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Abstract:
This paper considers detectability of deviation of sensors from their nominal behavior for
a class of linear time-invariant discrete-time systems in the presence of bounded additive
uncertainties. Detectable sensor faults using interval observers are analyzed considering two
distinct approaches: invariant-sets and classical fault-sensitivity method. It can be inferred from
this analysis that both approaches derive distinct formulations for minimum detectable fault
magnitude, though qualitatively similar. The core difference lies in the method of construction of
the invariant set offline in the former method and the reachable approximation of the convergence
set using forward iterative techniques in the latter. This paper also contributes in giving a
formulation for minimum fault magnitudes with invariant sets using an observer-based approach.
Finally, an illustrative example is used to compare both approaches.
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1. INTRODUCTION

Fault detection and isolation is of paramount importance
to deal with anomalous situations of autonomous systems.
A well-established solution to sensor fault diagnosis is the
use of physical redundancy and simple decision-making
schemes (e.g. voting schemes). However, in many safety-
critical systems such as aerospace and petrochemical sys-
tems, physical sensing redundancy can be cost consuming
and increase hardware complexity (Blanke et al., 2006).
For this reason, researchers have proposed the use of ana-
lytical redundancy where mathematical models describing
the system operation are implemented in software (Blanke
et al., 2006; Ding, 2008). However, uncertainty remains
always present when modelling a system. Fault diagnosis
methods that are able to deal with uncertainty are known
in the literature under the attribute robust. One way
to deal with uncertainty is to assume an unknown but
bounded description (Puig, 2010). This description is ex-
ploited in the design of fault detection criteria checking the
boundedness of the state and output estimation error of
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observer-based fault diagnosis method. When the property
of boundedness is not satisfied, then faults are detected.

Another property that has been recently exploited by
robust sensor fault diagnosis methods for the design fault
detection criteria was the positive invariance of the track-
ing or estimation error dynamics or both as in Olaru et al.
(2010). Positive invariance along with attractiveness can
offer guarantees for the fault detectability and isolability of
sensor faults. These guarantees are necessary for enhancing
the performance of an active fault tolerant control schemes
with respect to system stability and performance Seron
et al. (2012). In Xu et al. (2013) there was a first attempt
to relate invariant set approaches with interval observers
but in the context of state estimation. In the present work,
the aim is to pursue these line of developments but looking
at the structural detectability by the prism of the two
methods.

Several researchers have treated the detectability of faults
as a structural property without taking into account un-
certainty (Ding, 2008). However, from a realistic point of
view, the detectability of faults should be characterized in
the presence of uncertainty. In (Kodakkadan et al., 2015),
sensor faults were classified as hidden, strongly detectable
and weakly detectable based on the separation of robust
positively invariant sets where the tracking state error con-



verges. On top of that, the computation of the minimum
magnitude of the fault that can be detected in presence of
uncertainty is an important diagnosis performance index
highlighted by several researchers (Meseguer et al., 2010).

In this paper, two robust approaches are described for
the computation of the minimum magnitude of sensor
faults affecting a linear time invariant (LTI) system in
the presence of uncertainty. The first approach is based
on the computation robust positively invariant sets where
the residual (output estimation error) generated by a
Luenberger observer converges. The second approach is
based on the computation of the sensor fault sensitivity
of a reachable approximation of the set within which the
residual generated by an interval observer converges. The
approximation is realized by applying forward iterative
techniques. Both approaches characterize the residual set
in both healthy and faulty situation and apply set sepa-
rability conditions for ensuring the sensor fault detection.
The differences between the two methods reside princi-
pally in the online/offline treatment of the set-theoretic
methods.

Section 2 outlines the premise of the work and the as-
sumptions used for the formulation that follows. Section 3
details the sensor fault detectability approach based on ro-
bust positive invariance and residual sensitivity approach
using a zonotopic interval observer. Section 5 discusses
both the qualitative and quantitative features of the two
approaches, which are illustrated through a simulation ex-
ample in Section 6. Section 7 presents the main concluding
remarks of this work, along with some future steps.

