
Learning Relational Dynamics of Stochastic Domains for Planning
David Martı́nez and Guillem Alenyà and Carme Torras

Institut de Robòtica i Informàtica Industrial (CSIC-UPC)
{dmartinez,galenya,torras}@iri.upc.edu

Tony Ribeiro
IRCCyN, École Centrale de Nantes

tony.ribeiro@irccyn.ec-nantes.fr

Katsumi Inoue
National Institute of Informatics, Japan

inoue@nii.ac.jp

Abstract

Probabilistic planners are very flexible tools that can
provide good solutions for difficult tasks. However, they
rely on a model of the domain, which may be costly
to either hand code or automatically learn for complex
tasks. We propose a new learning approach that (a) re-
quires only a set of state transitions to learn the model;
(b) can cope with uncertainty in the effects; (c) uses a
relational representation to generalize over different ob-
jects; and (d) in addition to action effects, it can also
learn exogenous effects that are not related to any ac-
tion, e.g., moving objects, endogenous growth and natu-
ral development. The proposed learning approach com-
bines a multi-valued variant of inductive logic program-
ming for the generation of candidate models, with an
optimization method to select the best set of planning
operators to model a problem. Finally, experimental val-
idation is provided that shows improvements over pre-
vious work.

1 Introduction
Recent planners are able to solve complex probabilistic tasks
given a state representation and a model (Kolobov et al.
2012; Keller and Eyerich 2012), and they have been ap-
plied successfully in several fields such as robotics (Kulick
et al. 2013; Martı́nez, Alenyà, and Torras 2015) and schedul-
ing (Zhu, Lizotte, and Hoey 2014). However, these planners
rely on a model. In this paper we propose a new method to
learn a probabilistic relational model including action and
exogenous effects from a set of completely observable state
transitions. We consider that action effects are those that oc-
cur when the agent executes an action (e.g. a robot moves to
a new position, the robot grabs an object), while exogenous
effects are those that do not depend on an action (e.g. people
moving in the street, a traffic light turns red, a plant grows).

There exist previous works that tackle the problem of
learning models. Some of them estimate the parameters of
a model (Thon, Landwehr, and De Raedt 2011; Thon et al.
2009), but the model has to be provided and only its pa-
rameters are learned. A more complete approach (Sykes et
al. 2013) learns probabilistic logic programs, but the restric-
tions for the initial set of candidate rules need to be manually
coded. In contrast, we learn the complete model and no re-
strictions are required.

Most approaches that learn complete models handle deter-
ministic tasks, and although they can tackle partial observ-
ability (Mourao et al. 2012; Zhuo and Kambhampati 2013)
or apply transfer learning (Zhuo and Yang 2014), they do not
consider uncertain effects. In this work we focus on mod-
els with uncertain effects.The most similar approaches to
ours are those that learn relational action models with un-
certain effects (Pasula, Zettlemoyer, and Kaelbling 2007;
Deshpande et al. 2007; Mourao 2014). They learn the ef-
fects that each action may have for each set of preconditions,
which are then represented with probabilistic STRIPS-like
models. However, they do not learn exogenous effects that
are not related to any action. These methods cannot be eas-
ily extended to learn exogenous effects. Pasula et al., and
Deshpande et al. use a local search algorithm that works
well when transitions are explained by one rule, but faces
many local minima when tackling domains with exogenous
effects, as two or more new rules have to be added to prop-
erly explain a transition. Mourao et al.’s approach exhibits
a similar problem since it learns one rule per transition. We
take a different approach that learns models with uncertain
effects, and also those with exogenous effects.

The problem of learning minimal effects from a log of in-
put data transitions is known to be NP-Hard (Walsh 2010).
The approaches shown before, as well as our approach, ap-
ply heuristics to find solutions with any number of input ex-
periences. Optimal approaches that learn complete proba-
bilistic models have also been proposed (Walsh et al. 2009),
but they require too many input experiences.

To summarize, we propose a novel method that takes as
input a set of state transitions, and learns a relational model
with probabilistic and exogenous effects to be used for plan-
ning. The learned model will consist of a set of planning op-
erators that define the different effects. The proposed method
can be divided into three parts:

• Candidate planning operator generation. Candidates are
generated with the LFIT (Learning From Interpreta-
tion Transitions) framework (Inoue, Ribeiro, and Sakama
2014). LFIT induces a set of propositional rules that re-
alize the given input transitions. Specifically, an algo-
rithm that guarantees to learn the set of minimal rules is
used (Ribeiro and Inoue 2014).

• Planning operator selection. To select the best subset of

candidates, we define a score function that is maximized
by candidates that explain input state transitions while be-
ing general enough. Based on this score function, a search
optimization method guided by an heuristic function is
proposed. Moreover, suboptimal solutions to make com-
plex tasks tractable are provided.

• Data transformations. Our approach combines (a) LFIT
on the propositional level to ensure that candidates are
minimal, (b) an optimization method that works on the
relational level to apply relational generalizations when
selecting subsets, and (c) grounded input data. Since, as
mentioned, the approach requires three different types of
data (grounded, relational and propositional), data trans-
formation methods are needed.

2 Background
Two types of representations are combined in this work, a re-
lational one for the planning operators, and a propositional
one for the propositional rules. We assume complete observ-
ability and uncertain effects.

