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aInstitute of Control and Computation Engineering, University of Zielona Góra, ul. Podgórna 50,
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Abstract

This paper provides a necessary and sufficient condition for the reachability of
discrete-time Takagi-Sugeno fuzzy systems that is easy to apply, such that it con-
stitutes a practical test. The proposed procedure is based on checking if all the
principal minors associated to an appropriate matrix are positive. If this condition
holds, then the rank of the reachability matrix associated to the Takagi-Sugeno
fuzzy system is full for any possible sequence of premise variables, and thus the
system is completely state reachable. On the other hand, if the principal minors
are not positive, the property of the matrix being a block P one with respect to a
particular partition of a set of integers is studied in order to conclude about the
reachability of the Takagi-Sugeno system. Examples obtained using an inverted
pendulum are used to show that it is easy to check this condition, such that the
reachability analysis can be performed efficiently using the proposed approach.
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1. Introduction

Reachability and controllability are among the most important properties of
dynamical systems. In simple words, reachability means that it is possible to steer
a system from an arbitrary initial state to an arbitrary final state using the set of
admissible controls [1]. On the other hand, controllability concerns the existence
of an input sequence that transfers the state from an arbitrary initial condition to
the origin [1]. Reachability always implies controllability, but the converse is true
only when the state transition matrix is nonsingular [1].

The systematic study of these properties started at the beginning of the 1960s,
when the corresponding theory began to be developed for time-invariant and time-
varying linear control systems, leading to a big number of publications, the list of
which can be found in the monographs, e.g. [2], or survey papers [3], [4].

The last decades have attracted a growing interest in the development of reach-
ability and controllability theory for dynamical systems. A few papers have dealt
with the case of nonlinear and semi-linear systems, for which linearization meth-
ods and generalization of open mapping theorem are extensively used [5, 6, 7, 8].
The controllability of infinite dimensional systems has been studied in [9, 10].
Further investigation has addressed the problem for stochastic [11, 12, 13, 14],
delayed [15, 16], fractional [17, 18, 19] and switched [20, 21, 22, 23] systems.

In the last decades, gain-scheduling control techniques have consolidated as an
efficient tool for analysis and synthesis problems for nonlinear systems [24]. The
strength of these techniques consists in the fact that the properties of the nonlinear
systems are checked on the basis of a collection of linear systems, that is also used
for designing the controller. This is done in a divide and conquer fashion so that
well established linear methods can be applied to nonlinear problems. Among the
successful gain scheduling approaches, Takagi-Sugeno (TS) systems [25] provide
an effective way of representing nonlinear systems with the aid of fuzzy sets, fuzzy
rules and a set of local linear models (see [26, 27, 28, 29, 30, 31, 32, 33] and the
references therein). The overall model of the system is obtained by merging the
local models through fuzzy membership functions.

The a priori determination of reachability and controllability properties for TS
fuzzy models is an open problem, and there exist very few works related with this
issue. In [34], the authors introduced the idea of soft-controllability, i.e. the exis-
tence of a control sequence that forces the system to a reachable state close enough
to the desired final state, and have analyzed this property using graph representa-
tions. A sufficient condition for assessing the robust controllability of TS fuzzy
systems with parametric uncertainties was provided in [35]. An approach based
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on the linearization of the TS fuzzy model was introduced in [36]. However, when
the resulting linearized system is non-controllable, the controllability property of
the overall fuzzy system must be analyzed through a complex algorithm that may
fail in some cases. Finally, [37] analyzes the controllability property for a class
of TS fuzzy systems, independently of the form of the membership functions, but
considering that at most two fuzzy rules are activated at the same time. From the
literature review, it seems that at this moment there is a lack of a practical test
capable of assessing the reachability property of TS fuzzy systems, and with the
relevant feature of being not only a sufficient condition but a necessary one too.

The goal of this paper is to fill this gap, by providing a necessary and sufficient
condition for the reachability of discrete-time TS fuzzy systems. This condition
is derived using the results on the rank characterization of convex combination of
matrices [38]. The provided condition involves checking whether or not a matrix
is a block P one [39] with respect to some partition of an appropriate set of inte-
gers. Illustrative examples are used to show that it is easy to check the proposed
condition, such that it constitutes a practical test for assessing the reachability of
discrete-time TS fuzzy systems.

