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Marcin Witczak, Member, IEEE, 1 and Vicenç Puig, Member, IEEE, 2 and Damiano Rotondo, Member, IEEE 2

and Michal de Rozprza Faygel 1 and Marcin Mrugalski 1

Abstract— The paper is devoted to the problem of designing
robust unknown input observer (UIO) for fault estimation
purpose. The proposed approach is based on the Takagi-Sugeno
models which can be effectively applied for modelling of the
wide class of nonlinear systems. It also revisits the recent results
proposed in the literature and provides a less restrictive design
procedure of a robust UIO. In particular, the general UIO
strategy and theH∞ framework are provided to design a robust
fault estimation methodology. The resulting design procedure
guarantees that a prescribed disturbance attenuation level is
achieved with respect to the state estimation error. The main
advantage of the proposed approach boils down to its simplicity
because it reduces to solving a set of Linear Matrix Inequalities
(LMIs). The final part of the paper presents an illustrative
example devoted to the fault estimation of a three blade 1 MW
variable-speed, variable-pitch wind turbine.

I. INTRODUCTION

The problem of fault estimation, which can be also per-
ceived as the estimation of an unknown input is widely
discussed in the literature. Among many different strate-
gies, a few of them deserve particular attention, namely:
augmenting the state vector adding an unknown input [28],
two–stage Kalman filter [13], minimum variance input and
state estimator [7], adaptive estimation [31], sliding mode
high-gain observers [25] and finally an H∞ approaches [19].
Such approaches have significant practical meaning since
they can be efficiently applied for fault diagnosis [11], [15],
[18], [28] and Fault-Tolerant Control (FTC) [5], [17], [20],
[21]. Indeed, fault estimation can be used to implement the
three-step fault diagnosis procedure, which boils down to
fault detection, isolation and identification [3]. Similarly, an
efficient FTC is possible if and only if there is an infor-
mation about the size of the fault. Without this knowledge
appropriate compensation of the fault effect is impossible.
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In the paper, a novel robust fault estimation approach
for nonlinear systems, which can be efficiently applied to
the fault diagnosis procedure, is proposed. The developed
method constitutes the extension of the general idea of an
Unknown Input Observer (UIO) [6], [28]. Such an approach
was initially designed to tolerate some level of a model
inaccuracy in order to make a fault diagnosis more reli-
able [27]. It is worth to emphasis that the literature contains
a numerous examples of designing of UIOs for the purpose
of their applications in the model-based fault diagnosis [9],
[10], [12], [28], [29]. However, it should be underlined that
such methods can be effectively applied only for a narrow
class of nonlinear systems e.g. Lipschitz or bilinear systems.
In such case the problem of designing of novel robust UIO
for the fault diagnosis purpose is still justified.

In particular, the main contribution of the paper is con-
cerned with a novel design procedure of a robust UIO for
fault estimation of nonlinear discrete-time systems modelled
by Takagi-Sugeno (T-S) technique [22]. The paper revis-
its recent results in this emerging area [2] and provides
less restrictive design procedure for the design of a robust
UIO. The general UIO strategy and the H∞ framework
are provided to design a robust fault estimation scheme.
The resulting design procedure guarantees that a prescribed
disturbance attenuation level is achieved with respect to the
state estimation error. The core advantage of the proposed
approach boils down to its simplicity following from the
fact that the problem of designing of robust UIO reduces
to solving a set of LMIs. The effectiveness of the developed
approach is shown on the example of fault estimation of
a three blade 1 MW variable-speed, variable-pitch wind
turbine.

II. PRELIMINARIES

A diagnosed system can be modelled by a T-S fuzzy
model. It can be perceived as a series of locally linearised
models from the nonlinear one. They can be obtained by the
transformation of a nonlinear model of the diagnosed system
by the application of the nonlinear sector approach [15], [22],
[23]. In the case of the T-S fuzzy model a nonlinear dynamic
system can be described by linear models, so-called fuzzy IF-
THEN rules, representing the local system behaviour around
some operating points. The proposed structure may represent
a nonlinear system with control-affine state equation. Each
of i = 1, . . . ,M rules of the T-S model, which has p



antecedents, can be expressed as follows:

Ri : IF s1k is F i
1 and . . . and spk is F i

p, THEN

xk+1 = Aixk +Biuk +Bifk +W i
1wk, (1)

yk = Cxk +W i
2wk, (2)

where xk ∈ Rn, uk ∈ Rr and yk ∈ Rm represent the
state, nominal control input and system output, respectively.
Moreover, fk ∈ Rr represents the actuator fault, F i

j (j =
1, . . . , p) denotes fuzzy sets, wk ∈ Rm is a an exogenous
disturbance vector and sk =[s1k, s

