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Planning Wrench-Feasible Motions

for Cable-driven Hexapods

Oriol Bohigas, Montserrat Manubens, and Lluı́s Ros

Abstract—Motion paths of cable-driven hexapods must carefully be

planned to ensure that the lengths and tensions of all cables remain

within acceptable limits, for a given wrench applied to the platform.

The cables cannot go slack –to keep the control of the robot– nor

excessively tight –to prevent cable breakage– even in the presence of

bounded perturbations of the wrench. This paper proposes a path

planning method that accommodates such constraints simultaneously.

Given two configurations of the robot, the method attempts to connect

them through a path that, at any point, allows the cables to counteract

any wrench lying in a predefined uncertainty region. The configuration

space, or C-space for short, is placed in correspondence with a smooth

manifold, which facilitates the definition of a continuation strategy to

search this space systematically from one configuration, until the second

configuration is found, or path non-existence is proved by exhaustion of

the search. The force Jacobian is full rank everywhere on the C-space,

which implies that the computed paths will naturally avoid crossing the

forward singularity locus of the robot. The adjustment of tension limits,

moreover, allows to maintain a meaningful clearance relative to such

locus. The approach is applicable to compute paths subject to geometric

constraints on the platform pose, or to synthesize free-flying motions in

the full six-dimensional C-space. Experiments are included that illustrate

the performance of the method in a real prototype.

Index Terms—Cable-driven hexapod, wrench-feasible C-space, higher-

dimensional continuation, singularity-free path planning.

I. INTRODUCTION

In recent years, cable-driven parallel robots have been increasingly

studied and applied to more and more relevant tasks, such as

manipulation of heavy loads [1, 2], high-precision positioning [3],

monitoring of aquatic environments [4], automated construction of

civil structures [5], rescue systems [6], or motion simulators [7].

Among them, hexapodal ones stand out for their simplicity and

extensive use (Fig. 1), especially after the long-term effort on the

NIST Robocrane and its derived applications [3, 8]–[10]. They

involve the minimum number of cables and motors to fully govern

a load in 6D under gravity, resulting in simple robotic cranes for

precise manipulation that can even be made mobile by attaching

vehicles to the feet [11]. These advantages, together with the fact

that they can easily achieve larger workspaces than their counterparts

with rigid-limb legs, make cable-driven hexapods energy-efficient and

appropriate to maneuver heavy objects in position and orientation.

However, additional constraints apply: their cables can pull but are

unable to push the platform, which obliges to keep the cable tensions

positive during normal operation.

The C-space of a cable-driven hexapod is limited by a number

of hypersurfaces corresponding to configurations where the tension

of some cable is either zero, for which the cable goes slack and

control of one degree of freedom is lost (see [12] for a dramatic

example), or goes to infinity, which indicates that the mechanism is

in a singular configuration and the cable can break [13]. In practice,

it is important to prevent both extreme situations and ensure that

the cables work within a range of admissible tensions, for a given
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platform wrench subject to bounded perturbations in all directions.

After [14] and [15], the configurations fulfilling this condition are

said to be wrench-feasible.

Several methods have been proposed for the determination of

wrench-feasible workspaces of cable-driven parallel robots [13, 15]–

[18], but the problem of planning paths between given configurations

has received little attention comparatively. Algorithms indeed exist

that try to avoid the singular configurations where the leg forces tend

to infinity, but they are mainly tailored to parallel robots with rigid

UPS legs [19]–[22], and their application to cable-driven hexapods

is not straightforward because they do not account for the positivity

constraint on the leg tensions. Moreover, these algorithms measure

the clearance of the path relative to the singularity locus using the

determinant or the condition number of the force Jacobian matrix,

which, as noted in [23], lack physical significance. While some path

planning approaches apply to cable-driven hexapods [24]–[26], the

path they compute is evaluated for feasibility at discrete points only,

so a method that guarantees the fulfillment of all the constraints along

the whole path is still lacking.

The planning method presented in this paper is aimed at covering

such gap. It was preliminarly introduced in [27] and it is now pre-

sented with thorough detail and illustrative experiments. The method

relies on defining a system of equations whose solution manifold

corresponds to the six-dimensional wrench-feasible C-space of the

hexapod, so that maneuvering through such manifold guarantees

singularity avoidance at all times, while maintaining cable tensions

and lengths within their allowable positive bounds (Sections II

and III). This manifold, as well as any of its subsets defined by

motion constraints arising in many applications, are found to be

smooth everywhere, which is key to define a continuation method

able to explore the C-space systematically from one configuration,

until a goal configuration is found, or path non-existence is proved

at the resolution of the search (Section IV). The method has been

implemented and validated in several test cases, and with experiments

in a real prototype (Section V). Its main strengths and points for

future attention have been identified as well (Section VI).

