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Abstract— This document proposes a novel class of popula-
tion dynamics that are parameterized by a nonnegative scalar
ε. We show that any rest point of the proposed dynamics
corresponds to an ε-equilibrium of the underlying population
game. In order to derive this class of population dynamics,
our approach is twofold. First, we use an extension of the
pairwise comparison revision protocol and the classic mean
dynamics for well-mixed populations. This approach requires
full-information. Second, we employ the same revision protocol
and a version of the mean dynamics for non-well-mixed popula-
tions that uses only local information. Furthermore, invariance
properties of the set of allowed population states are analyzed,
and stability of the ε-equilibria is formally proven. Finally, two
engineering examples based on the ε−dynamics are presented:
A control scenario in which noisy measurements should be
mitigated, and a humanitarian engineering application related
to wealth distribution in poor societies.

I. INTRODUCTION

In game theory, the ε-equilibrium is a relaxation of the
widely known concept of Nash equilibrium [1]. While in a
Nash equilibrium a player has no incentives to unilaterally
change its strategy, in an ε-equilibrium players can have
incentives to choose other strategies. Nonetheless, these
incentives are not higher than a nonnegative threshold ε.
There are a couple of issues that motivate the development
of techniques to find a relaxed version of Nash equilibria.
First, ε-equilibrium is used in stochastic games or games with
imperfect information, where Nash equilibrium is rapidly
changing. Under this class of games, it can be desirable
that players’ decisions converge to a rest point that is
close to the Nash equilibrium instead of having permanent
variations of the players’ decisions due to Nash equilibrium
changes. Second, there are some cases in which finding a
Nash equilibrium is computationally expensive [2]. In these
cases, convergence to ε-equilibria reduces the computational
burden. Although algorithms for reaching ε-equilibria have
been proposed for strategic games (e.g., see [3]), similar
methods have been largely unexplored for population games.
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The contribution of this work is the deduction of a class of
population dynamics that are parameterized by a nonnegative
escalar ε and converge to the set of ε-equilibria of the
underlying game. Indeed, we formally show that the set
of epsilon-equilibria and the rest points of the proposed ε-
dynamics are equal. We use two approaches to derive the
ε-dynamics. On the one hand, we employ a parameterized
version of the pairwise comparison protocol and the mean
dynamics for well-mixed populations [4]. This approach
generates a version of the ε-dynamics that requires full-
information of the game to evolve. On the other hand, we
use the same modified pairwise comparison protocol and the
mean dynamics for non-well-mixed populations [5] to obtain
distributed ε-dynamics that only use local information.

Due to the advantages of finding ε-equilibria instead of
Nash equilibria, ε-dynamics enlarge the spectrum of ap-
plications of population games, which have been widely
employed for solving optimization and control problems [6],
[7]. For instance, since a controller based on ε-dynamics can
deal with imperfect information, it is suitable to be applied
in situations where the measurements of systems’ outputs
have noise. To illustrate the usefulness of ε-dynamics, we
apply them in two problems: i) The design of a model-
free controller for water allocation in an m-tanks system
that includes noisy measurements; ii) the design of wealth
distribution policies in poor communities. The latter problem
is discussed in [8].

The organization of this document is as follows: Section II
presents the preliminary concepts associated with population
dynamics, ε-equilibria, and graphs. Section III introduces the
deduction of the ε-dynamics. Afterwards, some properties of
the ε-dynamics are presented in IV. Section V derives the
distributed version of the ε-dynamics. Moreover, Sections VI
and VII present applications of the ε-dynamics in a control
problem with noisy measurements, and the formulation of a
wealth distribution policy, respectively. Finally, Section VIII
draws come concluding remarks.

Notation: Throughout this manuscript, we use Rn+ to
denote the set of vectors in Rn that have nonnegative entries.
Similarly, Rn++ denotes the set of vectors in Rn with strictly
positive entries. On the other hand, we use [·]+ to denote the
projection on R++, i.e., [·]+ = max(0, ·).

