA format, performs
distance-based MSA [48].

Results
This section starts with a brief summary of some pre-
liminary research that inspired the current study. This
is followed by a detailed analysis of misclassifications
according to a voting scheme and classifier decision val-
ues. This analysis is validated using a standard LN detec-
tion filter and sequence visualization through PTs.

Results from previous research
The experiments reported in this section extend some
basic preliminary results reported in [23]. In previous
research [49], we investigated the supervised classifica-
tion of the data set described in the previous section using
different classifiers, namely decision trees (DT), naïve
Bayes (NB) and SVM, for different alignment-free trans-
formations of the sequences, including AA composition
(AAC), the Mean Transformation [50] and Auto-Cross
Covariance (ACC) [28]. In this previous study, focus was
placed on the accuracy of the classifiers’ performance
and the experimental results showed that SVM clearly
outperformed the rest of classifiers independently of the
transformation applied to the data set. This led to the con-
clusion that a nonlinear classifier with the ability to find
a linear separation of instances in a higher-dimensional
feature space, such as SVM, was the adequate choice for
the data set under analysis in the task of subtype dis-
crimination. The second conclusion from this previous
study was that, at subtype level, classification accuracies
showed only small variations depending on data trans-
formations. Even a superficial analysis of the confusion
matrices showed recurrent patterns of subtype misclassi-
fication, which hinted at LN as their cause. Such obser-
vations provided support for a more detailed analysis of
sequence misclassification.

Repeated classification with different SVMmodels using
different transformations of the dataset
These previous results led us to decide on the conve-
nience of using a more diverse set of data transformation
techniques. Tables 3 and 4 summarizes the best sub-
type classification results obtained with SVM for the
four different transformed data sets, measured by aver-
age accuracy (overall correct classification rate) andMCC.
These results are complemented by the box-plot repre-
sentation of the distributions of the accuracy and MCC
values, for each of the transformed data sets, over the 100
outer iterations of the classification procedure, shown in
Figs. 1 and 2. For all transformations, a low variability
of the results is observed, suggesting consistent estimates
that make the average figures of Table 3 quite reliable. Out
of these, the best classification results were found for the
Digram and ACC transformed data sets, although the rel-
ative differences of accuracy and MCC make PDBT also a
reasonable choice.
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Table 3 SVM classifier results: Global results for the four data
transformations; accuracy (Accu), Matthews Correlation
Coefficient (MCC)

Data Accu MCC

AAC 0.88 0.84

Digram 0.93 0.91

ACC 0.93 0.91

PDBT 0.92 0.90

Best results highlighted in bold

A detailed analysis of the results per-subtype revealed
relatively minor differences between those obtained with
each of the four transformed data sets. This observation
suggests that themain causes of misclassificationmight lie
beyond the differences between data transformations and
that a more systematic analysis of the classification errors
is required.
Table 5 shows a few illustrative misclassification statis-

tics for the ACC transformed data set. For instance,
sequence �6, which belongs to subtype VN according to
its database label, was misclassified 100 out of 100 times:
96 of them was assigned to Ph and 4 to Od (See Table 6
for the mapping between the number � and the protein
database Id).
This misclassification analysis was repeated for each of

the transformed data sets. The AAC, Digram, ACC and
PDBT sets yielded, in turn, 143, 88, 85 and 100 strong
misclassifications. A detailed analysis of these frequently
misclassified sequences revealed that they are nearly iden-
tical for ACC and Digram. There are some differences
with the PBDT misclassifications that might be the result
of the very different type of transformation. Importantly,
52 frequently misclassified sequences were common to
all four data sets and there was strong agreement on the
most-often predicted subtypes. These sequences are listed
in Additional file 1.

