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Abstract— This paper presents an optimal sensor place-
ment strategy based on pressure sensitivity matrix analysis
and a semi-exhaustive search strategy that maximizes some
diagnosis specifications for water distribution networks. A
mean average worst leak expansion distance has been pro-
posed as a new leak location performance measure. The
approach is combined with a clustering technique in order to
reduce the size and the complexity of the sensor placement
problem. The strategy is successfully applied to determine the
location of a set of pressure sensors in a district metered area
(DMA) in the Barcelona water distribution network (WDN).

I. INTRODUCTION

Water loss due to leaks in pipelines has negative op-
erational, economic, public health and social impacts for
both water companies and society. Leaks in WDNs that
can happen due to damages and defects in pipes, lack
of maintenance or increase in pressure must be detected
and located as soon as possible to minimize their effects.
Continuous improvements in water loss management are
being applied, and new technologies are developed to
achieve higher levels of efficiency [1].

The leak location activity is usually supported by
ground-penetrating radar or acoustic listening devices [2]
that are expensive and not very effective in some kind
of pipes like the plastic ones or with large diameters.
On the other hand, the leak location techniques based on
pressure/flow monitoring devices allow a more effective
and less costly search in situ. The need to identify the
location of leaks has promoted the development of several
techniques based on inverse problems and solving it using
pressure or flow measurements. These techniques are based
on the sensors installed in the network. Ideally, a sensor
network should be configured to facilitate leak detection
and location and maximize diagnosis performance under
cost limit. Since improper selections may seriously hamper
diagnosis performance, the development of sensor place-
ment strategies has become an important research issue in
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partment, Universitat Politècnica de Catalunya, Rambla de Sant
Nebridi, 10, 08222 Terrassa, Spain. email: {ramon.sarrate,
fatiha.nejjari}@upc.edu

J. Blesa is with the Institut de Robòtica i Informàtica Industrial
(CSIC-UPC). Carrer Llorens Artigas, 4-6, 08028 Barcelona. email:
joaquim.blesa@upc.edu

recent years. Different works that deal with sensor place-
ment for leak location purposes have been published in the
last few years. [3] selected the best locations by identifying
the best trade-off between reliability and deployment costs.
In [4] an algorithm based on sensitivity matrix analysis has
been developed to determine where to install a specific
number of pressure sensors among hundreds of possible
locations in the WDN in order to maximize the capability
of detecting and isolating leaks using structural analysis
combined with clustering techniques. In [5] a robustness
analysis of the sensor placement problem in WDNs has
been addressed. The study has been achieved by optimal
sensor placement strategies for different leak magnitudes
and DMA operating points and evaluated through a robust-
ness percentage index.

Model-based leak location techniques are based on
comparing the data gathered by the sensors with the data
simulated using a hydraulic model of the district metered
area. The sensor placement problem can be roughly stated
as choosing a subset, from a given candidate sensor
location set, such that some diagnosis performance is
guaranteed or at least maximized. Since installing sensors
will involve a cost for the drinking water management
company, economic constraints must be additionally taken
into account in the choice. Sensor placement entails for-
mulating a combinatorial optimization problem. A WDN
may easily involve several thousands of candidate sensor
locations, which poses a severe optimization challenge.
Thus, the sensor placement methodology should be able
to cope with such complexity issues.

In this paper, a methodology combining a clustering
technique and a semi-exhaustive search through the fault
sensitivity matrix concept is proposed for the sensor prob-
lem in WDNs. The proposed technique consists in solving
a combinatorial optimization problem where the best leak
location performance can be achieved by installing a given
number of sensors. Since an exhaustive search is highly
inefficient a semi-exhaustive search is used to improve the
efficiency of the sensor placement techniques. On the other
hand, some leak location performance metrics to assess the
uncertainty degree of the leak location diagnosis in terms
of distance among indiscernible leak locations are defined.
The fault sensitivity matrix can be obtained by convenient
manipulation of model equations as long as leak effects
are included in them [6]. Alternatively, it can be obtained
by sensitivity analysis through simulation.