2
k, . . . , s

p
k]T is a known

vector of so-called premise variables [15], [22].
Note that the fault fk can be represented as unknown input

along with its distribution matrices Bi, i = 1, . . . ,M , and
hence, the design objective can be perceived as a twofold
task:
• design of an UIO,
• fault estimation based on state estimates obtained by the

UIO.
Let us start with a short review of recent results [2] regarding
the first task. In the above approach, the unknown input is
also present in the output equation (2), which may represent
a sensor fault. Since the goal is to obtain the estimate of
state and actuator fault, this term will be skipped in further
deliberations. The T-S fuzzy models considered in [2] are:

xk+1 =

M∑
i=1

hi(sk)[Aixk +Biuk +Bifk +W i
1wk] (3)

yk = Cxk +W 2wk, (4)

where hi(sk) are normalized rule firing strengths which are
defined as follows:

hi(sk) =
T p
j=1µF ij

(sjk)∑M
i=1(T p

j=1µF ij
(sjk))

(5)

whereas T represents a t-norm (e.g., product). The expres-
sion µF ij

(sjk) denotes the grade of membership of the premise
variable sjk. Furthermore, it should be underlined that the
expressions hi(sk) for (i = 1, . . . ,M ) satisfies:{ ∑M

i=1 hi(sk) = 1,
0 6 hi(sk) 6 1, ∀i = 1, ...,M.

(6)

while the associated unknown input observer is

zk+1 =

M∑
i=1

hi(sk)[N izk +Giuk +Liyk], (7)

x̂k = zk −Eyk. (8)

Let us define the state estimation error ek = xk− x̂k, which
for (3)–(4) and (7)–(8) obeys:

ek+1 =

M∑
i=1

hi(sk)
[
N iek + (TAi −KiC −N i)xk+

+ (TBi −Gi)uk + TBifk+

(TW i
1 −K

iW 2)wk +EW 2wk+1

]
(9)

with

T = I +EC, Ki = N iE +Li, (10)

which under

N i = TAi −KiC, (11)

TBi −Gi = 0, (12)

TBi = 0, (13)
EW 2 = 0, (14)

TW i
1 −K

iW 2 = 0 (15)

boils down to

ek+1 =

M∑
i=1

hi(sk)N iek. (16)

Subsequently, the authors [2] show that the design procedure,
which guarantees that ek converges asymptotically to zero,
can be reduced to solving a relatively simple set of LMIs.

Unfortunately, the proposed strategy has some serious
limitations:
• by comparing (2) and (4), it is obvious that W i

2 =
W 2, which means that these matrices are constant,
and hence, the class of nonlinear systems that can be
modeled with (3)–(4) is limited;

• robustness to external disturbances wk is achieved by
eliminating them from (9), which requires that (14)–
(15) are satisfied. This can be realized under perfect
knowledge about W 1 and W 2, which is rather vain to
expect in practice;

• no solution for estimating fk is provided in [2].
In order to solve the above-mentioned difficulties, in the
subsequent section of the paper a novel design procedure,
which eliminates these drawbacks will be proposed.

III. A NOVEL DESIGN PROCEDURE

The UIO structure employed in this paper is given by (7)–
(8), while the system (1)–(2) can be described by

xk+1 =

M∑
i=1

hi(sk)[Aixk +Biuk +Bifk +W i
1wk] (17)

yk = Cxk +

M∑
i=1

hi(sk)W i
2wk, (18)

As the structure of the UIO is given, it is possible to
provide its design procedure. As it was mentioned, instead of
eliminating the effect ofwk, its influence on the performance
of the UIO will be minimized. For that purpose, let us assume
that

l2 = {w ∈ Rn| ‖w‖l2 < +∞} , (19)

‖w‖l2 =

( ∞∑
k=0

‖wk‖2
) 1

2

. (20)

The objective of further deliberations is to design the ob-
server (7)–(8) in order to assure that the state estimation



error ek = xk − x̂k is asymptotically convergent and the
following upper bound is guaranteed

‖e‖l2 ≤ ω‖w‖l2 (21)

where ω > 0 is a prescribed disturbance attenuation level.
Using (8) and (18), it can be shown that the state estima-

tion error obeys

ek = Txk − zk +

M∑
j=1

hj(sk)EW j
2wk, (22)

where T = I + EC, while its evolution (determined with
(22), (7)–(8), (17)–(18)) is described by

ek+1 =

M∑
i=1

hi(sk)