The paper is structured as follows: Section 2 recalls some notions that are
used throughout the paper. In particular, the notions of real P-matrices, block
P-matrices, TS systems, and complete state reachability are recalled. Section 3
introduces the main result that is illustrated through examples in Section 4. Fi-
nally, Section 5 draws the conclusions.

2. Preliminaries

2.1. Real and block P-matrices
Real P-matrices are well known in matrix theory because they play an impor-

tant role in many applications [40]. In [41], it was shown that the P-property of a
single matrix is equivalent to the nonsingularity of all matrices in a certain convex
matrix set. This motivated generalizing this notion, introducing block P-matrices
[39] that were later used to study the Schur [42] and Hurwitz [43] stability of
convex combinations of matrices.

A matrix A ∈ Rn×n is called a P-matrix if all its principal minors are positive
[40]. On the other hand, a matrix A ∈ Rn×n is a block P-matrix with respect to a
partition N(λ ) of N = {1, . . . ,n} into λ ∈ [1,n] pair-wise disjoint nonvoid subsets
Ni of cardinality ni, i = 1, . . . ,λ , if for any T ∈T

(λ )
n

det(TA+(I−T )) , 0 (1)
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where T λ
n is the set of all diagonal matrices T ∈ Rn×n such that T [Ni] = tiI,

ti ∈ [0,1], i = 1, . . . ,λ , where T [Ni] is the principal submatrix of T with row and
column indices in Ni [40]. A P-matrix is also block P-matrix with respect to any
partition [40].

Example. Consider the matrices:

A
′
=

 1 −1 0
1 1 −1
0 2 1

 A
′′
=

 1 −1 0
1 0 −1
0 2 1


It is easy to verify that A

′
is a P-matrix, since all its principal minors are posi-

tive:
|A′|= 4 a′11 = 1 a′22 = 1 a′33 = 1∣∣∣∣ a′11 a′12

a′21 a′22

∣∣∣∣= 2
∣∣∣∣ a′11 a′13

a′31 a′33

∣∣∣∣= 1
∣∣∣∣ a′22 a′23

a′32 a′33

∣∣∣∣= 3

On the other hand, A
′′

is not a P-matrix, since a
′′
22 = 0. Let us consider T

′
=

diag{t1, t2, t2}, which corresponds to the partition of N = {1,2,3} into the subsets
{1} and {2,3}. It follows that:

det
(
T ′A′′+ I−T ′

)
= det

 1 −t1 0
t2 1− t2 −t2
0 2t2 1

= 1− t2 +2t2
2 + t1t2 = 0

has the following solution:

t1 =−
2t2

2 − t2 +1
t2

where t2 has an arbitrary value. Hence, since whenever t2 ∈ [0,1], t1 < [0,1], it can
be concluded that A

′′
is a block P-matrix with respect to the partition of {1,2,3}

into {1} and {2,3}. If T ′′ = diag{t1, t2, t1} is considered instead, then:

det
(
T ′′A′′+ I−T ′′

)
= det

 1 −t1 0
t2 1− t2 −t2
0 2t1 1

= 1− t2 +3t1t2 = 0

has the following solution:

t1 =
t2−1

3t2
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for an arbitrary value of t2. Since when t2 = 1, then t1 = 0, it can be concluded
that A′′ is not a block P-matrix with respect to the partition of {1,2,3} into {1,3}
and {2}.

The following lemmas, taken from [38], play an important role in the devel-
opment of a practical test for assessing the reachability of discrete-time Takagi-
Sugeno fuzzy systems.

Lemma 1. Let M j ∈ Cnr×nc , j = 1, . . . ,J, and let us define:

Q j, j = M j (M j)T
j = 1, . . . ,J (2)

Q j,a = M j (M a)T +M a (M j)T −M a (M a)T −M j (M j)T
j < a (3)

and the matrices R j, j = 1, . . . ,J:

R j = (R j
a,b)a,b∈[1,J] =


R j

1,1 R j
1,2 . . . R j

1,J

R j
2,1 R j

2,2 . . . R j
2,J

...
...