Fig. 1. A cable-driven hexapod consists of a moving platform connected to a
fixed base by means of six cables of variable (actuated) length. The platform
is maintained in a stable position due to the action of gravity. This prototype
was constructed at Institut de Robòtica i Informàtica Industrial to test the
planning method proposed (Section V).
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II. PRELIMINARIES

A cable-driven hexapod consists of a moving platform suspended

from a fixed base by means of six cables winding around independent

winches (Fig. 2). The cables are herein assumed to be of neglectable

mass and elasticity. By actuating the winch drives, the cable lengths

di can be varied within prescribed limits (di, di), with di > 0, which

allows a full control of the six degrees of freedom of the platform

within a given workspace. The C-space of such a robot, and the

planning problem confronted, can be defined as follows.

Consider fixed and moving reference frames F1 and F2, re-

spectively attached to the base and platform links, centered in O
and P (Fig. 2). Let p and ai be the position vectors of P and

Ai relative to F1, and bi be the position vector of Bi relative

to F2. We can represent any platform configuration by the pair

q = (p,R) ∈ SE(3) = R
3 × SO(3), subject to the constraints

di = p+R bi − ai, (1)

d2i = d
T

i di, (2)

di < di < di, (3)

for i = 1, . . . , 6, where R is the 3× 3 rotation matrix that provides

the orientation of F2 relative to F1. While Eqs. (1) and (2) make the

cable lengths di explicit in terms of p and R, the inequalities in (3)

constrain such lengths to lie in (di, di).
The R matrix in Eq. (1) is assumed to be expressed as a function

of τ , a tuple of any three angles parameterizing SO(3), such as

Euler angles under any convention, or tilt-and-torsion angles [28].

This allows for an easy formulation of planning problems in constant-

angle slices of SE(3), which are useful in parallel kinematic ma-

chines [28], and avoids the treatment of additional constraints needed

in non-minimal representations of the rotation group. Although we

then introduce representation singularities relative to the angles of

choice [29, page 31], this will not be problematic because the

smoothness properties required to solve our planning problem will

remain unaltered.

In practice, any configuration must also be wrench-feasible, i.e., it

must allow the platform to equilibrate any external wrench ŵ acting

on it, subject to lie inside a prescribed, bounded region K ⊂ R
6.

The coordinates of ŵ are assumed to be given in the usual screw-

theoretic form [30], i.e., the first three components provide the net

force on the platform, and the last three ones give the net moment

relative to O. The significance of K depends on the particular context

P

O
Ai

Bi

di

Fig. 2. Kinematic structure of a cable-driven hexapod.

of application. In payload transportation, for instance, K may be

given by the gravitational wrench acting on the platform and slight

perturbations introduced by inertia forces or external agents like the

wind. In contact situations, K might further depend on the contact

wrench applied by the environment, which is in general subject

to six-dimensional uncertainty. Specifically, the wrench-feasibility

requirement on a given q implies that for each ŵ ∈ K there must

be a vector of admissible cable tensions

f = [f1, . . . , f6]
T ∈ D = (f1, f1)× . . .× (f6, f6)

satisfying

J f = ŵ,

where (fi, fi) is the range of positive tensions that can be resisted

by the ith cable, and J is the 6 × 6 force Jacobian of the robot. J

is a function of q and takes the form

J =

[

u1 · · · u6

a1 × u1 · · · a6 × u6

]

,

in frame F1, where ui = di/di [30].

For ease of manipulation, K will be assumed to be a six-

dimensional ellipsoid centered in ŵ0, defined implicitly by the

inequality

(ŵ − ŵ0)
T
E (ŵ − ŵ0) ≤ 1,

where E is a 6×6 positive-definite symmetric matrix. This ellipsoid

can be constructed by propagating known bounds on other variables

related to ŵ, using the tools of an ellipsoidal calculus for exam-

ple [31]. In [32], we explain how to obtain ŵ0 and E in typical

situations, and show that ŵ0 and E are a function of q in general.