The paper is organized as follows: Section II introduces
the model-based leak detection and location approach. The



sensor placement problem formulation is presented in Sec-
tion III. In Section IV, the sensor placement methodology
is applied to a real DMA network in Barcelona. Finally,
some conclusions and remarks are given in Section V.

II. MODEL-BASED LEAK DETECTION AND LOCATION

IN WDN

A. Fault sensitivity matrix

Model-based fault diagnosis techniques are applied to
detect and locate leaks in WDNs. In model-based fault
diagnosis [7] a set of residuals are designed based on a
process model. Fault detection and isolation is achieved
through the evaluation of residual expressions under avail-
able measurements. A threshold-based test is usually im-
plemented in order to cope with noise and model uncer-
tainty effects. At the absence of faults, all residuals remain
below their given thresholds. Otherwise, when a fault is
present the model is no longer consistent with the obser-
vations (known process variables). Thus, some residuals
will exceed their corresponding thresholds, signalling the
occurrence of a fault.

Residual fault sensitivities are a key issue for fault
diagnosis. Given a set of m target faults fj ∈ F and a
set of n residuals ri ∈ R, residual fault sensitivities are
collected in the Fault Sensitivity Matrix (FSM)
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The FSM can be obtained by convenient manipulation
of model equations as long as fault effects are included
in them [6]. Alternatively, it can be obtained by sensitivity
analysis through simulation [8]. The latter approach is used
in the present paper. Just primary residuals are regarded.
Primary residuals are obtained by comparing each actual
pressure measurement pi to the corresponding estimated
value in the fault free case p̂i0

ri = pi − p̂i0 (2)

A model of the WDN is used by a simulation engine
to produce the estimated node pressure. An approximate
procedure to obtain the FSM involves using as well the
simulator to estimate pressure measurements p̂ij for every
node i under fault condition fj

Ω ≈
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...
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. (3)

Thus, every FSM column corresponds to an estimation
of the residual vector in every leak condition. The same
nominal leak magnitude is assumed in all simulations. This
leak magnitude is not considered in the FSM since it has
a scaling factor role.

B. Leak detection and location

A fault can be detected as long as there exists at least a
residual sensitive to it. However, isolating faults requires
more than one residual being sensitive to them. Fault
isolation is achieved by matching the evaluated residual
vector pattern to the closest residual fault sensitivity vector
pattern (i.e., FSM column vector).

Sometimes a binary version of the FSM is used in the
leak location procedure [8]. Then, leak location is achieved
by looking for the smallest Hamming distance between
FSM columns and the binarized actual residual vector.
This and several other alternative leak location methods
are compared in [9].

In the present paper, a projection based method is
considered. Let r = [r1 · · · rn]

T be the actual residual
vector corresponding to all pressure measurement points,
and ω•j be the column of Ω corresponding to leak j. Then,
leak location is achieved by solving the problem

argmax
j

ω
T
•j · r

‖ω•j‖‖r‖
, (4)

where ‖v‖ stands for the Euclidean norm of vector v.
Thus, the biggest normalized projection of the actual
residual vector on the fault sensitivity space is sought.

In order to assess the leak detectability property, the
detectable leak set FD was defined in [10] in terms of
sensitivity analysis as follows: given a set of sensors S, a
set of leaks F and the corresponding leak (fault) sensitivity
matrix Ω, the set of detectable leaks FD(S) is defined as

FD(S) = {fj ∈ F : ∃ri ∈ R : |ωij | ≥ ǫ}, (5)

where ǫ is a threshold to account for noise and model
uncertainty.

Regarding the leak locatability performance, considering
leak location implemented by means of (4), a uniform
projection angle ᾱ defined as the average between the
residual leak sensitivity vectors for all leak pairs was
proposed in [10].