. . .
...

R j
J,1 R j

J,2 . . . R j
J,J

 (4)

with the generic block entry R j
a,b defined as:

R j
a,b =


Q j, j if a = 1,b = 1
Qb−1, j if a = 1,b = 2, . . . , j
Inr if a = b,1 < b≤ J
−Inr if b = 1,a = j+1
Onr otherwise

(5)

Then, the following statements are equivalent:

(a) All convex combinations of matrices M j, j = 1, . . . ,J are full row-rank;

(b) M J is full row-rank and the (J−1)Jnr× (J−1)Jnr matrix:

R1R−1
J (R2−R1)R−1

J · · · (RJ−2−RJ−3)R−1
J (RJ−1−RJ−2)R−1

J
−IJnr IJnr · · · OJnr OJnr

OJnr −IJnr · · · OJnr OJnr
...

...
. . .

...
...

OJnr OJnr · · · IJnr OJnr

OJnr OJnr · · · −IJnr IJnr


(6)

is a block P-matrix with respect to the partition {F1, . . . ,FJ−1} of

{1, . . . ,(J−1)Jnr}, with Fi = {(i−1)Jnr +1, . . . , iJnr}, i = 1, . . . ,J−1.
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Proof: See Theorem 2 in [38]. �

In the case of square matrices, the full row-rank condition corresponds to non-
singularity, and the following lemma can be used instead.

Lemma 2. Let M j ∈ Cn×n, j = 1, . . . ,J. Then, the following statements are
equivalent:

(a) All convex combinations of matrices M j, j = 1, . . . ,J are nonsingular;

(b) M J is nonsingular and the (J−1)n× (J−1)n matrix:

W =



M 1(M J)−1
(
M 2−M 1

)
(M J)−1 · · ·

(
M J−1−M J−2

)
(M J)−1

−In In · · · On
On −In · · · On
...

...
. . .

...
On On · · · On
On On · · · In


(7)

is a block P-matrix with respect to the partition {F1, . . . ,FJ−1} of

{1, . . . ,(J−1)n}, with Fi = {(i−1)n+1, . . . , in}, i = 1, . . . ,J−1.

Proof: See Theorem 4 in [42]. �

2.2. Takagi-Sugeno systems
TS systems, as proposed by Takagi and Sugeno [25], are described by local

models merged together using fuzzy IF-THEN rules [28], as follows:

IF ϑ1(k) is Mi1 AND . . . AND ϑp(k) is Mip

T HEN
{

xi(k+1) = Aix(k)+Biu(k)
yi(k) =Cix(k)+Diu(k)

i = 1, . . . ,N
(8)

where xi ∈ Rnx , x ∈ Rnx , u ∈ Rnu and yi ∈ Rny are the local state, the global state,
the input, and the local output vector, respectively, and ϑ1(k), . . . ,ϑp(k) are the
premise variables, that can be functions of the state variables, external distur-
bances and/or time. Each linear consequent equation represented by Aix(k) +
Biu(k) is called a subsystem.

Given a pair (x(k),u(k)), the state and output of the TS system can be easily
inferred:

x(k+1) =
N
∑

i=1
wi (ϑ(k))(Aix(k)+Biu(k))

/
N
∑

i=1
wi (ϑ(k))

=
N
∑

i=1
ρi (ϑ(k))(Aix(k)+Biu(k)) = Akx(k)+Bku(k)

(9)
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y(k) =
N
∑

i=1
wi (ϑ(k))(Cix(k)+Diu(k))

/
N
∑

i=1
wi (ϑ(k))

=
N
∑

i=1
ρi (ϑ(k))(Cix(k)+Diu(k)) =Ckx(k)+Dku(k)

(10)

where ϑ(k) = [ϑ1(k), . . . ,ϑp(k)] is the vector containing the premise variables,
and wi (ϑ(k)) and ρi (ϑ(k)) are defined as follows:

wi (ϑ(k)) =
p

∏
j=1

Mi j
(
ϑ j(k)

)
(11)

ρi (ϑ(k)) =
wi (ϑ(k))