Relational Formulation
Literals li are expressions of the form (¬)p(t1, ..., tm) where
p is a predicate symbol, (¬) represents that the atom may
be optionally negated, and ti are the terms. Terms can be
variables, which have a preceding “?” symbol (e.g. ?X), and
objects, which are represented without an “?” symbol (e.g.
box1). We use a relational representation where expressions
take objects as arguments to define their grounded counter-
parts. A state s is defined as a conjunction of grounded liter-
als that follow the closed world assumption s = lg1 , ..., l

g
N .

A planning operator o ∈ O defines how a literal changes
based on a set of preconditions. Operators take the form

o(t1, ..., tn) = lh : po ← l1 ∧ · · · ∧ lm, (a) (1)

where lh is the head of the operator, po is the probability of
lh being in the next state given that the body and the action
are satisfied, l1 ∧ · · · ∧ lm are the literals in the body, (a)
is an optional action, and ti are the terms that may appear
in the head, body and action. The action is optional so that
operators can capture both action effects when there is an
action and exogenous effects when there is no action. Note
that operators are not Horn clauses as negation can appear in
both the body and the head.

A grounded operator only has objects as terms. If an op-
erator o has n variables, its groundings Gr(o) are a set of
operators, each taking one of the possible combinations of n
objects.

Example 1 Having the objects {a, b, c} and the operator
o1(?X, ?Y) = at(?Y) : 0.8 ← road(?X, ?Y) ∧ at(?X),
the possible groundings can be obtained by substituting ?X
and ?Y for every permutation of 2 objects. One grounding
would be: o1(a, c) = at(c) : 0.8← road(a, c) ∧ at(a).

The transition dynamics are defined by a set of planning
operatorsO. A grounded operator og is said to cover a state-
action pair (s, a) when the literals of the body are in s,
and the optional action of the operator is either a, or the

operator has no action: cov(og, s, a) = (body(og) ⊂ s) ∧
((action(og) = a) ∨ (action(og) = ∅)).

Likewise, a non-grounded operator o covers (s, a) if
cov(o, s, a) = ∃ og ∈ Gr(o) | cov(og, s, a) holds.

A successor state s′ is obtained by applying all ground-
ings of all operators to (s, a, s′). When a grounded op-
erator og is applied to (s, a, s′), its head is added to the
state s′ with a probability pog if cov(og, s, a). We re-
quire operators to be mutually exclusive, there cannot be
two operators with the same head atom that cover the
same (s, a) as their heads may conflict. One example of
such conflict would be [og,1(r1) = at(r1) : 0.8← ...] and
[og,2(r1) = ¬at(r1) : 0.6← ...] where both heads cannot
hold at the same time as one contradicts the other. The objec-
tive of this work is to learn models that can be used by plan-
ners, and planners require conflict-free operators. A plan-
ner has to know precisely the expected effects of applying
a planning operator. If two different operators were to make
conflicting changes, the effects would be undefined.

If s′ is a successor state of s, we define changes(s, s′)
as the set of literals {c ∈ s′, c /∈ s}. Given a state-action
pair (s, a) and a grounded operator og , a transition change
c ∈ changes(s, s′) has a likelihood

P (c | og) =

{
pog , cov(og, s, a) ∧ (c = head(og))

0, otherwise.
(2)

And a set of non-grounded operators O gives the following
likelihood to a change c:

P (c|O) =

{
P (c|og), ∃! og ∈ Gr(O) | P (c|og) > 0

0, otherwise,
(3)

where ∃! is the operator for uniqueness quantification. If
more than one operator covers the same change given the
same state-action pair, there is a conflict and the behavior is
undefined, so a likelihood of 0 is given.

Propositional Formulation
On the propositional level, multi-valued atoms mi are
expressions of the form p = x, where x is the value of the
atom, and the atoms have no terms. A state is a conjunction
of propositional multi-valued atoms s = m1,m2, ...,mn

where every predicate must appear only once (i.e.
∀mi ∈ s, @x, y | ((mi = x) ∧ (mi = y)), x 6= y). LFIT
learns a set of propositional rules that take the form

r = mh : pr ← m1 ∧ · · · ∧mn (4)

where mh is the head of the rule, pr the probability, and
m1 ∧ · · · ∧mn is the body of the rule.

3 Method
In this section we show how the planning operators are
learned. The input is a set T of training transitions which
are triples t = (s, a, s′) where s′ is a successor state of s
when the action a was executed. The output is a set of plan-
ning operators O that define the model. Figure 1 shows the
different steps of the algorithm, which are described below:

Input observations
Relational

interpretation
Propositional

transitions

LFIT

Probabilistic

propositional rules

Operator

optimization
Best RDDL operators

Grounded

transitions

Relational

transitions

Propositional

transitions

Probabilistic

propositional rules

Relational planning

operators

Figure 1: Data representation used for each module. The in-
put and output data are shown in ellipses, and the processing
modules are shown in boxes. The data representation used is
indicated at each step.

• Transform grounded transitions to relational (non-
grounded) ones. The objective is to learn relational op-
erators that can take objects as arguments to generalize.
Note that grounded literals are different from proposi-
tional ones because the objects and the variables in their
terms can be identified. The transformation to relational
transitions requires to substitute objects with variables.

• Obtain candidate operators. LFIT is used to obtain all pos-
sible candidate operators for a given set of transitions. The
main advantage of using LFIT is that it obtains the set of
minimal rules that model both action and exogenous ef-
fects. To use LFIT, first the relational transitions have to
be transformed to propositional ones, and later, the output
propositional rules to planning operators.

• Select the subset of candidate planning operators that best
models the training transitions. This is detailed in Sec. 4.