We can now define the C-space of the manipulator, C, as the set

of wrench-feasible configurations q ∈ SE(3) that satisfy Eqs. (1)–

(3) for i = 1, . . . , 6. The planning problem we confront, thus, boils

down to computing a path joining two given configurations of C, qs

and qg; i.e., a continuous map

µ : [0, 1] −→ C

such that µ(0) = qs and µ(1) = qg . To tackle this problem, we

next define a smooth manifold suitable to navigate C by numerical

continuation [33].

III. THE NAVIGATION MANIFOLD

A. A Characterization of C

For a given configuration q and a wrench ŵ0 applied to the

platform, let f0 be the vector of cable tensions corresponding to

ŵ0 ∈ K, which satisfies

J f0 = ŵ0. (4)

By noting that J(f − f0) = ŵ − ŵ0, it is easy to see that the set

L of cable tensions f corresponding to all wrenches ŵ ∈ K is the

ellipsoid given by

(f − f0)
T
B (f − f0) ≤ 1,

where B = JTE J . This ellipsoid may be bounded in all directions

or unbounded in some, depending on whether det(J) 6= 0 or not.

However, [32, Chapter 6] shows that J is non-singular for all q ∈ C,

so that L will always be a bounded ellipsoid in our case (Fig. 3).

It is worth to see here that, since J is full rank for all q ∈ C, the

navigation of C implicitly avoids the singular configurations of the

platform. Thus, the control issues related to such configurations (due

to output velocity indetermination and platform shakiness [34]) will

not be encountered during the execution of the obtained path.
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Fig. 3. The mapping Jf = ŵ is used to transform the wrench ellipsoid K into the cable tension ellipsoid F . The arrow in the figure indicates the
transformation from the former ellipsoid to the latter. The vector vi provides the maximum and minimum values of fi within F .

Now, for q to be wrench-feasible, we must have L ⊆ D, which can

be checked as follows. Consider the vector vi that gives the offset

from the center of L to the point of L attaining the largest fi value,

f0 + vi (Fig. 3). Symmetrically, f0 − vi is the point of L with the

smallest fi value. Using Lagrange multipliers, one can see that vi is

the unique vector satisfying

v
T

i B vi = 1, (5)

B
i
vi = 0, (6)

vi,i > 0, (7)

where Bi is the matrix B with its ith row removed, and vi,i is

the i-th component of vi. Observe that if J is non-singular, then

both B and Bi are full row rank, and certainly there is exactly one

vector vi satisfying Eqs. (5)-(7). Using this vector, we can say that

if det(J) 6= 0, then L is contained in D whenever

f0,i − vi,i > fi, (8)

f0,i + vi,i < fi, (9)

for i = 1, . . . , 6. As a result, C can be characterized as the set

of points q ∈ SE(3) satisfying Eqs. (1)-(9) for some value of the

variables di, di, f0 and vi.

B. Conversion into Equality Form

Continuation methods are, by design, aimed at tracing solution

sets of systems of equations, not inequalities [33]. To define a

continuation-based path planning strategy, we thus need to convert

Eqs. (3), and (7)-(9) into equality form. To this end, note from

Fig. 4 (a) that we can replace Eq. (3) by

(di − di) · (di − di) · gi = 1, (10)

gi > 0,

where gi is a newly-defined auxiliary variable. In apparence, we have

not skipped the use of inequalities with this change, but from the

graph of Fig. 4 (a) we see that if a configuration q corresponds to a

value di = a ∈ (di, di), then any other configuration found from q

by continuation subject to Eq. (10) will always satisfy di < di < di.
In other words, the constraint gi > 0 can be neglected under such a

continuation scheme.

Similarly, Eqs. (8) and (9) can be replaced by

(f0,i − vi,i − fi) · si = 1, (11)

(fi − f0,i − vi,i) · ti = 1, (12)

si > 0, ti > 0,

q

q

a

di

gi

di di

(a)

(b)

yi

si

Fig. 4. (a) The graph of Eq. (10) shows that if we explore the solution set
of Eq. (10) by continuation from some q ∈ C corresponding to di = a, the

constraints di < di < di will always be satisfied. (b) The graph of yisi = 1,
where yi = f0,i − vi,i − fi, shows that the same applies to Eq. (11).

where si and ti play a role analogous to that of gi in Eq. (10). From

the graph in Fig. 4 (b), for example, it is clear that the quantity

yi = f0,i−vi,i−fi will remain positive, and hence f0,i−vi,i > fi,
when marching continuously from a given q with yi > 0. The same

argument applies to Eq. (12), so we can replace Eqs. (8) and (9) by

Eqs. (11) and (12), neglecting the constraints si > 0 and ti > 0
during the continuation scheme.