The resulting sensor locations led to a maximal uniform
projection angle ᾱ. In an ideal case, all pairs of leak
sensitivity vectors in the FSM (columns of Ω) should
satisfy this uniform projection angle. This uniform angular
separation between leak pairs would allow for a successful
leak location method applying (4), even when residuals
are affected by modeling errors, sensor noise and other
uncertainties.

Nevertheless, in a real case the angle between leak pairs
is not uniformly distributed. Some leaks can have similar
leak sensitivity vectors, which introduces uncertainty
in the leak location results when applying (4). This
can become a critical issue for water network utilities,
especially when this uncertainty involves distant leak
locations, i.e. two distant leaks that have similar leak
sensitivity vectors. So, distances between nodes with a
similar leak sensitivity vector should be considered in the
optimal sensor placement methodologies. In order to take



into account these distances, the following properties are
defined.

Definition 1 (Leak expansion set). Given a leak fj ∈ F

and a projection angle threshold αth, the leak expansion
set Fαth

j is defined as

F
αth

j = {fi ∈ F :
ω

T
•j · ω•i

‖ω•j‖‖ω•i‖
> cos(αth)}. (6)

F
αth

j contains the set of leaks whose correlation with
leak fj is bigger than cos(αth). If fi ∈ F

αth

j , it follows
that fj ∈ F

αth

i .

Definition 2 (Correlated leak pairs ratio). Given the leak
expansion sets Fαth

j j = 1, ..., |F|, the correlated leak pairs
ratio ηαth is defined as

ηαth = 100

∑|F|
j=1

|Fαth

j | − |F|

2
(

|F|
2

) . (7)

ηαth provides the percentage of leak pairs from F

whose mutual correlation is bigger than cos(αth) and
(

|F|
2

)

represents the total number of leak pairs.

Definition 3 (Leak node distance matrix). Given the
geographical coordinates of every leak node, the leak
node distance matrix D ∈ R

|F|×|F| is defined as the
matrix whose coefficients dij are the geographical distance
between nodes i and j.

Matrix D is a symmetric matrix (dij = dji), with
diagonal coefficients equal to zero (dii = 0). This matrix
will be used to compute distances in leak expansion sets.

Definition 4 (Worst leak expansion distance). Given a leak
expansion set Fαth

j and the leak node distance matrix D,
the worst leak expansion distance Rαth

j is defined as

Rαth

j = max
fi∈F

αth
j

dij , (8)

Rαth

j provides the maximum Euclidian distance
between the node of leak fj and the nodes of leaks whose
correlation with leak fj is bigger than cos(αth). This
metric is next used to compute the following overall leak
location uncertainty index in terms of leak node distances.

Definition 5 (Average worst leak expansion distance).
Given a set of leaks F and a projection angle threshold
αth, leak expansion sets F

αth

j with j = 1, ..., |F| can
be computed applying (6). Then, the average worst leak
expansion distance can be computed as

R̄αth =
1

|F|

|F|
∑

j=1

Rαth

j , (9)

R̄αth provides the average of the worst leak expansion
distances considering all the possible leaks in F.

As was discussed in [11], the greater the threshold αth,
the greater the uncertainty in terms of leak expansion
distance and number of correlated leak pairs. The choice
of this threshold should take into account implementation
requirements of the leak location software module, as well
as practical issues concerning the water utility maintenance
procedures. On the one hand, the leak location software
module will have to deal with sensor measurement noise
and network modeling uncertainty. Therefore, the bigger
the threshold is, the better the performance of the leak
location procedure is. On the other hand, for the water
utility maintenance department, a smallest leak location
result uncertainty is preferable. Indeed, upon the occur-
rence of a leak, the leak location software module will
provide a set of leak node candidates to the maintenance
department, which then will undergo leak field-testing.
Thus, the smaller the leak expansion distance is, the
better it is, which involves specifying a smaller projection
angle threshold. Therefore, a tradeoff exists between both
criteria.