M∑
j=1

hj(sk)

M∑
l=1

hl(sk+1)[N iek+

+ [TBi −Gi]uk + TBifk + W̄
i,j
1 wk + W̄

l
2wk+1] (23)

where

N iT = TAi −LiC, (24)

and W̄ i,j
1 = TW i

1 −N iEW j
2 − LiW j

2 and W̄ l
2 = EW l

2 .
To decouple the fault effect from (23) it is evident that T

should be calculated to satisfy

TBi = [I +EC]Bi = 0, i = 1, . . . ,M, (25)

and, as a result, matrix E is obtained that is one of the
UIO design parameters (cf. (8)). Note that the existence
conditions of the solution to (25) are provided in [2]. Finally,
the influence of the input on the estimation error can be
eliminated by setting another UIO design parameter:

Gi = TBi, i = 1, . . . ,M. (26)

Thus, equation (23) boils down to

ek+1 =

M∑
i=1

hi(sk)

M∑
j=1

hj(sk)

M∑
l=1

hl(sk+1)[N iek+

+ W̄
i,j
1 wk + W̄

l
2wk+1], (27)

Thus, on the contrary to the methods developed in [16],
[30], disturbance attenuation level ω should be achieved with
respect to the fault estimation error but not the state estima-
tion error. Unfortunately, in the observer design approaches
presented in the literature [16], [30] the state estimation error
depends on wk only, while (27) contains both wk and wk+1.
This situation requires a different approach that will be given
by the following theorem, which constitutes the preliminary
results of present Section.

Theorem 1: For a prescribed disturbance attenuation level
ω > 0 for the state estimation error (27), the H∞ observer
design problem for the system (17)–(18) and the observer
(7)–(8) is solvable if there exist matrices P i � 0, N i, Li

(i = 1, . . . ,M ) and U such that the following constraints
are satisfied

M∑
j=1

hj(sk)

M∑
i=1

hi(sk)

M∑
l=1

hl(sk+1)Υl
i,j ≺ 0, (28)

where

Υl
i,j =


I − P i 0 0 (N i)TUT

0 −µ2I 0 (W̄
i,j
1 )TUT

0 0 −µ2I (W̄
i
2)TUT

UN i UW̄
i,j
1 UW̄

i
2 P l −U −UT

 (29)

and

N iT = TAi −LiC, i = 1, . . . ,M. (30)
Proof. The task of H∞ observer design [16], [30] relies on
the determination of the gain matrix Ki such that

lim
k→∞

e0 = 0 for wk = 0, (31)

‖e‖l2 ≤ ω‖w‖l2 for wk 6= 0, e0 = 0. (32)

In this work it is proposed that is sufficient to obtain a
Lyapunov function Vk for k = 0, . . .∞ for which the
following inequality is fulfilled:

∆Vk + eTk ek − µ2wT
kwk − µ2wT

k+1wk+1 < 0, (33)

where ∆Vk = Vk+1 − Vk, µ > 0. Indeed, if wk = 0, (k =
0, . . . ,∞) then (33) boils down to

∆Vk + eTk ek < 0, k = 0, . . .∞, (34)

and hence ∆Vk < 0, which leads to (31). If wk 6= 0 (k =
0, . . . ,∞), then (33) yields

J =

∞∑
k=0

(
∆Vk + eT

k ek − µ2wT
k wk − µ2wT

k+1wk+1

)
< 0 (35)

which can be rewritten as follows:

J = −V0 +

∞∑
k=0

eT
k ek − µ2

∞∑
k=0

wT
k wk − µ2

∞∑
k=0

wT
k+1wk+1 < 0

(36)
Bearing in mind that

µ2
∞∑
k=0

wT
k+1wk+1 = µ2

∞∑
k=0

wT
kwk − µ2wT

0w0, (37)

the inequality (36) can be written as

J = −V0 +

∞∑
k=0

eT
k ek − 2µ2

∞∑
k=0

wT
k wk + µ2wT

0 w0 < 0 (38)

Knowing that V0 = 0 for e0 = 0, (38) leads to (32) with
ω =
√

2µ.
Since the general framework for designing the robust

observer is given, then the following form of the Lyapunov
function is proposed:

Vk =

M∑
i=1

hi(sk)eTkP
iek, P i � 0. (39)

Thus, by defining vk = [eTk ,w
T
k ,w

T
k+1]T it can be shown

that the condition (33) is equivalent to

M∑
j=1

hj(sk)

M∑
i=1

hi(sk)