N
∑

i=1
wi (ϑ(k))

(12)

where Mi j
(
ϑ j(k)

)
is the grade of membership of ϑ j(k) in Mi j and ρi (ϑ(k)) is

such that: 
N
∑

i=1
ρi (ϑ(k)) = 1

ρi (ϑ(k))≥ 0, i = 1, . . . ,N
(13)

2.3. Reachability of TS systems
Let us recall the definition of complete state reachability [1].

Definition 1. The TS system (9)-(10) is completely state reachable if there exist
k f > k0 and sequences of inputs u(k0),u(k0 + 1), . . . ,u(k f − 1) able to move the
state x(k) ∈ Rnx from any initial state x(k0) ∈ Rnx to any other final state x(k f ) ∈
Rnx .

By taking into account that, considering iteratively (9) starting from the initial
state x(k0), the following is obtained:

x(k0 +1) = Ak0x(k0)+Bk0u(k0) (14)

x(k0 +2) = Ak0+1x(k0 +1)+Bk0+1u(k0 +1)
= Ak0+1Ak0x(k0)+Ak0+1Bk0u(k0)+Bk0+1u(k0 +1) (15)

x0(k+3) = Ak0+2x(k0 +2)+Bk0+2u(k0 +2)
= Ak0+2Ak0+1Ak0x(k0)+Ak0+2Ak0+1Bk0u(k0)

+Ak0+2Bk0+1u(k0 +1)+Bk0+2u(k0 +2)
(16)
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and so on up to x(k0 +nx), one obtains:

x(k0 +nx)−
k0+nx−1

∏
k=k0

Akx(k0) = Ck0


u(k0 +nx−1)

...
u(k0 +1)

u(k0)

 (17)

where Ck0 is the reachability matrix1, defined as:

Ck0 =

[
Bk0+nx−1 Ak0+nx−1Bk0+nx−2 . . .

k0+nx−1
∏

k=k0+1
Ak Bk0

]
(18)

Then, it is straightforward to see that any state can be reached at sample k0+nx
if and only if Ck0 is full row rank, that is:

rank
(
Ck0

)
= nx (19)

that corresponds to the definition of complete state reachability provided previ-
ously.

3. Main result

The main difficulty related with the direct application of (19) for assessing
the complete state reachability lies in the fact that each matrix Ak and Bk, k =
k0, . . . ,k0+nx−1, is a convex sum of matrices Ai and Bi, i= 1, . . . ,N, respectively.

For this reason, the following theorem, that constitutes the main result of this
work, is proposed in order to provide a practical test for assessing the reachability
of a Takagi-Sugeno fuzzy system.

Theorem 1. Let us associate the indices lk0 ∈ {1, . . . ,N}, lk1 ∈ {1, . . . ,N}, . . .,
lknx−1 ∈ {1, . . . ,N} with k0,k0 +1, . . . ,k0 +nx−1, such that lk0 corresponds to k0,
lk1 corresponds to k0+1, etc., and let us consider a bijection between the first J =
Nnx natural numbers and all the possible combinations of indices lk0, lk1, . . . , lknx−1 .
Then, taking into account the aforementioned bijection, for the j-th combination
of indices lk0, lk1, . . . , lknx−1 ( j∈{1, . . . ,J}), let us define the matrix M j, as follows:

1As stated by [1], the term controllability matrix is usually used for referring to the matrix
Ck0 . However, the terms reachability matrix or controllability-from-the-origin matrix are more
appropriate, thus the former will be used throughout the paper.
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M j =



Inx 0 · · · 0 0 · · · 0 Blk0

−Alk1
Inx · · · 0 0 · · · Blk1

0
0 −Alk2

· · · 0 0 · · · 0 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · Inx 0 · · · 0 0
0 0 · · · −Alknx−1

Blknx−1
· · · 0 0


(20)

The following two statements are equivalent:

(a) The Takagi-Sugeno system (8) is completely state reachable;

(b) M J is full row-rank and the (J−1)Jn2
x× (J−1)Jn2

x matrix:

V =



R1R−1
J (R2−R1)R−1

J · · · (RJ−2−RJ−3)R−1
J (RJ−1−RJ−2)R−1

J
−IJn2

x
IJn2

x
· · · OJn2

x
OJn2

x
OJn2

x
−IJn2

x
· · · OJn2

x
OJn2

x
...