In order to find a good balanced solution, it is expected
to find a sensor placement solution suitable for a range of
projection angle thresholds as proposed in [11].

Definition 6 (Mean average worst leak expansion dis-
tance). Given a set Ath = {α1

th, . . . , α
nα

th } that covers
a suitable range of projection angle thresholds. Then, the
mean average worst leak expansion distance over this set
can be computed as

R̄αth =
1

|Ath|

∑

αth∈Ath

R̄αth , (10)

where the average worst leak expansion distance R̄αth is
computed applying (9) to every projection angle threshold
in Ath.

III. SENSOR PLACEMENT METHODOLOGY

A. Problem statement

The sensor placement problem for leak location involves
solving a combinatorial optimization problem where the
best leak location performance that can be achieved in-
stalling the cheapest number of sensors is sought. Addi-
tionally, a budget constraint is imposed by the water utility,
which must be taken into account in the sensor placement
methodology.

Let S be the candidate pressure sensor set and mp

the maximum number of pressure sensors that can be
installed in the network according to the budget constraint.
Although fewer pressure sensors could be installed in the
network, in this work it is assumed that mp sensors should
be installed. Then, the problem can be roughly stated as
the choice of a configuration of mp pressure sensors in
S such that the best diagnosis performance is attained.
This diagnosis performance depends on the set of sensors
installed in the network S ⊆ S and will be stated in terms



of the detectable leak set and the mean average worst leak
expansion distance, i.e., FD(S) and R̄αth .

To solve the sensor placement problem, some network
model information is also required. On the one hand, the
leak node distance matrix D is assumed to be previously
obtained based on the geographical coordinates of every
leak node. On the other hand, the leak sensitivity matrix
Ω corresponding to the complete set of candidate sensors
is assumed to be previously computed, following the
methodology described in Section II-B. Additionally, a
set of projection angle thresholds Ath must be provided
according to the criteria specified in Section II-B. Hence,
the optimal sensor placement for leak diagnosis can be
formally stated as follows:

GIVEN a candidate sensor set S, a leak node distance
matrix D, a leak sensitivity matrix Ω, a leak set
F, a set of projection angle thresholds Ath and
a number mp of pressure sensors to be installed.

FIND the mp-pressure sensor configuration S ⊆ S such
that:

1) all leaks in F are detectable, i.e. FD(S) =
F according to (5), and

2) the mean average worst leak expansion
distance is minimized, i.e. R̄αth(S) ≤
R̄αth(S⋆) for any S⋆ ⊆ S such that |S⋆| =
mp.

B. Optimal sensor placement algorithm

As the optimization problem stated in the previous sec-
tion cannot be solved by efficient branch and bound search
strategies, a suboptimal two-step hybrid methodology that
combines clustering techniques with an exhaustive search
was proposed in [10]. The cluster analysis allowed reduc-
ing the initial candidate sensor set cardinality such that the
exhaustive search could be solved in a reasonable time.
Such reduction involved partitioning the initial candidate
sensor set S into ℓ clusters, and selecting N candidate
sensors of each cluster. In particular, a number of clusters
equal to the number of sensors to be installed was imposed,
i.e., ℓ = mp. Thus, the exhaustive search was applied to a
reduced candidate sensor set of N ×mp sensors.

However, since an exhaustive search is highly inefficient,
in this paper a semi-exhaustive search will be proposed in
order to improve efficiency. Both methods are next stated,
and they will be compared in Section IV.

Exhaustive method
Step 1 Clustering techniques are applied to re-

duce the initial set of candidate sensors
S to S

′, with |S′| = N ×mp.
Step 2 An exhaustive search is applied to the

reduced candidate sensor set S
′. This

search implies that the diagnosis perfor-
mance must be evaluated

(

|S′|
mp

)

times.
Semi-exhaustive method

Step 1 Clustering techniques are applied to re-
duce the initial set of candidate sensors
S to S

′, with |S′| = N ×mp.