II. PRELIMINARIES

A. Population Games

A population game is a model that describes the strategic
interaction among individuals in a population. Mathemati-
cally, a population game is characterized by: a population



mass X ∈ R+; a set of strategies S = {1, . . . , n}; a
population state x = [x1, . . . , xn]> that defines the portion
of the population mass playing each strategy, i.e., x ∈ ∆,
where

∆ =

{
x ∈ Rn+ :

n∑

i=1

xi = X

}
; (1)

and a set of fitness functions fi : ∆ 7→ R, for all i =
1, . . . , n. Given a population state x, the fitness value fi(x)
captures the payoff of the individuals playing the ith strategy.
For notational convenience, we define the fitness vector
f(x) := [f1(x), . . . , fn(x)]>.

Under the assumption that the individuals of the popula-
tion are rational, i.e., they try to maximize their payoff, the
expected output of a population game is given by a Nash
equilibrium.

Definition 1: Nash equilibria (adapted from [4]). x∗ ∈
∆ is a Nash equilibrium if each used strategy entails the
maximum benefit for the players who chose it. Equivalently,
the set of Nash equilibria is given by NE = {x∗ ∈ ∆ :
x∗i > 0⇒ fi(x

∗) ≥ fj(x∗),∀i, j = 1, . . . , n}. ♦
A relaxed version of the Nash equilibirum concept is the

ε-equilibrium [1], which is defined as follows:
Definition 2: ε-equilibria. Let ε ∈ R+. The set of ε-

equilibria is given by Eε = {xε ∈ ∆ : xεi > 0 ⇒ fi(x
ε) ≥

fj(x
ε)− ε, ∀i, j = 1, . . . , n}. ♦

While in a Nash equilibrium an individual has no incen-
tives to unilaterally change its strategy, in an ε-equilibrium
the individuals can have incentives to choose other strategies,
but these incentives are not higher than a threshold ε. Notice
that, if ε = 0, an ε-equilibrium is a Nash equilibrium.

B. Graphs

Using the framework developed in [5], the structure of
a population involved in a strategic game can be modeled
by means of a graph G = {V, E}, where the set of nodes
V is associated with the available strategies, i.e., V = S,
and the set of edges E ⊂ V × V describes the encounter
probability between individuals playing different strategies,
i.e., if (i, j) ∈ E , then it is possible that an individual playing
strategy i can be matched with an individual playing strategy
j. In contrast, if (i, j) /∈ E , then individuals playing strategies
i and j cannot encounter each other. Throughout this paper,
we only consider undirected graphs, i.e., if (i, j) ∈ E , then
(j, i) ∈ E .

A well-mixed population is such that the encounter prob-
ability of individuals playing any two strategies from S is
the same no matter what the strategies are. Therefore, well-
mixed population are represented by complete graphs. On
the other hand, in non-well-mixed populations, the encounter
probability between individuals depends on the strategies
that these individuals are playing. Hence, non-well-mixed
populations are described by non-complete graphs. In [5],
non-well-mixed populations are employed to model local
information structures.

III. EPSILON-DYNAMICS

A. Revision Protocols and Mean Dynamics

Nash equilibria and ε-equilibria predict the outcome of a
population game. Different from these static notions, there
exists a framework that is capable to model not only the
outcome of a population game, but also the evolution of
the population state along the time. This framework is
called population dynamics, and its fundamental input is the
concept of revision protocol.

A revision protocol is a set of rules that describes the
timing and results of the individuals decisions. Specifically,
a revision protocol establishes conditions under which an
individual changes its strategy. Formally, a revision protocol
is defined as follows,

Definition 3: Revision protocol (adapted from [4]). A
revision protocol, denoted by ρ = [ρij ], is a map ρ :
Rn × ∆ 7→ Rn×n+ that is characterized by the conditional
switch rates {ρij : i, j ∈ S}. Given a population state x and
a fitness vector f(x), ρij(f(x), x) captures the switch rate
from the ith strategy to the jth strategy. ♦

A population game and a revision protocol define the
following dynamics,

ẋi =
∑

j∈S
xjρji(f(x), x)− xi

∑

j∈S
ρij(f(x), x),∀i ∈ S, (2)

which are called mean dynamics [4]. The first term of (2)
is related to the individuals that switch to the ith strategy
from other ones, while the second term is associated with the
individuals that change strategy i ∈ S by another strategy.