M∑
l=1

hl(sk+1)vTk Φl
i,jvk < 0 (40)



where Φl
i,j is:


(Ni)TP lNi + I − P i (Ni)TP lW̄

i,j
1 (Ni)TP lW̄ l

2

(W̄
i,j
1 )TP lNi (W̄

i,j
1 )TP lW̄

i,j
1 − µ2I (W̄

i,j
1 )TP lW̄ l

2

(W̄ l
2)TP lNi (W̄ l

2)TP lW̄
i,j
1 (W̄ l

2)TP lW̄ l
2 − µ2I


(41)

Let us remind the following lemma [4]:
Lemma 1: The undermentioned statements are equivalent
1) There exists X � 0 such that

V TXV −W ≺ 0 (42)

2) There exists X � 0 such that[
−W V TUT

UV X −U −UT

]
≺ 0. (43)

Applying Lemma 1 to (41) leads to (29), which completes
the proof. Note that (28) requires further relaxation procedure
in order to be tractable within the effective LMI framework.
A basic sufficient solution to this problem were described
in [26] and further improved by many researchers [8] and
the references therein. As indicated in [8], the conditions
provided by [24] lead to a good compromise between con-
servatism and complexity, which in the case (28) leads to the
following lemma:

Lemma 2: Condition (28) is fulfilled providing the fol-
lowing conditions hold:

Υl
i,i ≺ 0, i ∈ {1, . . . ,M}, (44)
2

M − 1
Υl

i,i + Υl
i,j + Υl

j,i ≺ 0, i, j, l ∈ {1, . . . ,M}, i 6= j (45)

IV. FAULT ESTIMATION STRATEGY

Since the design procedure of the UIO is provided, it is
possible to propose a fault estimation strategy that is based on
the obtained state estimates. For that purpose, let us rewrite
the system (17)–(18):

xk+1 = A(sk)xk +B(sk)uk +B(sk)fk+

+W 1(sk)wk, (46)
yk+1 = Cxk+1 +W 2(sk+1)wk+1, (47)

Following [7], [28], to obtain fk from (46)–(47) it is
necessary to satisfy

rank(CB(sk)) = rank(B(sk)) = r, (48)

The problem boils down to checking the full rank property
of all convex combinations of matrixes Bi, i = 1, . . . ,M as
well as CBi i = 1, . . . ,M . Let us start with checking the
first condition concerning the property of Bi, i = 1, . . . ,M .
Note that the task of checking the full rank property of CBi

i = 1, . . . ,M , can be realized in the same way.
Let us also assume that the system is observable and the

matrix BM is a full rank one (if not, it can be already
concluded that the full rank property does not hold). Let
us define

Qp,p = BpTBp, p = 1, . . . ,M (49)

Qp,a = BpTBa +BaTBp−
BaTBa −BpTBp for p < a (50)

Rp
a,b =


Qp,p if (a, b) = (1, 1)
Qb−1,p if a = 1 ∧ b = 2, . . . , p
I if a = b ∧ 1 < b < k
−I if b = 1 ∧ a = p+ 1
0 otherwise

(51)

Theorem 2: The undermentioned statements are equiva-
lent

(a) All convex combinations of B1, . . . ,BM have full
rank.

(b) BM has full row rank and the (M − 1)Mn-by-
(M − 1)Mn matrix.

V =


R1R

−1
M V 1,2 V 1,3 . . . V 1,4

−IMn IMn 0Mn . . . 0Mn

0Mn −IMn IMn . . . 0Mn

. . . . . . . . . . . . . . .
0Mn . . . 0Mn −IMn IMn

 (52)

where V 1,2 = (R2−R1)R−1M , V 1,3 = (R3−R2)R−1M and
V 1,4 = (RM−1−RM−2)R−1M is a block P -matrix [14] with
respect to the partition {F 1, . . . ,FM−1} of {1, . . . , (M −
1)Mn}, with F i = {(M − 1)Mn + 1, . . . , iMn}, i =
1, . . . ,M − 1.
Proof. Proof can be derived by a direct application of
Theorem 2 given in [14].

Remark 1: Following [14], a sufficient condition for a real
matrix V to be block P-matrix with respect to any partition is
that all its principal minors are positive. This feature makes
it possible to easily check the condition of Theorem 2
Since the practical way of verifying (48) is provided, it is
possible to calculate

H(sk) =

(
M∑
i=1

hi(sk)CBi

)+

. (53)

where expression (·)+ stands for the left inverse of its
argument. Multiplying (47) by expression H(sk), and sub-
stituting (46), the following equation defining the fault fk

can be obtained

fk = H(sk)[yk+1 −CA(sk)xk+

−CW 1(sk)wk −W 2(sk+1)wk+1]− uk. (54)

Thus, the fault estimate is given by

f̂k = H(sk, sk+1)[yk+1 −C(sk+1)A(sk)x̂k]− uk. (55)

where x̂k is the state estimated with the UIO (7)–(8).