Notation: Rn is the n-dimensional Euclidean space with
∥·∥ their prescribed norm (Euclidean norm for simplicity).
The closed convex hull of a set S will be denoted as
Conv{S} and the interval hull with □S.
A polytopic set is a set with flat boundaries. A polyhedron
(or a polyhedral set) in Rn is a (convex) polytopic set
obtained as the intersection of a finite number of closed
half-spaces. A bounded polyhedron is also defined as the
convex hull of its vertices. The set of vertices of a polytope
P ⊂ Rn is denoted V(P ).

The Minkowski sum of two sets S1,S2 ⊂ Rn will be
denoted by S1 ⊕ S2.

2. PROBLEM FORMULATION

Consider the family of discrete LTI systems

x(k + 1) = A x(k) +B u(k) + g(w(k)), (1)

where x ∈ Rn is the state vector, and u ∈ Rm is the
input (control) signal of the dynamics. The matrix A is
the system matrix and B is the input-transfer matrix of
appropriate dimensions. The dynamic system is affected
by additive disturbances that reside in the set

W = {g(w) : |g(w)| ≤ z̄}, (2)

where the function g : Rn → Rn gives the shape and z̄
imposes the sublevel set.

The set W can be described in a zonotopic form as

W = ωc ⊕HωB
q, (3)

where ωc and Hω are the center and the segments of the
set W, respectively. Bq is a q-dimensional unitary box and
V(W) = Hω{V(Bq)}.
The states of the system (1) are measured by a set of
p sensors. Under healthy conditions, the output vector
y ∈ Rp is described by

y(k) = C x(k), (4)

where C is the output matrix. When at least one sensor is
faulty, the output equation becomes

y(k) = C x(k) + F (k), (5)

where F ∈ Rp represents the fault.

Assumption 1. The pair {A,C} is observable.

2.1 Robust Sensor Fault Detectability

In this paper, the fault detection process is based on
residual generation using observers. In order to detect
faults, we monitor a residual vector r defined as:

r(k) = y(k)− Cx̂(k). (6)

where x̂ is the estimation of the system state generated by
the following standard Luenberger observer

x̂(k + 1) = A x̂(k) +B u(k) + L(y − Cx̂(k)), (7)

where L is the observer gain such that Ae = A− LC is a
Schur matrix.

The objective is to determine the range of faults F which
can be detected when a set-valued description of the
uncertainty as the one in (3) is available in the system
description (1) and considering the following assumptions:

Assumption 2. A permanent bias fault affects only one

sensor at the time instant kf ; i.e. F (k) = [0 0 . . . fj . . . 0]
⊤

for k ≥ kf .

3. ROBUST POSITIVE INVARIANCE APPROACH

The first approach to characterize the minimum detectable
faults is based on the set-invariance approach extending
the results presented in (Kodakkadan et al., 2015).

3.1 Robust Positively Invariant Set

The state estimation under healthy conditions, denoted by
x̂h is generated based on (7) with y described by (4).

Given that the observer (7) is stable (i.e. Ae is Schur) and
the disturbances are bounded, according to Kolmanovsky
and Gilbert (1998) there exists an invariant set denoted by
S that includes the state estimation error under healthy
conditions defined as x̃h(k) = x(k)− x̂h(k), which satisfies
the following dynamics

x̃h(k + 1) = Ae x̃h(k) + g(w(k)). (8)

If the error starts inside this set, then it will remain inside.
More than that, if the estimation error starts outside the
set S, then it will enter in that set after a finite time
instant. Formally,

x̃h ∈ S =⇒ Ae x̃h + g(w) ∈ S ∀g(w) ∈ W. (9)

Equivalently,the robust invariance implies S is RPI if and
only if AeS ⊕ W ⊆ S. To construct the invariant set
S, several constructive methods can be employed (See



Kofman (2005)). The ultimate bounds method described
in Kofman et al. (2007) is used in this work to be com-
putationally attractive. The Jordan Canonical form of Ae

is given by J = V −1Ae V with V some invertible matrix
and J the diagonal matrix corresponding to the Jordan-
Normal form of Ae. According to Kofman et al. (2007),
the state estimation error x̃(k) described by the dynamics
in (8) will ultimately converge within the polyhedral RPI
set S defined as

S =
{
x̃ ∈ Rn : |V −1 x̃(k)| ≤ (I − |J |)−1 |V −1|z̄ + ε

}
,

(10)

with a strictly positive (small) ε. Since the construction
of invariant sets using the ultimate bound formulation is
symmetric around the origin, there is also an equivalent
representation of S as a zonotopic set as

S = ωc ⊕HsB
n, (11)

where ωc is the origin and Hs is the generator matrix
zonotopic set S, respectively, when ωc = 0. See Stoican
et al. (2011) for further details on zonotopic ultimate
bounds.