Summarizing, (2) models the dynamics of a population
involved in a strategic game that is using a given revision
protocol. In this regard, different revision protocols produce
different population dynamics models.

B. Epsilon-Dynamics

Let us define the following revision protocol,

ρij(f(x), x) = [fj(x)− (fi(x) + ε)]+ ,∀i, j ∈ S, (3)

where ε ∈ R+. The constant ε acts as a switching threshold.
That is, an individual playing the ith strategy that adopts the
revision protocol (3) might prefer to keep strategy i even
if strategy j entails a higher payoff. This individual only
switches to the jth strategy if the difference between the
payment perceived by using the jth strategy and the payment
perceived by using its current strategy exceeds the value
of ε. Individuals’ self-confidence, change aversion, opinion
inertia, and other kind of biases can be modeled by protocol
(3).

Replacing the revision protocol (3) in the mean dynamics
(2), we obtain the proposed ε-dynamics,

ẋi =
∑

j∈S
xj [fi(x)− (fj(x) + ε)]+

−xi
∑

j∈S
[fj(x)− (fi(x) + ε)]+,∀i ∈ S.

(4)



Notice that, if ε = 0, the revision protocol (3) becomes
a pairwise comparison protocol [4], and the ε-dynamics be-
come the classic Smith dynamics. Nevertheless, the addition
of a parameter ε > 0 provides different characteristics to
the behavior of a population that evolves according to the
ε-dynamics compared to a population under the Smith dy-
namics. These characteristics are studied in the next section.

IV. EPSILON-DYNAMICS PROPERTIES

A. Simplex Invariance
First, let us show that the ε-dynamics satisfy simplex

invariance, which is a fundamental property of population
dynamics. The invariance of the simplex ∆, defined in (1),
guarantees that the population mass remains constant, and
that the population state x belongs to Rn+ for all time, i.e.,
the amount of individuals playing any strategy is always
nonnegative.

Proposition 1: Simplex invariance. Assume that the ini-
tial population state x(0) ∈ ∆. If x(t) evolves according to
the ε-dynamics (4), then x(t) ∈ ∆, for all t ≥ 0.

Proof: Notice that x(t) ∈ ∆ if x(t) satisfies two
conditions (cf. Equation (1)): i) mass conservation, i.e.,∑
i∈S xi(t) = X; and ii) nonnegativeness, i.e., xi(t) ≥ 0,

∀i ∈ S. Therefore, our proof is divided into two steps:
1. Mass conservation: Since

∑
i∈S xi(0) = X by as-

sumption, to prove mass conservation it is sufficient to show
that the quantity

∑
i∈S xi(t) is positively invariant. Notice

that
∑
i∈S ẋi =

∑
j∈S xj

∑
i∈S [fi(x)− (fj(x) + ε)]+ −∑

i∈S xi
∑
j∈S [fj(x)− (fi(x) + ε)]+. Rewriting the

right-hand side of this mathematical equation, we obtain
that

∑
i∈S ẋi =

∑
j∈S xj

∑
i∈S [fi(x)− (fj(x) + ε)]+ −∑

j∈S xj
∑
i∈S [fi(x)− (fj(x) + ε)]+. Thus,

∑
i∈S ẋi = 0.

This implies that
∑
i∈S xi(t) is positively invariant. Hence,∑

i∈S xi(t) = X , for all t ≥ 0.

2. Nonnegativeness: Let us prove that xi(t) ≥ 0, for all
i ∈ S, and for all t ≥ 0. We proceed by contradiction.

Since the initial state x(0) belongs to Rn+, let us as-
sume that there exists a set S ′ ⊆ S associated with the
first state variables that become negative, i.e., we assume
that, for some ta > 0, the following conditions hold: i)
{xk(ta) < 0 : k ∈ S ′}; and ii) {xk(t) ≥ 0 : k ∈ S\S ′}, for
all t < ta.