The aim of these transformations is to generalize better. The
grounded input transitions could be straightforwardly trans-
formed to propositional ones, but LFIT would learn rules
that would model grounded data with no relational general-
izations. When propositional transitions are obtained from
relational ones, LFIT learns rules that model relational data.
A relational representation is more compact and general as
an infinite number of objects can be represented by each
variable. The trade-off of learning relational generalizations
is that the number of generated relational transitions is larger
than the number of input grounded transitions, which in-
creases the learning time.

Grounded to Relational Transitions
The goal is to obtain a relational representation that can gen-
eralize to different objects. If the dynamics of an object are
learned, the same dynamics can be applied to other objects,
not requiring examples of every possible grounding.

Since generating all possible relational combinations of
every transition would be highly inefficient, we limit the
number of relational variables to a fixed number ω, which
imposes a limit on the maximum number of variables that
learned operators will have. Selecting the right value of ω
is important. To learn effects that involve n objects, a value
ω ≥ n is required. However, the number of relational transi-
tions scales exponentially with ω, thus a large value of ω is

intractable.
This module generates all possible relational transitions

with at most ω variables. For every transition t ∈ T , the
following method is applied:
• Input: grounded transition t = (s, a, s′), max variables ω.

We define the objects in s as bs,i and the objects in a as
ba,i. The action a has m objects.

• Obtain combinations of ω objects. For each combination
of ω −m objects (bs,1, . . . bs,ω−m) that are not in the ac-
tion (bs,i 6= ba,j ,∀ i, j) do:
– Create vobj = (ba,1, . . . ba,m, bs,1, . . . bs,ω−m) where

(ba,1, . . . ba,m) are the objects in the action a.
– Add vobj to Vobj .

• For each vobj ∈ Vobj :
– A new transition t′ = t is created.
– Replace in t′ all objects in vobj for variables.
– Remove from t′ any remaining literal with objects.
– Add the new transition t′ to T ′.

• Output: a set of relational transitions T ′.

Example 2 Given a grounded transition (s, a→ s′) :

at(r1) ∧ road(r2, r3) ∧ road(r1, r3),move(r3)→
road(r1, r3) ∧ road(r2, r3) ∧ at(r3),

the following relational transitions are generated (ω=2):

vobj = (r3, r1) : at(?Y) ∧ road(?Y, ?X),move(?X)→
road(?Y, ?X) ∧ at(?X);

vobj = (r3, r2) : road(?Y, ?X),move(?X)→
road(?Y, ?X) ∧ at(?X).

Relational to Propositional Transitions
To create the input that LFIT requires, which are pairs (s, s′)
of propositional states, a library Lconv that converts between
relational and propositional atoms is created. For each rela-
tional atom dr, a new propositional atom dp is created and
the pair (dr, dp) is added to Lconv . Using Lconv , everything
is substituted by its propositional counterpart:
• Relational literals are represented with propositional

atoms that take the values 1 (true) or 0 (false).
• Relational transitions are triples (s, a, s′), while proposi-

tional transitions are pairs (s, s′). Therefore, an additional
multi-valued atom is added to propositional transitions to
represent the action. This atom takes as value the corre-
sponding action name in Lconv , or “noaction” if there is
no action. Note that the multi-valued representation is cur-
rently only used to model this action atom: other literals
are binary, but there may be several different actions (and
only one action per transition).

Example 3 Using the relational transitions in example 2,
the following library is created Lconv = {(at(?Y), b1),
(at(?X), b2), (road(?Y, ?X), b3), (move(?X), b4)}. The
propositional transitions obtained by using Lconv are:

(b1=1) ∧ (b3=1) ∧ (action=b4)→ (b3=1) ∧ (b2=1);

(b3=1) ∧ (action=b4)→ (b3=1) ∧ (b2=1).

LFIT
The LFIT framework (Inoue, Ribeiro, and Sakama 2014) is
used to obtain the set of probabilistic candidate rules that
model the dynamics. Given a batch of propositional transi-
tions (s, s′), LFIT induces a normal logic program that real-
izes the given transitions. This framework has been extended
(Ribeiro and Inoue 2014) with a new algorithm that guaran-
tees that the learned rules are minimal: the body of each rule
constitutes a prime implicant to infer the head. It is based
on a top-down method that generates hypotheses by special-
ization from the most general rules. Moreover, in (Martı́nez
et al. 2015) the framework was adapted to capture also non-
deterministic dynamics. Our approach uses the specializa-
tion and non-deterministic algorithm of LFIT, so it learns
the set of minimal probabilistic rules that models all effects
appearing in the input transitions. It learns both action and
exogenous effects because the action is just another atom
that may or may not appear in the body of a rule.

Propositional Rules to Planning Operators
Planning operators (eq. 1) can be reconstructed from prob-
abilistic rules (eq. 4) by using the library Lconv created be-
fore. For each propositional rule:
• The atoms in the body and head of the rule are trans-

formed to relational ones (using Lconv), and added to the
body and head of a planning operator.

• The action is extracted from the multi-valued action atom
in the rule body. If the atom value is not “noaction”, the
corresponding action in Lconv is added to the operator.

Example 4 Given that LFIT had learned the following rule

(b2=1) : 0.8← (b1=1) ∧ (b3=1) ∧ (action=b4),

using the libraryLconv generated in example 3, the resulting
operator o(?X, ?Y) is

at(?X) : 0.8← at(?Y) ∧ road(?Y, ?X),move(?X).