Table 4 SVM classifier results: Class C GPCR results per subtype
for the ACC data set only, including MCC, Precision (Prec) and
Recall (Rec)

Class MCC Prec Rec

mG 0.95 0.95 0.99

CS 0.93 1.00 0.88

GB 0.98 0.99 0.99

VN 0.89 0.91 0.92

Ph 0.86 0.89 0.90

Od 0.79 0.89 0.74

Ta 0.99 1.00 0.98

Fig. 1 Boxplot representation of the Accu of the AAC, Digram, ACC
and PDBT dataset

Analysis of misclassifications according to the voting
scheme
Interestingly, these results suggest the existence of sub-
types with recurrently wrong class assignments. So, we
applied the second step of our systematic approach based
on the voting scheme, as described earlier, to confirm con-
sistent misclassifications. To illustrate the results obtained
in this step, we show the voting scheme results for the
selected instances of Table 5. Sequence �6, for instance,
is a VN consistently misclassified as Ph. The magnitude
of the error is small, though, as the voting ratio (Rs) of
true class to predicted class is relatively high (0.67 > 0.5).
Sequence �2 is a CS, consistently misclassified asmG. The
magnitude of the error is large, as the Rs is quite low
(0.15 ≤ 0.5).
Only 7 of the 85 frequently misclassified ACC-

transformed sequences yielded large errors (See Table 6).
Similarly, for AAC, Digram and PDBT sets, the majority
of sequences have small errors.

Fig. 2 Boxplot representation of the MCC of the AAC, Digram, ACC
and PDBT dataset
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Table 5 Illustrative example of misclassification statistics for the
ACC data set. For some sequences s identified by number �s , the
error rate (ERs), the true class (TCs), and how many times this
sequence was misclassified as belonging to each of the other
subtypes (from mG to Ta), are displayed. The three last columns
list the sum of the votes for the true class (VTs), for the most
frequently predicted class (VPs), and the ratio (Rs) of one to the
other

�s ERs TCs mG CS GB VN Ph Od Ta VTs VPs Rs

2 100 CS 100 0 0 0 0 0 0 91 600 0.15

6 100 VN 0 0 0 0 96 4 0 404 596 0.67

7 100 VN 100 0 0 0 0 0 0 300 600 0.5

Analysis of misclassifications according to the decision
values
Clear differences in the magnitude of the recurrent clas-
sification errors were found. Pursuing further insight, we
applied the third step of our approach based on the cumu-
lative decision value (CDVs) specifically for the binary
classifier that involves the true class and the predicted
class.
As previously mentioned, the magnitude of the error

was deemed large or small depending on whether the
CDV exceeded the threshold of 60 in absolute value or
not. A total of 21 out of the 85 frequently misclassified
instances of the ACC-transformed data set have a large
error according to this criterion, whereof 4 yield a very
large one (|CDVs| ≥ 95: see Table 6).

Summary of the analysis of misclassifications
The proposed subtype classification approach revealed
the existence of a number of instances that, independently

Table 6 Sequences with large classification errors: For each
sequence s numbered �s , the GPCRDB Identifier (Ids), the true
class (TCs), the predicted class (PCs), the voting ratio (Rs) and the
cumulative decision value (CDVs) are displayed

�s Ids TCs PCs Rs CDVs

1 q5i5c3_9tele mG Od 0.75 –95

2 XP_002123664 CS mG 0.15 50

3 q8c0m6_mouse CS Ph 0.15 –46

4 XP_002740613 CS mG 0 –66

5 XP_002936197 VN Ph 0.83 –96

6 XP_002940476 VN Ph 0.67 –95

7 XP_002941777 VN mG 0.5 45

8 B0UYJ3_DANRE Ph mG 0.79 109

9 XP_001518611 Od mG 0.31 46

10 XP_002940324 Od VN 0.49 70

11 GPC6A_DANRE Od Ph 0.5 74

Extreme Rs and CDVs values highlighted in bold

of the sequence transformation method, induce classifica-
tion errors that could be deemed either large or small. The
information provided by Rs and CDVs should be under-
stood as complementary, given that not fully coincident
instances are singled out in each approach.
Importantly, this analysis showed that the misclassifica-

tions of a sizeable proportion of sequences have a small
magnitude, so that they could be ignored unless a thor-
ough revision of the database labels is required. A small
number of instances, though, showed consistent and large
classification errors and they should be the focus of inter-
est from the database curation viewpoint. In Table 6, we
list GPCRs with either very large absolute value of CDVs
(4 items) or small Rs (7 items) using the ACC transformed
dataset.