Notice that the above assumption implies that there exist
tb < ta and l ∈ S ′ such that xl(tb) = 0, ẋl(tb) <
0, and xj(tb) ≥ 0, for all j ∈ S. This is a contra-
diction since, according to the ε-dynamics (4), ẋl(tb) =∑
j∈S xj(tb) [fl(x(tb))− (fj(x(tb)) + ε)]+ ≥ 0.
If the population mass is associated with a physical quan-

tity (e.g., if the ε-dynamics are used to model an engineering
problem), then simplex invariance plays a fundamental role
for guaranteeing the satisfaction of certain constraints on that
quantity. For instance, if the population mass is associated
with the energy applied by a control system, simplex invari-
ance guarantees the limitation of that energy (see, e.g., [9],
[10], [7], [11]). Benefits of simplex invariance are exploited
in some applications that are discussed later in this paper.

B. Convergence to Epsilon-Equilibria

Depending on the revision protocol, population dynamics
converge to rational outputs of games. In fact, several classic
population dynamics, including best response, Smith, and
projection dynamics converge to Nash equilibria. In this
section, we show that the proposed ε-dynamics converge to
ε-equilibria.

First, let us prove that there is an equivalence between rest
points of the ε-dynamics and ε-equilibria of the underlying
population game.

Proposition 2: Rest points. Let ε ∈ R+. The population
state xε ∈ ∆ is an equilibrium point of the ε-dynamics (4)
if and only if xε ∈ Eε.

Proof:

• “⇒”: Let Ŝ ⊆ S be the set of strategies that are used at
equilibrium, i.e., Ŝ = {i ∈ S : xεi > 0}; and let Ŝ ′ ⊆ S
be the set of strategies that are not used at equilibrium,
i.e., Ŝ ′ = {i ∈ S : xεi = 0}. Notice that, since xε ∈ ∆
by assumption, then Ŝ ∪ Ŝ ′ = S.
First, let us investigate the characteristics of the state
variables related to Ŝ ′. According to (4), we have that∑
j∈Ŝ x

ε
j [fi(x

ε)− (fj(x
ε) + ε)]+ = 0,∀i ∈ Ŝ ′. Thus,

fi(x
ε) ≤ fj(xε) + ε,∀i ∈ Ŝ ′ and j ∈ Ŝ. (5)

Now, let us characterize the state variables related to Ŝ.
Without loss of generality, assume that Ŝ = {n, n −
1, . . . , k + 1, k}, and fn(xε) ≥ fn−1(xε) ≥ · · · ≥
fk+1(xε) ≥ fk(xε). Once this is made, we proceed by
contradiction. Assume that fn(xε) > fk(xε) + ε. Under
this scenario, we can use the property stated in (5)
to obtain

∑
j∈S x

ε
j [fn(xε)− (fj(x

ε) + ε)]+ > 0, and
xn
∑
j∈S [fj(x

ε)− (fn(xε) + ε)]+ = 0. Notice that
this implies that the right hand side of (4) is different
from zero, which is a contradiction since xε is a rest
point by assumption. Therefore, fk(xε) + ε ≥ fn(xε).
A consequence of this fact is that

max
i∈Ŝ

(fi)−min
i∈Ŝ

(fi) ≤ ε. (6)

Combining (5) and (6) we can conclude that xε ∈ Eε.

• “⇐”: Since xε ∈ Eε, then fi(x
ε) − ε ≤

fj(x
ε), ∀i, j ∈ S such that xεj > 0. Thus,∑

j∈S x
ε
j [fi(x

ε)− (fj(x
ε) + ε)]+ = 0, ∀i ∈ S. More-

over, notice that xεi
∑
j∈S [fj(x

ε)− (fi(x
ε) + ε)]+ =

0, ∀i ∈ S. This equality holds since, if xεi > 0, then
fi(x

ε) ≥ fj(x
ε) − ε. Therefore, the right hand side of

(4) is equal to zero. This implies that xε is a rest point
of the ε-dynamics.