Step 2 A semi-exhaustive search is applied to
the reduced candidate sensor set S

′ so
that mp-sensor configurations involving
just one sensor from every cluster are
considered. This search implies that now
the diagnosis performance must be just

evaluated
(

|S′|
mp

)mp

times.

Thus, in the semi-exhaustive method more confidence is
provided to the clustering procedure within the sensor
placement methodology. Next section recalls several clus-
tering approaches developed in previous works that solve
Step 1 in both methods.

C. Candidate sensor set reduction by clustering analysis

The use of clustering analysis to group pressure candi-
date sensors in WDN for reducing the number of candi-
date sensors was initially proposed in [4]. The k-means
clustering algorithm [12] was applied to the normalized
rows of leak sensitivity matrix Ω defined in (1) to group
the initial number of candidate sensors |S| into as many
clusters as the chosen cardinality of the reduced sensor
candidate set (|S′|). Once the candidate sensors were
partitioned into clusters, the sensors associated with the
normalized rows with the smallest Euclidean distance to
the cluster centroids were selected as a member of the
reduced candidate sensor set S′. In [10], the Evidential C-
Means (ECM) algorithm [13] and normalized rows of leak
sensitivity matrix were used to group the initial number of
candidate sensors |S| into as many clusters as the number
of sensors to be installed (mp). The difference between
the aforementioned clustering algorithms is that k-means
belongs to closed data sets methods, which do not allow
overlapping of clusters. While the ECM algorithm is based
on the belief functions framework [14] and provides the
centroids of the clusters and the degree of membership
(plausibility) of every element (sensor) to every cluster.
The plausibility of the elements was chosen in [10] to
select the N more representative elements of every group,
providing the N ×mp elements of the reduced candidate
set S′. Finally, in [11] the same clustering strategy as in
[10] was proposed. But in order to maximize the leak
detectability, in addition to the plausibility of the elements,
the Euclidean norm of the rows of the fault sensitivity
matrix was taken into account in [11] to choose the N most
representative sensors of every cluster. This last clustering-
based method will be the one used in this paper to reduce
the number of sensor candidates.

IV. APPLICATION TO A REAL WDN

A. DMA case study

The considered DMA is located in Barcelona city with
883 nodes, 927 pipes and two inflow inputs modeled as
reservoir nodes. In the network, we consider the existence
of 448 potential leaks, corresponding to dummy nodes,
that should be detected and located. In order to reduce
the problem complexity, a subset of node pressures, cor-
responding to 311 nodes with demand, is chosen as the



candidate sensor set. It is also assumed that there is no
sensor already installed in the network before solving the
sensor placement problem.

A fault sensitivity matrix has been obtained using the
EPANET hydraulic simulator. Leaks are simulated in
EPANET through the corresponding emitter coefficient,
which is designed to model fire hydrants/sprinklers, and
it can be adapted to provide the desired leak magnitude in
the network.

Given a set of boundary conditions EPANET software
has been firstly used to estimate the steady-state pressure
at the 311 candidate sensor nodes. Next, 448 leaks have
been simulated in the dummy nodes and the steady-state
pressure has been estimated again in the 311 sensor nodes.
Finally, a fault sensitivity matrix has been obtained as the
pressure difference between the fault free case and each
faulty situation. In this case, the fault sensitivity matrix
has been computed for a leak magnitude of 1.5 lps (liters
per second).

B. Sensor placement analysis

Assume that the water distribution company has as-
signed a baseline budget for investment on instrumentation
that just makes it possible to install 5 pressure sensors.
Hence, 5 pressure sensors should be chosen out of 311 such
that all leaks are detectable and the mean average worst
leak expansion distance is minimised. Recall from Section
III-A that, in addition to the fault sensitivity matrix and the
leak set, a leak node distance matrix and a set of projection
angle thresholds should be specified. Matrix D has been
obtained from geographical data contained in the EPANET
model and the following projection angle threshold set has
been considered: Ath = {10, 20, 30, 40, 50, 60}.