Traditionally, PPDDL (Younes and Littman 2004) has
been the standard language to model probabilistic domains,
but it is difficult to model exogenous effects with it. There-
fore, our approach uses the RDDL language (Sanner 2010),
which has been the standard for the latest probabilistic plan-
ning competitions (IPPC 2011 and 2014). Writing our plan-
ning operators with RDDL is straightforward, and this lan-
guage can be used directly by state-of-the art planners.
RDDL objects and variables have types, and a variable can
only be substituted by an object of the same type. However,
for clarity and simplicity, we assume through the paper that
there are no types, as adding them is trivial.

4 Planning Operator Selection
LFIT provides the set of minimal rules (that have been trans-
formed to planning operators) that describe all the transi-
tions. Note that LFIT learns the set of minimal rules, and
not the minimal set of rules, so many operators may model
the same changes and underfit or overfit. The subset of plan-
ning operators to model the transition dynamics is selected
as follows:

• A score function is defined to evaluate the operators.
• A heuristic search algorithm selects the set of operators

that maximizes the score. Note that this set may differ
from the actual model, as it depends on the coverage of
the input transitions and the quality of the score function.

• The subsumption tree is used to improve efficiency by
partitioning the set of candidates into smaller subsets.

Score Function
The score function values the quality of a set of rules. The
following functions are used by the score function:
• The likelihood is the probability that a transition t =

(s, a, s′) is covered by a set of planning operators O:

P (t | O) =
∏

c∈changes(t)

P (c | O, s, a). (5)

• The penalty term Pen(O) =
∑
o∈O |body(o)| is the num-

ber of atoms in the operator bodies.
• The confidence Conf(T, ε) is obtained from Hoeffding’s

inequality. The probability that an estimate ôprob is accu-
rate enough |ôprob− oprob| ≤ ε with a number of samples
|T | is bounded by Conf(T, ε) ≤ 1− e−2ε2|T |.

Finally, the proposed score function is defined as

s(O, T) = E
t∈T

[log(P (t|O))]− α Pen(O)

Conf(T, ε)
, (6)

where α > 0 is a scaling parameter for the penalty term.
This score function is based on Pasula et al.’s one (Pasula,
Zettlemoyer, and Kaelbling 2007), where the likelihood is
maximized to obtain operators that explain the transitions
well, and the penalty term is minimized to prefer general op-
erators when specific ones have very limited contributions.
In contrast to Pasula et al.’s approach, the confidence term is
added so that the penalty is increased when few transitions
are available, as the estimates are less reliable.

Heuristic Search
Given a set of operators O with the same head, a heuristic
search method is used to find the best subset of operators
that maximizes the score function. To that end, we define
the heuristic version of the change likelihood (eq. 3) as:

Ph(c|O) =


P (c|og), ∃!og ∈ Gr(O) |P (c|og) > 0

1− δ, @ og ∈ Gr(O) |cov(og, s, a)

0, otherwise (|Gr(O)| > 1),
(7)

where δ is a parameter that can trade quality for efficiency.
This heuristic modifies the change likelihood (eq. 3) when
no operator covers the change, giving a likelihood of 1 − δ
instead of 0. The heuristic score function sh(O, T) is de-
fined as the score function (eq. 6) but replacing the standard
change likelihood (eq. 3) with this heuristic likelihood.

This heuristic gets the expected likelihood that can be ob-
tained by adding new operators to O. When δ = 0, it works
as an admissible heuristic (prop. 1) as it gives the maxi-
mum likelihood = 1 to uncovered changes. When δ > 0

but close to 0, then the heuristic penalizes very specific op-
erators when more general operators with a high likelihood
are also available. The practical result is that the algorithm
usually runs faster, but the heuristic is not admissible any-
more.

Algorithm 1 selects the best subset of operators to explain
the input transitions. In line 1, the candidate list Γ is ini-
tialized by creating one separate subset for each operator
in the input set of candidates Oinput. Note that Γ is a set
of sets of planning operators, which is initialized to Γ =
{{o1}, . . . , {on}} assuming that Oinput = {o1, . . . , on}.
Afterwards, lines 2-3 find the best subset in Γ (which is
the best set with only one operator). From that point, the
candidate sets in Γ are iteratively joined together to find
the best set with any number of operators, until none has
sh(O, T) > maxscore (lines 4-15). In lines 5-6, the can-
didate O with the largest heuristic score is selected and re-
moved from Γ. Then, in lines 7-8, new candidates are gener-
ated by combining the selected subset O with every subset
in Γ. The IsNew method checks that the new candidate has
not been already analyzed. If any of the new candidates has a
new best score, it is saved as the best candidate (lines 9-11).
Finally, the new candidates are added to Γ.

This method works as a search algorithm guided by an
heuristic. The nodes to be analyzed are the subsets of op-
erators stored in Γ, where they are ordered by the heuristic
score value. The search tree is expanded by joining one sub-
set with every other subset. Finally, the algorithm continues
until no subset has a heuristic score larger than the best score
so that the solution has been found.

The search can be used as an anytime algorithm, it can
be stopped at any point to get the best solution found so
far. Moreover, there are two options to limit in advance the
processing time of the algorithm in complex problems: set a
time limit, or set a limit in the size of Γ (only maintain the κ
sets with the highest score in Γ). Experimental tests showed
that in some domains the heuristic leads quickly to the best
set, and subsequent processing is done only to confirm that
no other set is better.

Property 1 If δ = 0, then the heuristic sh is admissible:
∀O, sh(O) ≥ s(O∗) | O∗ = argmax

O′⊃O
s(O′). Therefore the

optimal set will be found.