Having shown that any equilibrium point of the ε-
dynamics is an ε-equilibrium, let us make some assumptions
on the characteristics of the population game that guarantee
that the ε-dynamics converge to the set of ε-equilibria.

Assumption 1: The fitness functions satisfy the following
conditions, for all i ∈ S, and x ∈ ∆:



• fi only depends on the population playing the ith

strategy, i.e., xi (when this is the case, we write fi(xi)
to make the dependency explicit).

• fi is differentiable. Moreover, its derivative satisfies
dfi
dxi

(xi) < 0. ♦
Assumption 1 is not very restrictive. Notice that this as-

sumption implies that the fitness functions are monotonically
decreasing, which is a common characteristic in several
scenarios, e.g., coordination games [4], biological models
[12], congestion games [13], and so forth.

Next, we provide our main result on convergence of the
ε-dynamics.

Theorem 1: Convergence to ε-equilibria. Let Assump-
tion 1 hold, and let Eε be a subset of int∆, where int∆ :={
x ∈ Rn++ :

∑n
i=1 xi = X

}
is the interior of the simplex ∆.

The proposed ε-dynamics (4) asymptotically converge to the
set of ε-equilibria Eε of the underlying population game.

Proof: First, notice that since the set of ε-equilibria
belongs to the interior of the simplex ∆ by assumption,
this set is characterized by Eε = {x ∈ ∆ : maxi fi(xi) −
mini fi(xi) ≤ ε}. To study the stability properties of Eε, let
us consider the following Lyapunov function candidate

V (x) = max
i∈S

fi(xi)−min
i∈S

fi(xi). (7)

Clearly, V (x) ≥ 0, for all x ∈ ∆. Indeed, V (x) = 0
only at the Nash equilibrium, i.e., at x∗ ∈ ∆ such that
fi(x

∗
i ) = fj(x

∗
j ), for all i, j ∈ S. The derivative of (7) along

the trajectories of the ε-dynamics (4) is given by.

V̇ (x) = V̇M (x)− V̇m(x),

where VM (x) := maxi fi(xi), and Vm(x) := mini fi(xi).
Let us define the sets ΩM = {i : fi(xi) = VM (x)}, and

Ωm = {i : fi(xi) = Vm(x)}. Using the Clarke’s generalized
gradient [14], notice that V̇M (x) and V̇m(x) are given by

V̇M (x) =

{ ∑

i∈ΩM

λi
dfi
dxi

(xi)ẋi : λi ∈ R+,
∑

i∈ΩM

λi = 1

}
,

(8)

V̇m(x) =

{∑

i∈Ωm

λi
dfi
dxi

(xi)ẋi : λi ∈ R+,
∑

i∈Ωm

λi = 1

}
.

(9)
If i ∈ ΩM and x /∈ Eε, then dfi

dxi
(xi)ẋi =

dfi
dxi

(xi)
∑
j∈S xj [fi(x)− (fj(x) + ε)]+ < 0

(
since

dfi
dxi

(xi) < 0 by assumption
)
. Therefore, V̇M < 0, for

all x /∈ Eε. Furthermore, if i ∈ Ωm and x /∈ Eε, then
dfi
dxi

(xi)ẋi = − dfi
dxi

xi
∑
j∈S [fj(x)− (fi(x) + ε)]+ > 0.

Hence, V̇m > 0, for all x /∈ Eε. Thus, V̇ (x) < 0, for
all i /∈ Eε. Additionally, notice that Eε is invariant under
the ε-dynamics (cf. Proposition 2) and V̇ (x) = 0, for all
x ∈ Eε. Therefore, according to the LaSalle’s invariance
principle [15], we can conclude that every solution of (4)
converges to Eε as t→ +∞.