Finally, Eq. (7) can be directly neglected, because vi,i 6= 0 for all i
on any vector satisfying Eqs. (5) and (6). Certainly, observe that Bvi

is all zeros except in its i-th component due to Eq. (6). If it were

vi,i = 0 for some i, this would imply vT

i Bvi = 0, contradicting

Eq. (5). Therefore, if our continuation method starts from a value of

vi with vi,i > 0, and it is compliant with Eqs. (5) and (6), Eq. (7)

will be naturally fulfilled.
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C. The Manifold and its Properties

The system formed by Eqs. (1)–(2), (4)–(6), and (10)–(12) can be

compactly written as

F (x) = 0, (13)

where x refers to a tuple encompassing all of its variables:

p, τ ,di, di,f0,vi, gi, si, and ti, for i = 1, . . . , 6. The solution set

of this system,

M = {x : F (x) = 0},

will be called the navigation manifold hereafter, because it has the

necessary properties to connect qs and qg by numerical continuation.

To see this point, consider the subset M+ ⊂ M formed by the

points x for which gi > 0, si > 0, ti > 0, and vi,i > 0. Clearly, C
and M+ are in correspondence. A point q belongs to C if, and only if,

it has a corresponding point x ∈ M+, and any continuous path in C
will also be represented by a continuous path in M+, and vice versa.

Thus, the original problem of computing a path of C connecting qs

and qg can be reduced to that of computing a path in M+ connecting

points xs and xg of M+ corresponding to qs and qg . However, since

gi, si, ti, and vi,i never vanish on M (Section III-B), M+ and its

complement M \ M+ are disconnected, and if we try to connect

xs to xg by continuation on M, we will be moving through M+

actually. Therefore, for the purpose of this paper, we will only need

M and Eq. (13) hereafter.

M is six-dimensional, and [32, Chapter 6] further proves that it is

smooth everywhere, so that every point x has a well-defined tangent

space TxM. This greatly simplifies the definition of a continuation

method to connect xs and xg , because no bifurcations, sharpnesses,

or dimension changes will be found along the way, avoiding the need

of elaborate branch-switching procedures [35].

It is worth mentioning that in many applications (such as in

painting, polishing, or cleaning of ship hulls, or building façades)

the platform is further confined to move within a lower-dimensional

subset of C defined by geometric or contact constraints on its pose.

As exemplified in Section V-B, we can directly add such constraints

to Eq. (13) if we wish, written either in the parametric form
[

p

τ

]

= Ω(λ), (14)

where Ω is an arbitrary smooth function of any set of parameters λ,

or in the implicit form

C(p, τ ) = 0, (15)

where C(p, τ ) is any smooth function with a full-rank Jacobian

Cp,τ . We show in [32] that, again, the resulting system of equations

is suitable to the following continuation strategy.

IV. A CONTINUATION STRATEGY

To determine a path connecting xs and xg we rely on the

higher-dimensional continuation method by Henderson [36], with the

extensions proposed in [37] to heuristically guide the search towards

xg . The approach provides a systematic way of marching through M
from xs until xg has been found, or the entire connected component

of xs has been reached. The method is a generalisation of classical

path-following techniques [38] and it is quite powerful as it can be

applied to general smooth manifolds. It is only recently that its value

is being recognized in the context of robotics [32, 39]. We next recall

its main points and refer the reader to [36, 37] for further details.

To explore M, the method gradually grows an atlas on M, i.e.,

a paving of M with flat tiles, or charts, that locally map regions

of M. At a given point xi ∈ M, initially set to xs, the method

computes the tangent space to M at xi, Ti, and uses this space to

xi xi

xi
j

si
j

xj xj

(a) (b)
TiTi

Tj

M

xs

xs

xg

xg

(c)

Fig. 5. (a) Chart construction around xi ∈ M, and marching along
direction sij to produce a new point xj ∈ M. (b) A neighboring chart

is constructed at xj , and it is properly clipped with existing charts. (c)
Evolution of the continuation method on a Chmutov surface defined by
3 + 8(x4 + y4 + z4) = 8(x2 + y2 + z2).

chart the points in M around xi [Fig. 5 (a)]. To continue the march,

the method choses a direction si
j ∈ Ti, projects the point xi

j down

to M to obtain xj , and generates a new chart on Tj , the tangent

space to M at xj . The method keeps track of the regions of M
explored up to a given point by clipping the chart domains on Ti and

Tj against each other [Fig. 5 (b)], and the whole process is iterated

until xg is covered by some chart [Fig. 5 (c)], or the whole connected

component reachable from xs has been charted. The strategy has a

mechanism to adapt the extension of the chart domains to the local

curvature of the manifold at each point [36], and despite the atlas

is discrete, it allows the generation of continuous paths from a chart

center xi to a neighboring one xj . To ensure the continuity of these

paths, one can use multiprecision methods for example [40].