According the methodology described in Section III-
B, an exhaustive and a semi-exhaustive search will be
applied to a reduced set S′ of candidate pressure sensors.
A cardinality of 25 pressure sensors has been considered
for this DMA.

In order to reduce the number of candidate pressure
sensors from 311 to 25, clustering techniques have been
applied to the data set (311 normalized rows of the fault
sensitivity matrix Ω) as described in [11]. First, ECM
clustering algorithm has been used to classify the data set
into ℓ = 5 different clusters (since mp = 5). The algorithm
takes 30 seconds in the classification procedure to obtain
5 clusters.

With the plausibility matrix obtained from the clustering
algorithm, a hard partition has been obtained by assigning
each element to its highest plausibility cluster. Fig. 1
depicts in different colors the 5 different network node
clusters, where the closest node to the centroid have
been highlighted in every cluster. Finally, the most N

representative sensors of every cluster have been chosen
according to the criteria proposed in [11] with N = 5,
such that N × ℓ = |S′|.

The reduced set S′ with 25 candidate pressure sensors,
partitioned according to their corresponding cluster, is dis-
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Fig. 1. Clustering results

played in Fig. 2. In the figure, a different color corresponds
to each cluster.

The exhaustive search is first applied to solve the sen-
sor placement problem, providing the set of 5 pressure
sensor places signaled as magenta starred nodes in Fig.
2. Installing these pressure sensors, all 448 leaks are
detectable and the mean average worst leak expansion
distance amounts to 698.23 m. In the exhaustive search all
(

25

5

)

= 53130 possible sensor configurations are evaluated
requiring more than 21 h of computation time.

Fig. 2. DMA network sensor placement results (exhaustive search)

The semi-exhaustive search is next applied to solve
the sensor placement problem, providing the set of 5
pressure sensor places signaled as magenta starred nodes
in Fig. 3. As expected, the solution contains one sensor
from each cluster. Installing these pressure sensors, all
448 leaks are detectable and the mean average worst leak
expansion distance amounts to 717.42 m. In the semi-
exhaustive search just

(

25

5

)5

= 3125 possible sensor
configurations are evaluated requiring approximately 76
min of computation time.

Remark that the semi-exhaustive method cannot guaran-



Fig. 3. DMA network semi-exsensor placement results (semi-exhaustive
search)

tee global optimality. In fact, the performance index of the
solution increases 2.75% in comparison to the exhaustive
method. However, the time required to find a solution has
drastically decreased (i.e, a 94% reduction). This clearly
proves the benefit of the semi-exhaustive approach over
the exhaustive one.

V. CONCLUSIONS

This work presents an optimal sensor placement ap-
proach based on pressure sensitivity matrix analysis and
a semi-exhaustive search strategy combined with cluster-
ing techniques to reduce the size and complexity of the
sensor placement problem. The goal is to characterize and
determine a sensor set that guarantees a maximum degree
of leak locatability while a budgetary constraint is satisfied.
A mean average worst leak expansion distance has been
proposed as a new leak location performance measure.
This metric aggregates the normalized projection degree
between the residual fault sensitivity vectors for all fault
pairs.

The strategy is successfully applied to a DMA of the
Barcelona WDN using a semi-exhaustive and an exhaustive
search. Although the semi-exhaustive method cannot guar-
antee global optimality, the time required to find a solution
has decreased with respect to the exhaustive search which
clearly proves the benefit of the semi-exhaustive approach
over the exhaustive one. As a future work, genetic algo-
rithms or other types of optimization methods that provide
some guarantee regarding the solution optimality will be
investigated.
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