V. DISTRIBUTED EPSILON-DYNAMICS

The ε-dynamics described in (4) require full information to
evolve. This fact is because they are derived from the mean-
dynamics for well-mixed populations (2). In a large number

of scenarios, full information dependency is undesirable (due
to, for instance, privacy issues, scale of systems, limitations
on the communication infrastructure, etc.). Therefore, we use
the procedure proposed in [5] to relax the full information
dependency of the ε-dynamics. The core of the framework
developed in [5] lies on the mean dynamics for non-well-
mixed populations. Since the structure of a non-well-mixed
population can be described by an undirected graph G =
{S, E}, its mean dynamics are given by

ẋi =
∑

j∈Ni
xjρji(f(x), x)− xi

∑

j∈Ni
ρij(f(x), x),∀i ∈ S,

(10)
where Ni is the set of strategies that can interact with the ith

strategy following the graph G, i.e., Ni = {j ∈ S : (i, j) ∈
E}. Replacing the revision protocol (3) in the mean-dynamics
for non-well-mixed populations (10), we obtain a version of
the ε-dynamics that only uses local information to evolve.
These distributed ε-dynamics are described as follows,

ẋi =
∑

j∈Ni
xj [fi(x)− (fj(x) + ε)]+

−xi
∑

j∈Ni
[fj(x)− (fi(x) + ε)]+,∀i ∈ S.

(11)

Let us show that, although the distributed ε-dynamics do not
preserve all the appealing properties of (4), they still exhibit
a desirable behavior.

A. Simplex Invariance

Distributed ε-dynamics satisfies simplex invariance, as it
is stated in the following proposition.

Proposition 3: Simplex invariance. Assume that the ini-
tial population state x(0) ∈ ∆. If x(t) evolves according to
the distributed ε-dynamics (11), then x(t) ∈ ∆, for all t ≥ 0.

Proof: Let A = [aij ] be the adjacency matrix related
to the graph G = {S, E}, i.e., aij = 1 if (i, j) ∈ E , and
aij = 0 if (i, j) /∈ E . We recall that only undirected graphs
are considered. Therefore, aij = aji.

1. Mass conservation: Since
∑
i∈S xi(0) = X by

assumption, it is sufficient to show that the quantity∑
i∈S xi(t) is positively invariant under (11). Notice that∑
i∈S ẋi =

∑
j∈S

∑
i∈S aijxj [fi(x)− (fj(x) + ε)]+ −∑

i∈S
∑
j∈S ajixi [fj(x)− (fi(x) + ε)]+. Since aij = aji,

the right-hand side of the latter equation can be rewritten
as
∑
i∈S ẋi =

∑
j∈S

∑
i∈S aijxj [fi(x)− (fj(x) + ε)]+ −∑

j∈S
∑
i∈S aijxj [fi(x)− (fj(x) + ε)]+. This implies that∑

i∈S ẋi = 0. Thus,
∑
i∈S xi(t) is positively invariant. In

conclusion,
∑
i∈S xi(t) = X , for all t ≥ 0.

2. Nonnegativeness: To prove that xi(t) ≥ 0, for all i ∈ S,
and for all t ≥ 0. We can employ the same arguments used
in the proof of Proposition 1.

Notice that the statement of Proposition 3 does not im-
pose special constraints on the graph G. Therefore, simplex
invariance is guaranteed under any population structure that
can be described by an undirected graph.



B. Convergence Analysis

Given a population structure described by the undirected
graph G = {S, E}, the equilibrium points x∗ of the dis-
tributed ε-dynamics are characterized by the following set,

Êε = {x∗ ∈ ∆ : x∗i > 0⇒ fi(x
∗
i ) ≥ fj(x∗i )− ε,∀j ∈ Ni}.

(12)
Therefore, although any ε-equilibrium is a rest point of the
distributed ε-dynamics, a rest point of these dynamics is not
necessarily an ε-equilibrium (unless Ni = S, for all i ∈ S ,
i.e, unless the graph is complete). This is the main difference
of the distributed ε-dynamics compared to the ε-dynamics
that use full information (4).