Mislabeling validation
Validation through PT-based visualization of class C GPCRs
Figure 3 displays the Treevolution radial PT plot of the
complete set of 1,510 GPCRs of class C, additionally
showing the approximate distribution of its main seven
subtypes. In this representation, each outer branch cor-
responds to one GPCR sequence. Tree colors are used
to represent families of descendant nodes. Note though
that these colors do not correspond to subtype labels.
We observe that some families correspond to not one but
several evolutionary branches. For example, the two dif-
ferent colors assigned to Pheromone provide quantitative

Fig. 3 Radial PT plot showing the main areas of distribution of the
seven class C GPCR subtypes. Treevolution radial PT in which the
main sections occupied by each of the seven class C GPCR subtypes
are explicitly represented by archs or groups of archs in the periphery
of the tree. Note that branch colors are automatically generated
during PT construction and do not correspond to class C subtypes
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evidence of the existence of at least two subtypes within
the family. The representation of the evolutionary rela-
tionship in the PT plot shows that there exist some clearly
separated families (GB, CS and Od), while others are more
closely related to each other, such as mG and VN.
In the following, we report the PT plots for the four

class C subtypes that were predicted for the mislabel-
ing candidates listed in Table 6. In them, these potential
mislabelings (those with largest errors according to the
proposed approach) are highlighted (See the individual
sequences listed in Table 6).
Figure 4 shows the selection of sequences with largest

errors that were predicted to be mG. The mG subtype
has two main evolutionarily-related subgroups, which are
shown schematically in the PT plot. In our analysis, we
found 5 sequences with large classification error. In this
PT, they are highlighted in their locations. We see that
sequences �7 (labeled as VN in GPCRDB) and �2 (labeled
as CS) both fall into the first area ofmG. The instances �4
(labeled as CS), �8 (labeled as Ph) and �9 (labeled as Od)
fall into the second area ofmG.
Figure 5 shows the single sequence with large error

predicted as Od by the proposed mislabelling filtering
approach. The Odorant subtype corresponds to a single
area in the PT plot, and sequence �1 (labeled as mG) falls
clearly into this area.
Figure 6 shows the sequences found to be Ph by

the proposed approach. The Ph subtype has two
main evolutionarily-related subgroups, which are shown
schematically in the PT plot. Sequences �11 (labeled as

Fig. 4Mislabelings predicted to be mG. Five sequences with large
classification errors were mislabeled as mG. Sequence �7 was labeled
as VN in GPCRDB; �2 and �4 were labeled as CS; �8 was labeled as Ph;
and �9 was labeled as Od

Fig. 5Mislabelings predicted to be Od. One sequence (�1, labeled as
mG in GPCRDB) with large classification error was mislabeled as Od

Od) and �3 (labeled as CS) fall into the first subgroup,
whereas sequences �5 and �6 (labeled as VN) fall into a
separate evolutionary branch.
Figure 7 shows the sequence found to be VN by the pro-

posed approach. The VN subtype corresponds to three
evolutionary areas in the PT plot. Sequence �10 (labeled
as Od) falls into one of these areas.

Fig. 6Mislabelings predicted to be Ph. Four sequences with large
classification errors were mislabeled as Ph. Sequence �3 was labeled
as CS in GPCRDB; �11 was labeled as Od; and �5 and �6 were labeled
as VN
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Fig. 7Mislabelings predicted to be Vn. One sequence (�10, labeled as
Od in GPCRDB) with large classification error was mislabeled as Vn

Comparisonwith an ensemble-based noise detection
approach
As mentioned in earlier sections, in previous studies
we carried out classification experiments on the AAC
and ACC datasets [49] using different supervised classi-
fiers, including NB, DT and SVM. From these, we con-
cluded that SVM classifiers significantly outperformed
NB and DT for both the AAC and ACC data sets. In
this section, we return to these less accurate classifiers,
which are more robust to LN as they apparently carry out
a more generic classification of the investigated data set,
and should be less prone to data overfitting, a possible
risk associated to the more accurate SVM classification
models [51].
We describe here the results of the application of an

ensemble-based noise detection approach including less
accurate classifiers for the analysis of the class C GPCR
data set. This method just detects label noise candidates
by counting the misclassifications of an instance for the
different classifiers in the ensemble. In some way, this is
similar to the first step of our proposed approach, with
the difference that in our case the ensemble is composed
only by SVM classifiers. The second and third steps of
the proposed approach, though, allow amore fine-grained
analysis of the misclassifications by taking into account
the results of the classifiers involving just the sequence
class label and the most-frequently predicted class for that
sequence. In fact, we do not aim to a straightforward
comparison between methods, but to use the ensemble