The two parts of the score function in eq. 6 (likelihood and
regularization) can be analyzed separately. Note that subsets
of operators may only increase in size, as they start with one
operator and can only be combined with other subsets.

• When adding operators to a set, the likelihood only in-
creases when transition changes that were not covered be-
fore are covered by the added operators. In the heuristic
score (eq. 7) all non-covered transition changes are al-
ready set to the maximum value of 1, so adding new rules
cannot improve the result over the heuristic.

• The regularization part of the score function (which is
Reg(O) = −α Pen(O)

Conf(T,ε)) is monotonically decreasing as
Pen(O) can only increase when adding more operators,
and Conf ∈ (0, 1], α > 0, Pen ≥ 0.

Algorithm 1 OperatorSelection(Oinput, T)
1: Current candidates Γ← {o}, ∀ o ∈ Oinput
2: maxscore = max

O∈Γ
s(O, T)

3: Obest = argmax
O∈Γ

s(O, T)

4: while max
O∈Γ

sh(O, T) > maxscore do

5: O = argmax
O∈Γ

sh(O, T)

6: Remove O from Γ
7: for O′ ∈ Γ | IsNew(O ∪O′) do
8: Onew = O ∪O′
9: if s(Onew, T) > maxscore then

10: maxscore = s(Onew, T)
11: Obest = Onew
12: end if
13: Add Onew to Γ
14: end for
15: end while
16: Output Obest

Property 2 When relaxing the admissibility criterion with
δ > 0, the solution found by Algorithm 1 is bounded to be
no worse than C · log(1 − δ) plus the optimal score, where
C is the average number of literals with the same predicate
that change in a transition.

Operators with different head predicates are analyzed sep-
arately as their effects are independent, so C only depends
on the average changes to one predicate literals. Also note
that δ ∈ [0, 1), and thus, log(1 − δ) ≤ 0. Let On be the
optimal solution with n operators and s(On) = opt, then
∀i < n, at least one predecessor of i operators Oi and
sh(Oi) ≥ C · opt+ log(1− δ) will exist.

• The regularization term is monotonically decreasing (see
explanation of property 1), so Reg(On) ≤ Reg(Oi).

• The maximum difference between P (On) and Ph(Oi)
is P (t|On) = 1 and Ph(t|Oi) = (1 − δ)x, which is
the case where On has perfect coverage, Oi has no cov-
erage (all the coverage is obtained from On \ Oi) and
the transition has x changes. Then, if we take the worst
case for all transitions, and an average of C changes
per transition, P (On) − Ph(Oi) = E[log(P (T |On))] −
E[log(Ph(T |Oi))] = log(1)−log(1−δ)C = C·log(1−δ).

Therefore the predecessors of the optimal solution will be
checked (and thus the optimal solution found) unless a solu-
tion with s(O) ≥ opt+ c · log(1− δ) is found before.

A value of δ > 0 can speed up the algorithm consider-
ably at the expense of optimality. When two operators have
similar likelihoods, δ > 0 penalizes the most specific one.
This results in general rule sets being analyzed first, and thus
models with better likelihoods are obtained earlier.

Subsumption Tree
In this section we present a method to speed up the approach
by partitioning the set of candidates into smaller groups. The
idea of the subsumption tree is to start with the best subset of

a ¬b c

a ¬b b ca b a c

a b ¬b c

∅

Figure 2: Example of a subsumption tree. Each letter (a, b,
c) represents a literal in the extended body of a planning
operator. The leaves are the nodes painted in blue.

Algorithm 2 OperatorSelectionSubsumption(TreeO, T)
1: do
2: OL = leaves(TreeO)
3: OL,best = OperatorSelection(OL, T)
4: Remove (OL \ OL,best) from TreeO
5: OP = OL,best ∪ parents(TreeO,OL,best)
6: OP,best = OperatorSelection(OP , T)
7: Remove (OL \ OP,best) from TreeO
8: while TreeO changed
9: Output = leaves(TreeO)

specialized operators, and iteratively check if more general
operators yield better scores.

Definition 1 (Subsumption relation) First, we define the
extended body of an operator as bodyext(o) = body(o)(∧a)
where (∧a) only appears if o has an action. Let o1 and o2

be two planning operators with head(o1) = head(o2), o1 is
subsumed by o2 if (bodyext(o1) ⊇ bodyext(o2)).

Definition 2 (Subsumption tree) The subsumption tree
TreeO of a set of planning operators O = {o1, ..., on} is a
directed graph with arcs (oi, oj) when oi subsumes oj and
|bodyext(oj)| − |bodyext(oi)| = 1. We call the set of leaves
L(TreeO). Figure 2 shows an example of a subsumption
tree.

The subsumption tree orders the rules in levels that rep-
resent the generality of the operators: the less literals the
more general the operator. Based on this tree, Algorithm 2
selects the operators. The idea is to start by identifying the
best specific operators, and then check if their generaliza-
tions improve the results. In lines 2-4, the best subset of
leaves OL,best is identified, and all leaves not in OL,best are
removed from the tree. Then, in lines 5-7, a new set of oper-
ators OP is created that includes OL,best and the operators
that subsume them (their parents in the tree). The best sub-
setOP,best inOP is selected, andOL\OP,best are removed.
This is repeated until nothing is changed in the tree.