If G is connected, then we can make a better characteriza-
tion of the equilibrium set Êε. To do this, let d(i, j) be the
distance between nodes i and j of G (the distance between
two nodes is equal to the number of edges in a shortest path
that connects these nodes). Moreover, let D be the diameter
of the graph G, which is defined as D = maxi,j∈S d(i, j).
For connected graphs, it can be shown that Êε ⊆ EDε, where
EDε is the set of Dε-equilibria of the population game, i.e.,

EDε = {x ∈ ∆ : xi > 0⇒ fi(x) ≥ fj(x)−Dε,∀i, j ∈ S}

Next, we provide a convergence result for the distributed
ε-dynamics.

Proposition 4: Convergence. Let Assumption 1 hold, and
let Êε be a subset of int∆. If the undirected graph G that
describes the population structure is connected, then the
distributed ε-dynamics asymptotically converge to the set
Êε ⊆ EDε .

Proof: In order to study the stability properties of Êε,
we use the Lyapunov function candidate V (x) defined in
(7), and employ the same procedure described in the proof
of Theorem 1 to obtain that V̇ (x) = V̇M (x)− V̇m(x), where
V̇M (x) and V̇m(x) are given in (8) and (9), respectively.

Notice that, if i ∈ ΩM , then dfi
dxi

(xi)ẋi =
dfi
dxi

(xi)
∑
j∈Ni xj [fi(x)− (fj(x) + ε)]+ ≤ 0. Therefore,

V̇M ≤ 0. Furthermore, if i ∈ Ωm, then dfi
dxi

(xi)ẋi =

− dfi
dxi

xi
∑
j∈Ni [fj(x)− (fi(x) + ε)]+ ≥ 0. Hence, V̇m ≥ 0.

Thus, V̇ (x) ≤ 0. Additionally, since G is connected by
assumption, V̇ (x) = 0 only if x ∈ Êε. Therefore, we can
use the LaSalle’s invariance principle [15] to conclude that
every solution of (11) converges to Êε as t→ +∞.

Under the conditions given in the statement of Proposition
4, a simpler characterization of the set EDε is as follows,

EDε =

{
x ∈ ∆ : max

i∈S
fi(x)−min

i∈S
fi(x) ≤ Dε

}
(13)

In the following sections, we illustrate the applicability of
the proposed ε-dynamics in some engineering problems.

VI. CONTROL WITH NOISY MEASUREMENTS

Figure 1 shows a case study composed by m tanks. The
control objective is to maintain all the tank levels at the same
reference r, while a physical constraint given by a limited
amount of water flow X must be satisfied. Moreover, we
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Fig. 1. Case study composed by m-tanks.

consider that there is an additive noise in the measurements
of each tank level. This noise is denoted by di ∈ [−d d̄].

The dynamics of the ith tank are given by ḣi = xi−Kihi,
where hi is the water level, xi is the inflow, and Ki is a
constant factor characterizing the outflow.

We compare the performance of the closed-loop system
when the tanks inflows are controlled via the Smith dynamics
(i.e., the ε-dynamics with ε = 0) and the ε-dynamics with
ε > 0. This is done by taking as strategies the tanks, and
as population mass the available water flow X . Hence, xi
(i.e., the water inflow allocated to the ith tank) corresponds
to the proportion of the players mass that choose the ith

strategy. We propose a case study composed by m = 10
tanks, with a constant available water flow given by X = 25,
and noise for each measurement in the range [−0.5, 0.5].
We assume that there is a local controller per valve, which
guarantees that each inflow reaches the reference xi imposed
by the population dynamics. The limited available water flow
establishes a constraint over all the inflows. This constraint
is managed by adding a nonnegative slack variable xm+1,
i.e., we add an strategy (m+1), and obtain according to the
simplex invariance that

∑m+1
i=1 xi = X (cf. Proposition 1).

Thus,
∑m
i=1 xi ≤ X .

The fitness function associated with the ith tank is selected
as the level error, i.e., fi = r−hmi , where hmi = hi+di is the
measured level. Thus, more water inflow is allocated to those
tanks with higher error. Figure 2(a) shows the evolution of
the tanks levels controlled via the Smith dynamics. Notice
that the disturbances in the measurements affect the values of
the fitness functions. Consequently, the performance of this
controller exhibits permanent oscillations that could have a
negative effect on the systems actuators.
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Fig. 2. Evolution of the tanks levels under: (a) Smith dynamics (ε = 0),
and (b) ε-dynamics (ε = 0.5).