The expansion of the atlas may proceed in breadth-first order, as in

Fig. 5 (c), it or may be guided towards xg heuristically, as illustrated

in Section V below. A possible approach is to use an A* search

strategy [41], which only generates the necessary charts to compute

a minimum-cost path from xs to xg . At each iteration, this method
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expands the chart of the point xi yielding the lowest estimated cost

of the whole movement path from xs to xg , keeping a sorted priority

queue of alternative path segments. The previous cost is the sum of

a term g(xi) that gives the lowest known cost of moving from xs

to xi, and a term h(xi) that gives a lower bound of the cost of

moving from xi to xg . The value of g(xi) is maintained during

the expansion of the atlas by means of a function c(xj ,xk) that

determines the transition cost between two chart centers. Examples

of all of these functions are given in Section V.

The A* strategy typically performs well on manifolds of dimension

up to three, but computation times considerably increase in larger

dimensions. In such cases, one can simply use a Greedy Best-first

strategy, in which the chart to be expanded is just the one yielding

a minimum value h(xi). In doing so, the path obtained may not be

close to the optimal one, but the Greedy Best-first strategy usually

generates less charts, and tends to be much faster. Both the A* and

Greedy Best-first strategies, however, will find a path on M from xs

to xg whenever one exists.

During atlas construction, a graph G can be built whose nodes

represent the chart centers xi, and whose edges store the neighbour-

ing relations between the computed charts. Thus, when xg has been

reached, we can use G to rapidly generate a minimum-cost path

connecting xs with xg according to the cost function assumed. Any

cost function can be used in principle. Depending on the application,

the function may reflect energy consumption, travel distance, or a

penalty due to robot collisions with itself or with the environment.

In the latter case the function only has to assign an infinite cost to

the chart-to-chart transitions that are causing a collision [37]. Finally

we note that, since the returned paths use direct motions between

adjacent chart centers, they may be slightly jerky, but they can be

smoothed using standard path smoothing techniques [42].

V. PERFORMANCE TESTS

We next illustrate the performance of the method on two in-

stances of an octahedral hexapod, specified as Robot 1 and 2

hereafter (Fig. 6). The robots essentially have the structure of the

NIST Robocrane [8], but the planner remains applicable to general

hexapods, with cable anchor points not necessarily coincident in pairs.

In Section V-A we apply the planner to compute paths in two-

dimensional slices of C obtained by fixing four pose parameters.

This shows how complex the wrench-feasible C-space can be even

in simple cases, and stresses the advantages of our approach in

comparison to previous methods based on discretization. Then, in

Section V-B, we use the planner in a real prototype, both to plan

motions subject to geometric constraints, and free-flying motions in

six-dimensional space. Computation times are given in seconds in

Table I at the end of the section.

All results have been obtained with an implementation in C

of the method available as part of the open source package

called CUIK [39], executed on a MacBook Pro computer equipped

with a Intel Core i7 processor running at 2.66 GHz. Because of

its attractive properties in parallel machines, the implementation

adopts the tilt-and-torsion parameterization of SO(3), for which

R = Rz(φ)Ry(θ)Rz(σ − φ), where φ, θ, and σ are the azimuth,

tilt, and torsion angles respectively [28]. Thus, τ = {φ, θ, σ} in

this section, and the algorithms take into account that the angular

coordinates differing in multiples of 2π refer to the same angle.