...
. . .

...
...

OJn2
x

OJn2
x

· · · IJn2
x

OJn2
x

OJn2
x

OJn2
x

· · · −IJn2
x

IJn2
x


(21)

with R j, j = 1, . . . ,J, defined as in (2)-(5), is a block P-matrix with respect
to the partition {F1, . . . ,FJ−1} of

{
1, . . . ,(J−1)Jn2

x
}

, with

Fi =
{
(i−1)Jn2

x +1, . . . , iJn2
x
}

, i = 1, . . . ,J−1.

Proof: The statement (a) is true if and only if the n2
x×nx(nx +nu−1) matrix:

Sk0 =



Inx 0 · · · 0 0 · · · 0 Bk0

−Ak0+1 Inx · · · 0 0 · · · Bk0+1 0
0 −Ak0+2 · · · 0 0 · · · 0 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · Inx 0 · · · 0 0
0 0 · · · −Ak0+nx−1 Bk0+nx−1 · · · 0 0


(22)

has rank n2
x . In fact, multiplying the first block row of (22) by Ak0+1 and adding

the result to the second one, multiplying the second block row of the resulting
matrix by Ak0+2 and adding the result to the third one, and proceeding in a similar
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way with the remaining rows (the procedure resembles the one provided by [44]
for the LTI case), the matrix:

S ′
k0
=



Inx 0 · · · 0 0 · · · · · · Bk0

0 Inx · · · 0 0 · · · · · · Ak0+1Bk0

0 0 · · · 0 0 · · · · · · Ak0+2Ak0+1Bk0
...

...
. . .

...
...

. . .
. . .

...

0 0 · · · Inx 0 · · · · · ·
k0+nx−2

∏
k=k0+1

AkBk0

0 0 · · · 0 Bk0+nx−1 Ak0+nx−1Bk0+nx−2 · · ·
k0+nx−1

∏
k=k0+1

AkBk0


(23)

is obtained. It is straightforward to see that (19) holds if and only if the matrix
S ′

k0
defined in (23) has rank n2

x .
Associating the indices lk0 ∈{1, . . . ,N}, lk1 ∈{1, . . . ,N}, . . ., lknx−1 ∈{1, . . . ,N}

with k0,k0 +1, . . . ,k0 +nx−1, such that lk0 corresponds to k0, lk1 corresponds to
k0 +1, etc., the matrix Sk0 can be rewritten as:

Sk0 =
N
∑

lk0=1
ρlk0

(ϑ(k0))
N
∑

lk1=1
ρlk1

(ϑ(k0 +1)) · · ·

· · ·
N
∑

lknx−1=1
ρlknx−1

(ϑ(k0 +nx−1))M lk0 lk1 ···lknx−1

(24)

where the Nnx matrices M
lk0 lk1 ···lknx−1 are defined as in (20) (the notation M j is

recovered by considering the bijection between the first J = Nnx natural numbers
and all the possible combinations of indices lk0, lk1, . . . , lknx−1).

Hence, if all the convex combinations of matrices M j, j = 1, . . . ,J, are full
row-rank, the matrix Sk0 is full row-rank as well (rank(Sk0) = n2

x). By applying
Lemma 1, statement (b) is obtained, that completes the proof. �

Theorem 1 states a necessary and sufficient condition for the reachability of
discrete-time TS fuzzy systems, that can be used to derive a practical algorithm
for assessing the reachability of (8), summarized as follows:

1. Obtain matrices M j, j = 1, . . . ,J, as in (20).

2. Check if all matrices M j are full row-rank. If not, the system (8) is non-
reachable. Otherwise, continue the algorithm.
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3. Calculate matrices R j, j = 1, . . . ,J.

4. Calculate matrix V according to (21).

5. Calculate the principal minors of V .

6. If all the principal minors of V are positive, then the system (8) is reachable.
Otherwise, continue the algorithm.

7. Calculate the symbolic matrix TV +(I−T ), where T is a generic diagonal
matrix such that T

{
(i−1)Jn2

x +1, . . . , iJn2
x
}
= ti, i = 1, . . . ,J−1.