method as a way to test the coincidence on the subset of
mislabeled sequences detected by both.
Ensemble-based noise detectionmethods have their ori-

gin in ensemble learning [52], where a set of prediction
models are constructed using different algorithms and
their output is combined to generate a single prediction.
A noise detection ensemble classifier filter [53] consists of
a set of diverse base classifiers. Their classification errors
are combined to detect mislabeled instances using either
a consensus vote filter (all classifiers detect a classification
error), or a majority vote filter (the majority of classifiers
detect an error).
In this experiment, we use an ensemble classifier built

using NB, Random Forest (RF), SVM andMulti-Layer Per-
ceptron (MLP) classifiers to analize the ACC-transformed
data set. The results of the base classifiers are evaluated
using a noise rank filter [54], which provides information
about the ranking of detected candidates to misclassifica-
tion. The rank filter estimates the following weights (in
brackets) for each classifier in the calculation of the rank:
MLP (3), SVM (2), NB (1) and RF (1), and assigns a rank-
ing to the sequences according to the number of classifiers
that failed to evaluate them correctly. It then reports in
how many classifiers the prediction failed. In our analy-
ses, we focused on those sequences that were evaluated
incorrectly by either all classifiers (a total of 117), or by
at least three of them (a further 34). We then checked
which of these 151 sequences were also detected as fre-
quently misclassified by our proposed SVM approach. A
total of 141 instances were found. Bothmethods coincided
in the detection of 109 sequences as possible mislabelings
(a 77 % coincidence). All sequences with large classifica-
tion error listed in Table 6 were also detected by the noise
rank algorithm.
This result provides further support to the claim of

effectiveness of the proposed SVM-based approach in its
task as LN detector.

Discussion
The systematic approach proposed for the analysis of the
SVM misclassifications has revealed the existence of a
number of sequences that, independently of the trans-
formation method, are prone to classification errors that
could be deemed large or small (according to criteria
that, ultimately, should be set by proteomics experts).
The information provided by the voting ratio R and the
absolute value of the CDV should be understood as com-
plementary, given that not fully coincident sequences are
singled out by each approach; that is, some sequences
might show very low values of R but not very high values
of CDV, or very high values of CDV but not too low values
of R.
Importantly, this analysis has shown that the misclas-

sifications of a sizeable proportion of sequences have a
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small magnitude. All these sequences might well be con-
sidered as mild cases of LN and should eventually be
redirected to a human expert for further analysis. Small
errors also suggest underlying similarities between the
GPCR subtypes whose characteristics may be unknown
and worth investigating. A small number of instances,
though, show consistent and large classification errors.
They merit detailed study because they might be affected
by a more radical type of LN, or even by straight misla-
belling. These are the sequences listed in Table 6, which
are now individually discussed.
Sequences XP_002123664,XP_002740613,XP_0029361

97,XP_002940476 and XP_002940324 are all recurrently
misclassified. XP_002740613, in particular, yields a 100 %
error, R = 0 and large CDV. Their labels should require
further expert assessment, given that they were derived by
an automated computational analysis from an annotated
genomic sequence by means of a gene prediction mode
from the RefSeq3 databank. Another couple of interesting
cases are q8c0m6_mouse and B0UYJ3_DANRE. Accord-
ing to the information referenced at UniProt4, these
GPCRs are unreviewed and should be considered only as
preliminary data. The former, according to GPCRDB, is
a CS that our system confidently (R = 0.15) classifies as
Ph. The European Nucleotide Archive5 lists it as similar
to the putative Ph receptor V2R2. The latter, according to
GPCRDB, is a Ph, while our system predicts it to be an
mG with a very large CDV (109). Agreeing with our pre-
diction, the Ensembl Genome Browser6 considers it to be
anmG of subtype 6a.
Sequence GPC6A_DANRE is labeled as Od, but the low

number of votes of this class and the large CDV suggest
its classification to Ph. Although this sequence is consid-
ered as olfactory receptor7, we suggest to investigate the
possibility of its labelling as Ph.
As stated in the previous section, it is important to pro-