A. Planning in Illustrative Slices

In this example, Robot 1 is required to withstand a load of 1 N

applied at a point Pm with position vector pm = [30, 14,−21]T

mm in frame F2. Note that the weight of this load corresponds to a
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A2 = (200,−115.47, 0) B2 = (0,−115.47, 0)

A3 = (200,−115.47, 0) B3 = (100, 57.74, 0)

A4 = (0, 230.94, 0) B4 = (100, 57.74, 0)

A5 = (0, 230.94, 0) B5 = (−100, 57.74, 0)

A6 = (−200,−115.47, 0) B6 = (−100, 57.74, 0)

R
o

b
o

t
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A1 = (−231.62,−136.18, 0) B1 = (0,−89.15, 0)

A2 = (231.62,−136.18, 0) B2 = (0,−89.15, 0)

A3 = (233.74,−132.50, 0) B3 = (77.21, 44.57, 0)

A4 = (2.13, 268.67, 0) B4 = (77.21, 44.57, 0)

A5 = (−2.13, 268.67, 0) B5 = (−77.21, 44.57, 0)

A6 = (−233.74,−132.50, 0) B6 = (−77.21, 44.57, 0)

Fig. 6. Top: Front and top views of the octahedral architecture in a reference
configuration. Bottom: Coordinates of Ai and Bi in mm, expressed in
F1 = Oxyz and F2 = Px′y′z′ respectively, for the two robots considered.

constant wrench ŵ0 = [0, 0, 1, 0, 0, 0]T (in SI units) if expressed

in a frame F3 defined parallel to F1 and translating with Pm.

The bounded perturbations of this wrench will be represented by

the ellipsoid K centered in ŵ0 with E = 104I6, also expressed

in F3. Both ŵ0 and E can be expressed in F1 using appropriate

expressions provided in [32]. The tensions and lengths for all cables

are constrained to fi ∈ (0.05, 0.5) N and di ∈ (100, 550) mm.

Fig. 7, top, shows two slices of the wrench feasible C-space

of the robot, computed in Matlab using dense discretization for

fixed values of p and σ. The configurations corresponding to C
are indicated in green, while those that cannot be reached due to

cable lengths or tensions out of range are represented by the orange

and blue areas, respectively. The symmetries in the slices appear

because {φ, θ, σ} and {φ+π,−θ, σ} represent the same orientation
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Fig. 7. Top: Slices of C for Robot 1 obtained by fixing p and σ at the values indicated. The images show the zones where some force is out of range (blue),
some cable length exceeds its limits (orange), and configurations belonging to the wrench-feasible C-space (green). Note from the slices that the shape of C is
intricate in general, and, in particular, that the path in the top-right picture is unfeasible, despite the wrench-feasibility conditions are satisfied when evaluated
at the shown points. Bottom: Three paths computed by the proposed planner in the slice for p = [0, 0, 350]T and σ = 34◦. The inset shows the envelope of
cable tensions along the red path. See the text for details.

under the chosen parameterization. To avoid this double covering

of SO(3) we only need to restrict the expansion of the atlas to

the range θ ∈ [0, π]. The figures also show the singularity curves

where det(J(q)) = 0, in red, computed under no constraints on

the cable tensions. It can be observed that, as expected, C naturally

avoids crossing such curves, and that the navigation between two

configurations is not trivial, because C is in general non-convex and

may have very close connected components. The top-right plot of

Fig. 7, in particular, exemplifies how the evaluation of the wrench-

feasibility conditions at discrete points only could result in erroneous

paths linking configurations of C separated by singularity curves. In

our case, because we rely on continuation, note that none of the

paths computed by the proposed planner will misleadingly bridge

two disjoint components of C.

We next apply our method to resolve three planning queries on the

slice for p = [0, 0, 350]T and σ = 34◦, hence exploring a manifold

of dimension n = 2 (Fig. 7, bottom). Since here the platform can

only rotate, we use the functions

c(xj ,xk) = ‖log(R(τ j)
T
R(τ k))‖,

and

h(xi) = c(xi,xg).

to implement the A* search strategy described in Section IV. For

two orientations given by R(τ j) and R(τ k), c(xj ,xk) gives the

angle of the axis-angle representation of R(τ j)
TR(τ j), which is a

standard metric of SO(3) [43].

In a first query, the start and goal configurations are given by the

τ values {−2.3, 1.6, 17

90
π} rad and {1.7, 1.7, 17

90
π} rad, and by the

position vector p = [0, 0, 350]T mm, yielding the points qs and qg

shown in Fig. 7 bottom. The same figure depicts, in red, the path

returned by the planner in this case, using the A* search strategy.