8. Calculate the solutions of det (TV +(I−T )) = 0. If any of the solutions is
such that ti ∈ [0,1] ∀i = 1, . . . ,J− 1, then the system (8) is non-reachable;
otherwise, it is reachable.

The proposed algorithm can be employed for a general class of multiple in-
put systems, but when a single input system is considered, then the algorithm
explained above can be significantly simplified. Indeed, in this case, the matrices
M j are square ones, and this allows formulating an alternative procedure to tackle
this special case, as summarized by the following corollary.

Corollary 1. The following two statements are equivalent:

(a) The Takagi-Sugeno system (8) is completely state reachable;

(b) Given the matrices M j, j = 1, . . . ,J, defined as in (20), M J is nonsingular
and the (J−1)n2

x× (J−1)n2
x matrix:

W =



M 1(M J)−1
(
M 2−M 1

)
(M J)−1 · · ·

(
M J−1−M J−2

)
(M J)−1

−In2
x

In2
x

· · · On2
x

On2
x

−In2
x

· · · On2
x

...
...

. . .
...

On2
x

On2
x

· · · On2
x

On2
x

On2
x

· · · In2
x


(25)

is a block P-matrix with respect to the partition {F1, . . . ,FJ−1} of{
1, . . . ,(J−1)n2

x
}

, with Fi =
{
(i−1)n2

x +1, . . . , in2
x
}

, i = 1, . . . ,J−1.

Proof: The proof follows the reasoning already provided for Theorem 1, and
applies Lemma 2 instead of Lemma 1 in order to obtain statement (b). �
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In this case, the algorithm for assessing the reachability of (8) is as follows:

1. Obtain matrices M j, j = 1, . . . ,J.

2. Check if all matrices M j are non singular. If not, the system (8) is not
completely state reachable. Otherwise, continue the algorithm.

3. Calculate matrix W according to (25).

4. Calculate the principal minors of W .

5. If all the principal minors of W are positive, then the system (8) is reachable.
Otherwise, continue the algorithm.

6. Calculate the symbolic matrix TW +(I−T ), where T is a generic diagonal
matrix such that T

{
(i−1)n2

x +1, . . . , in2
x
}
= ti, i = 1, . . . ,J−1.

7. Calculate the solutions of det (TW +(I−T )) = 0. If any of the solutions
is such that ti ∈ [0,1] ∀i = 1, . . . ,J−1, then the system (8) is non-reachable;
otherwise, it is reachable.

Remark: The proposed test allows assessing the property of reachability of a
given TS system. In many practical cases, the TS system is a representation of an
underlying nonlinear system. When this representation is exact, e.g. when it has
been obtained using the sector nonlinearity approach, the reachability of the TS
system implies the reachability of the nonlinear system. In general, the converse
is not true, i.e. a reachable nonlinear system can have non-reachable TS represen-
tations. It is also worth highlighting that TS representations of nonlinear systems
are usually valid within a region of the state space, thus the conclusions obtained
from the reachability test would be valid only for operating points belonging to
the considered region.

4. Illustrative Examples

The objective of this section is to provide an example that will clearly and step-
by-step illustrate the proposed algorithm. To this end, let us consider the two-rule
fuzzy model of the inverted pendulum [45] obtained by local approximation in
fuzzy partition spaces [28].

The model has two states: x1(t) and x2(t), denoting the angle (in radians) of
the pendulum from the vertical and the angular velocity, respectively.
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When x1(t) is near zero, the inverted pendulum is described by:{
ẋ1(t) = x2(t)
ẋ2(t) =

gx1(t)−au(t)
4l/3−aml

(26)

where g is the gravity constant, m is the mass of the pendulum, M is the mass of
the cart, 2l is the length of the pendulum and u is the force applied to the cart;
a = 1/(m+M).