vide further validation for the clearest of the misclassifi-
cations found with the proposed method (as summarized
in Table 6) using PTs. The importance of this valida-
tion resides in the fact that the PT dendrograms are not
built from the same data transformations we used. There-
fore, agreement between the subtype assignment of the
PT and the label predicted by our method should be an
almost definitive confirmation of the existence of label
noise, whereas, contrarily, lack of agreement might be
an indication that the misclassification is caused by the
type of sequence transformation itself, or by the fact that
the subtypes defined by the existing and predicted labels
overlap.
The comparison of the most extreme misclassifications

discovered with the proposed method with the visual
results provided by the PTs (See Figs. 4, 5, 6 and 7) is
striking, as it provides consistent evidence of the relia-
bility of the former. Figs. 4, 5, 6 and 7 show that the

detected extreme mislabellings fall exactly into the evo-
lutionary branch belonging to the class predicted by the
proposed approach. This reliability is a guarantee that
the method is viable as a tool for database curators in
proteomics.

Conclusions
Label noise is a potentially important problem in the
process of automated class C GPCR subtype classifi-
cation from the alignment-free transformed versions of
protein primary sequences. This is because the labels of
these sequences are obtained indirectly through complex,
many-step similarity modelling processes.
In this paper, we have proposed a systematic procedure,

based on SVM classification, to single out and charac-
terize GPCR sequences with consistent misclassification
behaviour. This approach, where the detection of possible
mislabeled data is based on the analysis of the frequency of
misclassification of an instance and a quantitative assess-
ment of the magnitude of the classification error, has been
applied to different sequence data transformations and
shown to be a viable alternative for the definition of a
prediction-based system addressing the problem of label
noise.
For a database like the one analyzed in the current study,

the type of label noise is well-defined within the general
taxonomy of the problem [1]: it should not be mistaken
by a problem of outlier or anomaly detection and can be
considered as the natural result of human expert involve-
ment and model-based (semi)automated labeling [55]. As
such, it falls within the noisy not at random type ofmodels,
because sequences are more likely to be mislabeled when
they are similar to sequences of other subtype and because
labels are likely to be less certain in regions of low data
density. Mislabeling thus depends both on the data fea-
tures and on the true labels. Three general (and partially
overlapping) approaches are available to tackle this prob-
lem: the use of classification algorithms that are robust
to label noise; the use of filter methods that detect noisy
cases; and the use of algorithms for explicit label noise
modeling. A large palette of methods has been proposed
for each of these and their review is beyond the scope of
this study. The reader is referred to [1] for an up-to-date
survey.
Here, our choice was a variant of a filtering approach,

because, as acknowledged in [1], “some of the label noise-
tolerant variants of SVMs could also be observed as
filtering”. The proposed method can therefore be consid-
ered as model predictions-based filtering [56], extending
the basic concept of voting filtering [53, 57] and attempt-
ing to improve model robustness by decomposing a multi-
class problem into multiple binary classification problems
[58]. The reported experimental results are a proof of
concept for the viability of such procedure as part of
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a decision support system that, combined with expert
knowledge in the field, should be able to assist the discov-
ery of GPCR database labelling quality problems. These
results have been further validated using PTs, a standard
tool in bioinformatics.
In future research, we aim to explore alternative

approaches to the label noise problem and plan to extend
this work to implement the proposed method as a
publicly-available software tool with a user-friendly GUI
for bioinformatics scientists.

Endnotes
1http://vis.usal.es/treevolution
2http://processing.org
3http://www.ncbi.nlm.nih.gov/refseq/
4http://www.uniprot.org/uniprot/B0UYJ3, http://www.

uniprot.org/uniprot/Q8C0M6
5http://www.ebi.ac.uk/ena/data/view/BAC26854
6http://www.ensembl.org
7http://www.uniprot.org/uniprot/Q5U9X3

Additional file

Additional file 1: This is a csv format file containing the table of 52
frequently misclassified sequences that were common to all four data
transformations, as described in the Results section of the main text.
It includes the following columns: GPCRDB identifier, GPCRDB true class,
and predicted class for, in turn, the AAC, Digram, ACC and PDBT
transformations. A strong agreement on the most-often predicted class C
GPCR subtypes can be observed. (XLS 22 Kb)
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