V. ILLUSTRATIVE EXAMPLE

Let us consider a three blade 1 MW variable-speed,
variable-pitch wind turbine [1], which is nonlinear MIMO
system. To derive a T-S model, the nonlinear functions of
pitch angle and wind speed were linearized in the extreme
points [βmin,νmin] and [βmax,νmax] resulting in a T-S
model (a detailed description is given in [1]). For sampling
time T s = 0.01 s a T-S fuzzy discrete-time model of Wind
Energy Conversion System (WECS) [1] was obtained. Where
the state vector x = [θs,Ωg,Ωr,β]T is in turn torsion



angle, angular velocity of generator, angular velocity of rotor
and actuation of pitch received from pitch controller. While
the inputs of the system are defined as u = [βd,ωz, v]T ,
where βd stands for demanded control action from pitch
controller, ωz denotes the applied control action to the
electromechanical system, while v represents the wind speed
varying from 0 to 25 m/s. The system meets condition (48)
and for a given attenuation level µ = 0.38 and decay rate
τ = 0.9 the T-S UIO was obtained.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

Discrete time

w

Fig. 1. Function of wind speed input wk

The analysis starts from fault-free scenario (fk = 0) and
input is given by u = [2.5, 0, v] where initial conditions of
the observer and system are x̂0 = x0, x0 = [0, 1, 1, 0]T ,
while exogenous disturbance input wk ∼ 0.01N (0, 0.12I).
Figure 1 portrays the evolution of the wind. Having all pa-
rameters of the system it is possible to compute (35), which
is depicted in Fig. 2. This results clearly indicates that the
prescribed disturbance attenuation level is achieved. Second
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T
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Fig. 2. Evolution of ∆Vk + εTf,kεf,k − µ
2wT

k wk − µ2wT
k+1wk+1

scenario is performed for wk = 0 and x0 6= x̂0. The results
are presented in Fig. 3 and shows the convergence of the
observer. As it can be seen, the state estimation error vanishes
to zero very quickly. Since the fault-free performance of
the UIO is verified, it is possible to proceed to the faulty
scenario. For this purpose, a fault related to the third input
was simulated. This fault can be perceived as a wind sensor
fault, and hence the sensor provides wrong measurements
into the system. This scenario has three different phases,

0 2 4 6 8 10 12 14
0
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2.5
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5

Discrete time

|| 
e k||

Fig. 3. Evolution of ‖ek‖ (for k = 0, . . . , 14)

which are defined as follows:

f3,k =


−0.001, for 1000 ≥ k ≥ 1200,
0.5, for 2000 ≥ k ≥ 3000,
−2, for 1500 ≥ k ≥ 1700,
0, otherwise.

(56)

Figure (4) presents state x2 and its estimate. As can be seen,

1156 1158 1160 1162 1164 1166 1168 1170 1172 1174 1176

2.1669
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2.167
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x
2
,
x

2

state

state estimate

Fig. 4. State x2 (solid line) and its estimate x̂2 (dotted line)

the UIO is tracking the inaccessible state with a very good
quality. Faults and their estimates are presented in Figs. 5,
6, and 7, respectively. The obtained results clearly indicate
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Fig. 5. Scenario 1: Fault (solid line) and its estimate f̂1 (dotted line)

that the faults were obtained with a high precision, which
confirms that the proposed procedure can be applied to highly
nonlinear systems such as WECS.

VI. CONCLUSIONS

The primary goal of the paper was to provide a new
design procedure for an UIO for T-S fuzzy systems, and
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Fig. 6. Scenario 2: Fault (solid line) and its estimate f̂1 (dotted line)
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Fig. 7. Scenario 3: Fault (solid line) and its estimate f̂1 (dotted line)

to show how to use it for the purpose of fault estimation.
The proposed procedure can be used to design a fault
identification scheme in such a way that a prescribed dis-
turbance attenuation level is achieved with respect to the
state estimation error, while guaranteeing the convergence
of the observer. Moreover, the developed methodology is
less restrictive than the recent developments presented in the
literature. The effectiveness of the proposed approach was
shown on example of the fault estimation of a three blade 1
MW variable-speed, variable-pitch wind turbine.
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