The continuous-time model (26) can be discretized through an Euler method
with sampling time Ts, obtaining:{

x1(k+1) = x1(k)+Tsx2(k)
x2(k+1) = x2(k)+Ts

gx1(k)−au(k)
4l/3−aml

(27)

When x1(t) is near ±π/2, the inverted pendulum is described by:{
ẋ1(t) = x2(t)
ẋ2(t) =

2gx1(t)/π−acosβu(t)
4l/3−aml cos2 β

(28)

whose discretized version is:{
x1(k+1) = x1(k)+Tsx2(k)
x2(k+1) = x2(k)+Ts

2gx1(k)/π−acosβu(k)
4l/3−aml cos2 β

(29)

where β u π/2. The following values will be used for the inverted pendulum
parameters: g = 9.8m/s2, m = 0.1kg, M = 0.9kg, l = 0.1m, a = 1kg−1. The
sampling time is chosen as Ts = 0.1s.

The proposed example concerns a single input system, for which the simplified
algorithm based on Corollary 1 can be applied. The examples show the reachable
and the non-reachable case, respectively.

4.1. Example 1 - reachable system
By considering β = 88◦, a TS representation as in (8) with N = 2 can be

obtained from (27)-(29), with:

A1 =

[
1 0.1

7.95 1

]
A2 =

[
1 0.1

4.68 1

]
B1 =

[
0

−0.81

]
B2 =

[
0

−0.03

]
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Following the algorithm given at the end of Section 3, the matrices M j, j =
1,2,3,4, are calculated:

M 1 =


1 0 0 0
0 1 0 −0.81
−1 −0.1 0 0
−7.95 −1 −0.81 0

 M 2 =


1 0 0 0
0 1 0 −0.81
−1 −0.1 0 0
−4.68 −1 −0.03 0



M 3 =


1 0 0 0
0 1 0 −0.03
−1 −0.1 0 0
−7.95 −1 −0.81 0

 M 4 =


1 0 0 0
0 1 0 −0.03
−1 −0.1 0 0
−4.68 −1 −0.03 0


It can be easily verified that each of the matrices M i, i = 1, . . . ,4 has rank

n2
x = 4, which means that the considered system is locally reachable. The resulting

matrix W is:

W =



1 0 0 0 0 0 0 0 0 0 0 0
260 27 260 0 0 0 0 0 −260 −26 −260 0

0 0 1 0 0 0 0 0 0 0 0 0
−141.59 0 −260 27 141.59 0 260 −26 −141.59 0 −260 26
−1 0 0 0 1 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 0 1


and it can be verified that all its principal minors are positive [46], which means

that the considered system is reachable.
For further illustration, let us consider the problem of designing a deadbeat

state-feedback controller:

K(ρ1) =
[

K1(ρ1) K2(ρ1)
]

where ρ1 corresponds to the level of activation of the subsystem described by A1
and B1 (see (9)). Taking into account that ρ2 = 1−ρ1 due to (13), the reachable
TS representation obtained with β = 88◦ can be equivalently rewritten as:

A(ρ1) = ρ1

(
1 0.1

7.95 1

)
+(1−ρ1)

(
1 0.1

4.68 1

)
=

(
1 0.1

3.27ρ1 +4.68 1

)
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B(ρ1) = ρ1

(
0

−0.81

)
+(1−ρ1)

(
0

0.03

)
=

(
0

−0.78ρ1−0.03

)
which leads to:

A(ρ1)+B(ρ1)K(ρ1) =

(
1 0.1

a21(ρ1) a22(ρ1)

)
with:

a21(ρ1) = 3.27ρ1 +4.68−0.78ρ1K1(ρ1)−0.03K1(ρ1)

a22(ρ1) = 1−0.78ρ1K2(ρ1)−0.03K2(ρ1)

It is easy to check by means of symbolic calculations that, in order to place the
closed-loop eigenvalues in {0,0}, the controller coefficients should be calculated
as:

K1(ρ1) =
3.27ρ1 +14.68
0.78ρ1 +0.03

K2(ρ1) =
2

0.78ρ1 +0.03

which are defined ∀ρ1 ∈ [0,1].