The performance is improved by using the subsumption
tree: it divides the candidates into subsets, and the planning
operator selection is much faster with smaller sets of can-
didates. Although it sacrifices optimality, experimental tests
showed that the results obtained were in many cases optimal
or near optimal. This happens due to the fact that in most

cases P (O) >> Reg(O). The operators in the leaves maxi-
mize P (O) as they are more specialized, while the operators
near the root maximize Reg(O) as they are more general.
Thus, the subset of leaves selected in the first iteration usu-
ally is near optimal, and afterwards the method only has to
find the right level of generalization.

Note that if the subsumption tree is used, the best opera-
tors may be close to the root of the tree (and thus they will
be analyzed at the end), so the learner shouldn’t be used as
an anytime algorithm. However, the processing time can still
be bounded with satisfactory results by limiting the size of
Γ to κ sets in Algorithm 1.

5 Experiments
This section describes the experimental evaluation of our ap-
proach. The learner was applied to three domains of the 2014
International Probabilistic Planning Competition (IPPC).

The evaluation follows the same scheme of (Pasula,
Zettlemoyer, and Kaelbling 2007). To learn the domains, a
set of state transitions (s, a, s′) ∈ T is generated randomly.
To create a transition, first the state s is constructed by ran-
domly assigning a value (positive or negative) to every lit-
eral, but ensuring that the resulting state is valid (e.g. in
the elevators domain, an elevator cannot be in two differ-
ent floors at the same time). Then, the action a arguments
are picked randomly, and the state s′ is obtained by apply-
ing all operators to (s, a). The distribution used to construct
s is biased to guarantee that, in at least half of the examples,
the operators that contain a have a chance of changing the
state.

The evaluation of the learned models is carried out by cal-
culating the average variational distance between the true
model O and the estimate Ô. This evaluation uses a new set
of similarly generated random transitions T ′:

D(O, Ô) =
1

|T ′|
∑
t∈T ′

∣∣∣P (t|O)− P (t|Ô)
∣∣∣ . (8)

Domains
Three IPPC 2014 domains were used in the experiments.
Note that they were slightly modified to remove redundancy
(e.g. a north(?X,?Y) literal is equivalent to south(?Y,?X), so
one can be replaced by the other).
• Triangle Tireworld. This domain is the easiest one, it has

uncertain effects, but no exogenous effects. It is modeled
with 5 different predicates, 3 actions, 7 operators, and op-
erators require at most 2 terms (ω = 2). This domain
serves as a good baseline to compare with the state of the
art as there are not exogenous effects.

• Crossing Traffic. This domain has an intermediate dif-
ficulty. It has uncertain effects and exogenous effects,
which makes it more challenging, but the complexity of
the model is still moderate: 8 predicates, 4 actions, 6 op-
erators, and operators take at most 3 terms.

• Elevators. This is the most challenging domain. It has un-
certain effects and exogenous effects. It is modeled with
10 predicates, 4 actions, 17 operators, and operators take
at most 3 terms.

The difficulty to learn a domain is mostly given by:

• The maximum number of terms ω that operators may
have. The number of terms increases exponentially the
number of relational transitions generated from the input
grounded transitions (Sec. 3), and therefore the number of
candidate rules. If the value of ω is larger than the num-
ber of terms that operators actually require, the learning
time increases while the quality of the models remains
the same.

• The number of predicates, both constant and variable,
used to represent the states. The candidates that LFIT
generates consider all combinations of predicates that are
consistent with the transitions.

• The number of uncertain and exogenous effects. LFIT
generates all candidates that may explain an effect, in-
cluding operators that overfit and underfit, and all com-
binations of action and exogenous effects.

Evaluation
In this section we analyze experimentally the proposed al-
gorithm, its parameters, and how it compares with the state
of the art. The learner uses the following parameters: α, ε,
and δ, which are the score function parameters; κ, which is
the size limit of Γ (Algorithm 1); and “tree“ to denote that
the subsumption tree is being used.

The results show the average variational distance, which
may be difficult to interpret. To give an idea about the utility
of the learned models, a planner can usually yield a plan
when the average variational distance is below:

• 0.09 in the Triangle Tireworld domain.

• 0.15 in the Crossing Traffic domain.

• 0.1 in the Elevators domain.

As the average variational distance becomes lower, there is
a higher probability that obtained plans are optimal.

Configuration parameters. Here we discuss the impact
the different configuration parameters have on the quality of
the models learned.

• As seen in figs. 3-left and 4-left, the confidence term in the
score function improves the quality of the models learned
when few input transitions are available. This confidence
term penalizes very specialized rules in cases where there
is a large uncertainty in the predictions. Once many tran-
sitions are available, the impact of this term disappears.
Note that only probabilistic operators are improved as de-
terministic ones are completely specialized anyway. The
impact of this term is relatively small in the experiments
because both domains require only one probabilistic op-
erator.

• Figure 3-middle shows how the optimal search configu-
ration compares to one that uses the subsumption tree, a
non-admissible heuristic (δ > 0), and restricts the size of
Γ to κ sets. Both yield almost the same results because the
subsumption tree and the relaxed heuristic degrade the re-
sults only in very specific cases, and the value of κ is high
enough to find the relevant operators.

The Triangle Tireworld domain does not contain exoge-
nous events, and thus, the selection of the best set of can-
didates is very simple and can be done equally fast in the
optimal case (fig. 3-right). Most of the execution time is
spent in obtaining the likelihood of the operators as there
are a lot of possible candidates in this domain.