In the figure, the green mesh corresponds to the full atlas of the

connected component of C attainable from qs, and the shaded area

corresponds to the part of this component that was actually explored

by the A* method to connect qs with qg . Green and blue charts

respectively correspond to those lying in the interior and at the border

of such area. It can be seen that, as expected, the algorithm biases

the search towards qg , and how it correctly takes the topology of

the angle variables into account. Moreover, notice from the figure

that a naive approach based on simply following the rectilinear path

from qs to qg would violate some of the constraints of C, yielding

uncontrollable motions or unaffordable cable tensions. The red path,

in contrast, correctly avoids these situations and guarantees control of

the platform at all points, keeping cable lengths and tensions within

their allowable limits. The inset in Fig. 7 corroborates so, showing

that the envelope of cable forces is admissible along the movement.

The line θ = 0 of Fig. 7, bottom, is known to be a representation

singularity, because all of its points correspond to a same orienta-
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tion [28]. To illustrate that this is not a problem in practice, we issue

two additional planning queries starting at distinct points of the θ = 0
line, q′

s and q′′

s , both leading to qg . The paths returned by the A*

planner, shown in blue and purple, are different, because the nature

of the algorithm does not capture the fact that there is no cost of

moving between two points with θ = 0. However, M is smooth

despite the singularity, and the planner has no problem in computing

feasible paths in both cases.

B. Planning in a Real Prototype

In order to mimic a situation in which the platform is subject to

geometric constraints, we next apply our approach to the robot of

Fig. 1, which is meant to perform insertion tasks on the surface of

a sphere. For operation purposes, the platform is required to move

tangentially to the sphere, with zero torsion. Using the parametric

form of Eq. (14), these conditions can be written as follows

p = rc + rs





cosα2 cosα1

cosα2 sinα1

− sinα2





φ = α1 − π
θ = π

2
− α2

σ = 0































, (16)

where rc = [xs, ys, zs]
T and rs indicate the sphere center and radius,

and α1 and α2 are two angular parameters. Thus, λ = {α1, α2} in

this case, and the navigation manifold is of dimension n = 2 after

adding Eq. (16) to Eq. (13).

The points Ai and Bi are those of Robot 2 in Fig. 6, and the sphere

is of radius 100 mm, with its center located at rc = [0, 0, 306]T mm

in frame F1. However, since a small distance between the platform

and the sphere needs to be kept, a value of rs = 130 mm is used in

Eq. (16). The platform weight is of 0.6 kg, with its center of mass

located in P , and we use the same matrix E = 104I6 as before.

Cable tensions are limited by the maximum force assumable by the

motors, with fi ∈ (0.1, 6.58) N, and the feasible lengths are those

satisfying di ∈ (200, 600) mm, for i = 1, . . . , 3.

The resulting C-space is shown in Fig. 8 projected on the sphere,

using the same drawing conventions of Fig. 7. The initial configura-

tion, and the configurations where the insertion tasks are to be done

are referred to as q1, q2, and q3, respectively, and correspond to the

λ values {0.55, π
2
}, {0.55, 0.75}, and {2.63, 0.75}. If we ask the

planner to synthesize movements from q1 to q2, and then to q3, we

obtain the red path in Fig. 8, which has been computed using

c(xi,xj) = rs arctan

(

‖ni × nj‖

ni · nj

)

,

and

h(xi) = c(xi,xg), (17)

in the A* search strategy, where ni = pi − rc. Given two points pi

and pj on the sphere, these functions provide the great-circle distance

between them, so the algorithm returns motions that minimize the

distance travelled by P on the surface of the sphere. A simple

planning approach based on interpolation in the {α1, α2} plane

would result in a rather different motion. The transition from q1

to q2 would coincide, but the movement from q2 to q3 would yield

the blue path of the figure, which rapidly leaves C at the beginning.

The video in https://youtu.be/GXSC9AQHLws shows the results of

executing both the interpolated and planned versions of the q1−q2−
q3 movement. It can be seen how, as expected, the platform moves

smoothly from q1 to q2, but some cables become slack and control of

the platform is lost along the interpolated path from q2 to q3. Other

undesirable effects include shakyness of the platform under small

q1

q2

q3

interpolated
path

Fig. 8. Results of planning a path from q1 to q2, and then to q3, in the
first experiment of Section V-B. The part of the C-space explored to plan the
transition from q2 to q3 is shown shaded in green.

perturbations, collisions with the environment, and cable tanglement

at the motors. In contrast, control of the platform is maintained when

following the path q2−q3 returned by the planner. Fig. 9 summarizes

the experiment in a few snapshots.

The method can be applied to higher-dimensional problems as well.