4.2. Example 2 - non-reachable system
By considering β = 92◦, a TS representation as in (8) with N = 2 can be

obtained from (27)-(29), with:

A1 =

[
1 0.1

7.95 1

]
A2 =

[
1 0.1

4.68 1

]
B1 =

[
0

−0.81

]
B2 =

[
0

0.03

]
Following the algorithm given at the end of Section 3, the matrices M j, j =

1,2,3,4, are calculated:

M 1 =


1 0 0 0
0 1 0 −0.81
−1 −0.1 0 0
−7.95 −1 −0.81 0

 M 2 =


1 0 0 0
0 1 0 −0.81
−1 −0.1 0 0
−4.68 −1 0.03 0



M 3 =


1 0 0 0
0 1 0 0.03
−1 −0.1 0 0
−7.95 −1 −0.81 0

 M 4 =


1 0 0 0
0 1 0 0.03
−1 −0.1 0 0
−4.68 −1 0.03 0
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It can be easily verified that each of the matrices M i, i = 1, . . . ,4 has rank
n2

x = 4, which means that the considered system is locally reachable. The resulting
matrix W is:

W =



1 0 0 0 0 0 0 0 0 0 0 0
−280 −27 −280 0 0 0 0 0 280 28 280 0

0 0 1 0 0 0 0 0 0 0 0 0
145.69 0 280 −27 −145.69 0 −280 28 145.69 0 280 −28
−1 0 0 0 1 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 0 1


(30)

and it can be verified that some of its principal minors are not positive [46]. In
this case, the next step of the proposed algorithm involves calculating the matrix
TW +(I−T ), with:

T = diag(t1, t1, t1, t1, t2, t2, t2, t2, t3, t3, t3, t3) (31)

which leads to:

det(TW +(I−T )) =−784t2
1 t2

2 t2
3 +784t2

1 t2
2 t3−784t2

1 t2 +784t2
1 +28t1t2−56t1 +1 = 0

(32)
which has the following solutions, calculated using Maple [47]:{

t1 = t1, t2 =
1
28

28t1−1
t3t1

, t3 = t3

}
{

t1 = t1, t2 = t2, t3 =
1

28
28t1t2−28t1 +1

t1t2

}
where ti = ti, i = 1, . . . ,4 means that ti has an arbitrary value.

In particular, by considering the second set of solutions, there exist solutions
such that t1, t2, t3 ∈ [0,1], e.g. t1 = 0.1, t2 = 0.9, t3 = 0.2857, which proves that the
considered system is non-reachable. As a matter of fact, the convex combination
of matrices A1, A2, B1 and B2 with ρ1 = 0.0357:

0.0357A1 +0.9643A2 =

[
1 0.1

4.7967 1

]
16



0.0357B1 +0.9643B2 =

[
0
0

]
corresponds to an operating condition for which the system (9) is non-reachable.

Let us consider the problem of designing a deadbeat state-feedback controller
for the non-reachable TS representation obtained with β = 92◦. By performing
symbolic calculations similar to the previous example, it can be shown that, in
order to place the closed-loop eigenvalues in {0,0}, the controller coefficients
should be calculated as:

K1(ρ1) =
3.27ρ1 +14.68
0.84ρ1−0.03

K2(ρ1) =
2

0.84ρ1−0.03
In this case, it is easy to check that the controller coefficients are not defined

for ρ1 = 0.0357, due to the loss of reachability that occurs for this value, as shown
previously. Notice that, as expected, the loss of reachability corresponds to the
impossibility of performing closed-loop pole placement.

5. Conclusions

In this paper, the problem of developing a practical reachability test for Takagi-
Sugeno fuzzy systems has been tackled. The proposed solution is based on check-
ing if all the principal minors associated to an appropriate matrix are positive. If
this condition holds, then the rank of the reachability matrix associated to the
Takagi-Sugeno fuzzy system is full for any possible sequence of premise vari-
ables, and thus the system is completely state reachable. On the other hand, if
the principal minors are not positive, the property of the matrix being a block P
one with respect to a particular partition of a set of integers is studied in order to
conclude about the reachability of the TS system. Two illustrative examples, ob-
tained by local approximation in fuzzy partition spaces of an inverted pendulum
nonlinear model, have shown the application and effectiveness of the proposed
reachability test.
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