• In contrast, when learning domains with exogenous
events, the optimal search method was not used because
the execution time was too large in all but the most simple
problems. Similar results to the optimal method were ob-
tained when the set of possible candidates Γ was restricted
to a size κ that was large enough, and the execution time
was greatly reduced.
Figure 4-middle shows the advantages of the subsump-
tion tree and a non-admissible heuristic (δ > 0). The
subsumption tree divides the search problem in smaller
ones, and thus a lower κ is enough to yield good results.
The same applies to the non-admissible heuristic since it
prioritizes operators that explain many transitions with a
high likelihood, and very specific operators that may not
be interesting are given a smaller heuristic score. As a re-
sult, the configurations without the subsumption tree and
δ = 0 are slower because they analyze more operators to
obtain the same results (fig. 4-right).
As an exceptional case, LFIT takes longer to execute in
the Crossing Traffic domain with very few transitions as it
finds more possible patterns. Its execution time increases
again once many transitions have been added.

Comparison with Pasula et al. Comparison is performed
only with (Pasula, Zettlemoyer, and Kaelbling 2007), as
(Deshpande et al. 2007) is an extension to include transfer
learning, and (Mourao 2014) yields similar results to Pasula
et al.’s approach in completely observable problems. The ex-
periments were done with the implementation by Lang and
Toussaint (2010).

Figure 5-left shows the results of learning the Triangle
Tireworld domain. It can be easily learned by both, ours, and
Pasula et al.’s approach, as there are no exogenous effects.
With this experiment we want to show that our method can
learn domains without exogenous effects as well as state-of-
the-art learners.

Figures 5-center and 5-right refer to two domains with
exogenous effects. As Pasula et al.’s learner cannot learn ex-
ogenous effects, it tries to build overcomplicated operators
that explain both action effects and exogenous effects at the
same time, and thus it is not able to yield a good general
model. In contrast, our approach is able to distinguish action
effects from exogenous effects once enough transitions are
given as input.

6 Conclusions
We have introduced a new method that, given a set of input
transitions, learns a general model explaining them. In con-
trast to previous approaches, it can learn exogenous effects
(effects not related to any action), while still being similarly
good at obtaining a relational representation of the problem
and at learning uncertain effects. Moreover optimal and sub-
optimal search methods are provided, so the best approach

2 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Number of Transitions per action (3 actions)

V
a

ri
a

ti
o

n
a

l
d

is
ta

n
c
e

α=0.02, ε=0.1

α=0.02, no confidence term

2 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Number of Transitions per action (3 actions)

V
a

ri
a

ti
o

n
a

l
d

is
ta

n
c
e

δ = 0.05, κ=500, tree
Optimal (δ = 0, κ=∞, no tree)

5 10 15 20 25 30 35 40 45 502
0

5

10

15

Number of Transitions per action (3 actions)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Search: δ=0.05, κ=500, tree
Search: optimal (δ=0, κ=∞, not tree)
LFIT

Figure 3: Evaluation of different configurations in the Triangle Tireworld domain, MDP-1. Unless stated otherwise, the follow-
ing parameters were used: (α= 0.02, ε= 0.1, ω= 2, δ= 0.05, κ= 500, tree). The results shown are the means obtained from
100 runs. The evaluation was done with 3000 transitions. Left: Influence of the confidence term. Center: Comparing optimal
and suboptimal search configurations. Right: Execution time of the search (optimization) and the LFIT modules. The total
learning time would be the sum of LFIT plus one of the search configurations.

2 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Number of Transitions per action (4 actions)

V
a

ri
a

ti
o

n
a

l
d

is
ta

n
c
e

α=0.025, ε=0.1

α=0.025, no confidence term

2 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Number of Transitions per action (4 actions)

V
a

ri
a

ti
o

n
a

l
d

is
ta

n
c
e

δ = 0.05, κ=500, tree

δ = 0, κ=500, tree

δ = 0, κ=2000, tree

δ = 0.05, κ=500, no tree

δ = 0.05, κ=1500, no tree

2 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

Number of Transitions per action (4 actions)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Search: δ = 0.05, κ=500, tree

Search: δ = 0, κ=2000, tree

Search: δ = 0.05, κ=1500, no tree

LFIT

Figure 4: Evaluation of different configurations in the Crossing Traffic domain, MDP-1. Unless stated otherwise, the following
parameters were used: (α= 0.025, ε= 0.1, ω= 3, δ= 0.05, κ= 500, tree). The results shown are the means obtained from 100
runs. The evaluation was done with 4000 transitions. Left: Influence of the confidence term. Center: Influence of δ and the
subsumption tree. Right: Execution time of the search (optimization) and the LFIT modules. The total learning time would be
the sum of LFIT plus one of the search configurations.

can be chosen depending on the quality requirements, the
difficulty of the problem, and the learning time available.

The main limitation of the algorithm is scalability. If the
number of generated propositional predicates is large (ei-
ther because the domain is represented with a large num-
ber of predicates, or because ω takes a high value), the
problem may become intractable. Moreover, as the univer-
sal quantifier (forall) and the negative existential quantifier
(∼ exists) are not supported, many IPPC 2014 domains can-
not be learned.

Experimental validation was carried out with three stan-
dard domains of the planning community. Our approach
could learn domains with exogenous effects where previ-
ous approaches could not. The experiments also show the
improvements obtained with the subsumption tree and the
proposed confidence term in the score function.

As future work, the following topics are proposed: im-

proving the transformation from propositional rules to plan-
ning operators to learn universal and existential quantifiers,
use a multi-valued relational representation (currently only
the propositional part is multi-valued), and support partial
observability.