In order to mitigate the problem caused by the noisy
measurements, we implement the ε-dynamics. The noise
included in the measurements is neglected as long as the
value of ε ≥ d̄. This is because the possible increment of the
fitness functions do not overtake the threshold that makes the



players (water inflow) want to change them strategies (tanks)
when they are in an ε-equilibrium. Therefore, the distribution
of population mass among the strategies (i.e., allocation of
the water flow among the tanks) remains constant. Figure
2(b) shows the performance of the ε-dynamics with ε = 0.5.
It can be seen the significant improvement and the mitigation
of the noise under these dynamics.

VII. COMMUNITY WEALTH DISTRIBUTION

Consider a community composed by n individuals. Let
xi > 0 be the wealth of the ith individual. Moreover,
assume that the ith individual can only interact with a
set of individuals in the community (its neighbors). These
“allowed” interactions are described by an undirected graph
G = {V, E}, where: V is the set of nodes, which are related
to the individuals of the community, i.e., V = {1, . . . , n};
and E is the set of edges, which are related to the interaction
links between individuals, i.e., if (i, j) ∈ E , then the ith

individual can interact with the jth individual. Our objective
is to design a wealth distribution policy that mitigates the
wealth gap in the considered community.

Previous works have employed classic consensus protocols
[8]. However, the scenario in which all the individuals
achieve the same wealth is not realistic. Hence, instead
of using consensus algorithms, we propose to apply the
distributed ε-dynamics with fi(xi) = −xi, for all i ∈ S .
Notice that this is equivalent to use the revision protocol
ρij = [xi − (xj + ε)]+, i.e., the ith individual only donates
part of his/her wealth to the jth individual if the wealth gap
between these two people is greater than a threshold ε > 0.

In order to illustrate the performance of the proposed
method, let us consider a community composed by 100 indi-
viduals, where interactions among individuals are described
by a path graph. Initially, the wealths of individuals are
distributed as follows: x1(0) = $0.5, x2(0) = $1, x3(0) =
$1.5, . . . , x99(0) = $49.5, x100 = $50 (i.e., xi(0) = $0.5i).
Figure 3(a) shows the evolution of the wealth of each
individual if the community applies a wealth distribution
policy based on the ε-dynamics (11) with ε = $0.02. Notice
that the wealth gap decreases along the time and the wealth
distribution reaches an equilibrium x∗ that belongs to the
set EDε (cf. Equation (13)), where D = 100. This fact is
because maxi∈S x∗i −mini∈S x∗i < $2, i.e., the wealth gap
decreases to a value that is lower than Dε. On the other
hand, Figure 3(b) shows the evolution of the individuals’
wealth under the same scenario described above, but using
a complete graph, i.e., individuals have full information. In
this case, evolution of the wealth distribution is faster, and
the wealth gap decreases to a value equal to ε, i.e., an ε-
equilibrium is reached.

VIII. CONCLUSIONS

We have deduced a centralized and distributed class of
population dynamics parameterized by a scalar term ε as
an extension of the classic pairwise comparison revision
protocol and the mean dynamics. As a result, the ε-dynamics
have been obtained, which converge to ε-equilibria (a relaxed
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Fig. 3. Evolution of the wealth of each individual under: (a) Distributed ε-
dynamics (ε = 0.02), and (b) ε-dynamics with full information (ε = 0.02).

condition of Nash equilibria). Stability of the ε-equilibrium
and invariance of the set of allowed population states (sim-
plex) have been formally proven. Furthermore, a case study
with imperfect information (a more realistic scenario than
those scenarios considered in other related works) has shown
the enhancement of the closed-loop performance with an ε-
dynamics-based controller, which is capable to mitigate noisy
measurements in comparison to other population-dynamics-
based controllers that converge to a Nash equilibrium. Be-
sides, we have taken advantage of the properties of the ε-
dynamics to develop a model of wealth distribution in poor
communities.
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