For example, if the insertion operations are to be performed with

an axisymmetric tool, we can ignore the zero-torsion constraint on

the platform pose by removing σ = 0 in Eq. (16). The result is a

three-dimensional planning problem that is efficiently solved with the

method, although the computation time is higher due to the increased

size of the search space. Six-dimensional problems can also be solved

by taking only Eq. (13) into account. Assuming that the sphere is not

present, for example, a free-flying motion from q2 to q3 can rapidly

be planned using the GBF strategy, using h(xi) = ‖xi − xg‖
2.

The problem sizes and computation times of all test cases are

reported in Table I, assuming the threshold values, defined in [37],

r = ε = 0.15. For each case, the table shows the dimension of the

explored manifold (n), the number of problem variables (m), and the

time spent by the Greedy Best-first and A* strategies (in seconds, last

two columns), using the cost functions explained. As anticipated in

Section IV, in terms of computation time the use of a Greedy Best-

first strategy is advantageous in higher-dimensional problems, while

the A* one is affordable and adviseable in lower dimensions, because

it normally yields lower-cost paths. Moreover, it must be said that

once a partial atlas has been computed, all planning queries between

configurations in such atlas can be solved in a few milliseconds.

Robot Path n/m GBF A*

1

qs → qg 2/150 29 62

q′

s → qg 2/150 6 12

q′′

s → qg 2/150 5 9

2

q1 → q2 2/155 12 2

q2 → q3 2/155 30 14

q2 → q3 (σ free) 3/155 56 166

q2 → q3 (free-flying) 6/153 40 > 6000

TABLE I
PROBLEM SIZES AND COMPUTATION TIMES FOR ALL TEST CASES.
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slack

collision

tanglement

(a)

(c) (d)

(b)

Fig. 9. Several snapshots of the video available in https://youtu.be/GXSC9AQHLws. (a): The robot at configuration q2. (b): Slackness of the cables and
collisions appear when trying to follow the interpolated path from q2 to q3. (c): Comparison between normal operation (left) and tanglement of the cables
in the motors (right). (d): Following the wrench-feasible path between q2 and q3 guarantees a smooth motion and control of the platform at all times.

VI. CONCLUSIONS

The ability to govern a load both in position and orientation is cru-

cial in many applications, and parallel cable-driven robots constitute

an advantageous, cost-effective solution. The problem is challenging

because cable tensions need to be positive to avoid swaying and

unwanted collisions of the load when moving towards a goal. This

paper has proposed a path planner that ensures a safe navigation

in this respect. The planner automatically computes motion paths

that at any point allow the robot to counteract a platform wrench

subject to bounded perturbations, with cable tensions lying inside

their allowable bounds. As explained in the paper, such paths will

never cross the forward singularity locus, and the adjustment of the

tension bounds can be used to tune the clearance relative to the locus.

When executing the planned paths, the load then moves smoothly and

predictably towards the goal, which makes the approach suitable in

fine manipulation tasks especially. Although the emphasis has been

on modelling the length and tension constraints of the hexapod, the al-

gorithm is flexible-enough to also accommodate collision constraints

of the robot. As shown in Section IV, these simply translate into

infinite cost transitions in the graph of the atlas. The method has

been thoroughly tested in C-spaces of various dimensions, and with

experiments on a real prototype. Video sequences of the latter can

be found in the multimedia material attached to the paper.

A number of points are proposed for future attention. First, in

some applications it may be necessary to also obtain platform motions

with a certain degree of position accuracy for the moving load. Due

to the generality of the continuation strategy, it should be possible

to deal with such constraints using by propagating known bounds

on the position error of the actuators to an ellipsoidal bound on

the platform pose. Second, while inertia effects can currently be

modeled as bounded perturbations of the wrench, this approach is

better suited to move the robot quasi-statically, as shown in our

experiments. Further research needs to be done to see whether the

method can be extended to also synthesize motion paths ensuring a

full dynamic control of the robot, or even a time-optimal trajectory.

As noted in [44], substantial workspace enlargements should be

achieved in doing so. Third, since the robot geometry is also subject

to uncertainty, it would be adviseable to develop a local planner able

to take such uncertainties into account in the transitions between

chart centers, translating the developments in [45] to the cable-driven

context, for example. Finally, efforts should also be made to extend

the method to deal with overactuated robots with somewhat elastic

cables, which, despite their more intrusive nature, are increasingly

proposed to exploit their redundant actuation [46].
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