Acknowledgements
This work has been supported by the MINECO project
RobInstruct TIN2014-58178-R and the ERA-Net CHIST-
ERA project I-DRESS PCIN-2015-147. D. Martı́nez is also
supported by the Spanish Ministry of Education, Culture and
Sport via a FPU doctoral grant (FPU12-04173).

References
Deshpande, A.; Milch, B.; Zettlemoyer, L. S.; and Kael-
bling, L. P. 2007. Learning probabilistic relational dynamics

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Transitions per action (3 actions)

V
a

ri
a

ti
o

n
a

l
d

is
ta

n
c
e

Our approach
Pasula et al.

Triangle Tireworld

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Transitions per action (4 actions)

V
a

ri
a

ti
o

n
a

l
d

is
ta

n
c
e

Our approach
Pasula et al.

Crossing Tra c

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Transitions per action (4 actions)

V
a

ri
a

ti
o

n
a

l
d

is
ta

n
c
e

Our approach
Pasula et al.

Elevators

Figure 5: Comparison with Pasula et al. The results shown are the means and standard deviations obtained from 50 runs. The
evaluation was done with 5000 random transitions. Left: Triangle Tireworld (α= 0.02, ε= 0.1, ω= 2, δ= 0, κ=∞, no tree).
Center: Crossing Traffic (α= 0.025, ε= 0.1, ω= 3, δ= 0.05, κ= 500, tree). Right: Elevators (α= 0.015, ε= 0.1, ω= 3,
δ= 0.05, κ= 500, tree).

for multiple tasks. In Proc. of the Conference on Uncertainty
in Artificial Intelligence.
Inoue, K.; Ribeiro, T.; and Sakama, C. 2014. Learning from
interpretation transition. Machine Learning 94(1):51–79.
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In Proc. of the International Confer-
ence on Automated Planning and Scheduling, 119–127.
Kolobov, A.; Dai, P.; Mausam; and Weld, D. S. 2012. Re-
verse iterative deepening for finite-horizon MDPs with large
branching factors. In Proc. of the International Conference
on Automated Planning and Scheduling, 146–154.
Kulick, J.; Toussaint, M.; Lang, T.; and Lopes, M. 2013. Ac-
tive learning for teaching a robot grounded relational sym-
bols. In Proc. of the Twenty-Third international joint con-
ference on Artificial Intelligence, 1451–1457.
Lang, T., and Toussaint, M. 2010. Planning with noisy prob-
abilistic relational rules. Journal of Artificial Intelligence
Research 39:1–49.
Martı́nez, D.; Alenyà, G.; and Torras, C. 2015. Planning
robot manipulation to clean planar surfaces. Engineering
Applications of Artificial Intelligence 39:23–32.
Martı́nez, D.; Ribeiro, T.; Inoue, K.; Alenyà, G.; and Tor-
ras, C. 2015. Learning probabilistic action models from
interpretation transitions. In Technical Communication of
the International Conference on Logic Programming, CEUR
Workshop Proceedings, volume 1433, 30.
Mourao, K.; Zettlemoyer, L. S.; Petrick, R.; and Steedman,
M. 2012. Learning strips operators from noisy and incom-
plete observations. In Proc. of the Conference on Uncer-
tainty in Artificial Intelligence, 614–623.
Mourao, K. 2014. Learning probabilistic planning operators
from noisy observations. In Proc. of the Workshop of the UK
Planning and Scheduling Special Interest Group.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning symbolic models of stochastic domains. Journal of
Artificial Intelligence Research 29(1):309–352.
Ribeiro, T., and Inoue, K. 2014. Learning prime implicant

conditions from interpretation transition. In Proc. of the In-
ternational Conference on Inductive Logic Programming.
Sanner, S. 2010. Relational dynamic influence diagram
language (RDDL): Language description. Unpublished ms.
Australian National University.
Sykes, D.; Corapi, D.; Magee, J.; Kramer, J.; Russo, A.; and
Inoue, K. 2013. Learning revised models for planning in
adaptive systems. In Proc. of the International Conference
on Software Engineering, 63–71.
Thon, I.; Gutmann, B.; van Otterlo, M.; Landwehr, N.; and
De Raedt, L. 2009. From non-deterministic to probabilistic
planning with the help of statistical relational learning. In
Proc. of the ICAPS Workshop on Planning and Learning,
23–30.
Thon, I.; Landwehr, N.; and De Raedt, L. 2011. Stochas-
tic relational processes: Efficient inference and applications.
Machine Learning 82(2):239–272.
Walsh, T. J.; Szita, I.; Diuk, C.; and Littman, M. L. 2009.
Exploring compact reinforcement-learning representations
with linear regression. In Proc. of the Conference on Un-
certainty in Artificial Intelligence, 591–598.
Walsh, T. J. 2010. Efficient learning of relational models
for sequential decision making. Ph.D. Dissertation, Rutgers,
The State University of New Jersey.
Younes, H. L., and Littman, M. L. 2004. PPDDL1. 0: An
extension to PDDL for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-162.
Zhu, G.; Lizotte, D.; and Hoey, J. 2014. Scalable approx-
imate policies for Markov decision process models of hos-
pital elective admissions. Artificial Intelligence in Medicine
61(1):21–34.
Zhuo, H. H., and Kambhampati, S. 2013. Action-model
acquisition from noisy plan traces. In Proc. of the Twenty-
Third international joint conference on Artificial Intelli-
gence, 2444–2450.
Zhuo, H. H., and Yang, Q. 2014. Action-model acquisi-
tion for planning via transfer learning. Artificial intelligence
212:80–103.