Under faulty conditions, the state estimation satisfies the
following dynamics:

x̂(k + 1) = A x̂(k) +B u(k) + L(Cx(k) + F (k)− Cx̂(k)),
(12)

and the state estimation error dynamics in (8) will be

x̃(k + 1) = Ae x̃(k) + g(w(k))− LF (k). (13)

Under faulty conditions, the residual can be re-written as

r(k) = rh(k) + rf (k), (14)

where rh(k) and rf (k) are the healthy and faulty compo-
nents of the residuals, respectively.

During healthy working mode of the sensor, precisely when
fi(k) = 0 ∀i ∈ {1, . . . , r}, r(k) = rh(k) = Cx̃h(k) where
x̃h is described by (8). The residual vector will converge
to a limit set related to the RPI set of the state estimation
error under healthy conditions, i.e.,

x̃h(k) ∈ S =⇒ rh(k) ∈ CS = Sh. (15)

Taking into account (15), sensor fault is detected when
r /∈ Sh.

During faulty working mode of the system (see Assump-
tion 2), the residual given in (14) will converge to a faulty
RPI set denoted by Sf . A sensor fault fi is guaranteed to
be detectable using the residual ri = yi −Cix̂ = Cix+ fi,
if the faulty RPI set is separated from the healthy RPI
set. Moreover, we can obtain some certain conditions for
ensuring the detectability of the fault at the next time
instant of the fault occurrence.

Given that x̃h(k) ∈ S during healthy mode, as shown in
(15), since the set S is centered at the origin, the states
of the estimation error described by (13) at the next time
instant will move into a translation of the set S with −LF
as denoted by

x̃(kf + 1) ∈ S ⊕ (−LF ). (16)

Based on this, after the occurrence of a fault, the residual
for i-th sensor under faulty conditions is defined as

rfi(kf + 1) = Cix̃f (kf + 1) + fi. (17)

Then the residual ri at the next instant after the occur-
rence of sensor fault belongs to the set

S∗
fi(kf + 1) = Ci{S ⊕ −Lifi}+ fi, (18)

for each sensor i and the corresponding residual ri with
Ci and Li being the i-th row of C and i-th column of L,
respectively.

The sensor fault fi is guaranteed to be detected using
the residual ri in one time step (Seron et al. (2008)) if
and only if Sh ∩ Sf (kf + 1) ̸= ∅. A sufficient condition
is Shi ∩ Sfi(kf + 1) ̸= ∅ for at least one residual ri with
i ∈ {1, . . . , p}. In other words, two sets are separated if
their projections over at least one of the coordinates are
separated. The projections of Sh and Sf over the i-th axis
are described (in terms of intervals) as

Shi =

[
min

j∈{1,...,2n}
{Ci vj

∗}, max
j∈{1,...,2n}

{Ci vj
∗}
]
, (19)

Sfi =

[
min

j∈{1,...,2n}

{
Ci {vj∗ − Lifi}+ fi

}
,

max
j∈{1,...,2n}

{
Ci {vj∗ − Lifi}+ fi

}]
.

(20)

If Shi ∩Sfi ̸= ∅ holds, (28) or (29) should be separated for
at least one axis i{1, . . . , p}. If the minimum of the interval
of Shi is greater than the maximum of the interval of
Sfi (and vice-versa), the minimum guaranteed detectable
additive sensor faults fi in one time step is described for
the i-th sensor by

fi > min
i∈{1,...,r}

{
|{1− CiLi}|−1

{
max

j∈{1,...,2n}
{Ci vj

∗}−

min
j∈{1,...,2n}

{Ci vj
∗}
}}

,

fi < max
i∈{1,...,r}

{
|{1− CiLi}|−1

{
min

j∈{1,...,2n}
{Ci vj

∗}−

max
j∈{1,...,2n}

{Ci vj
∗}
}}

,

(21)

where vj
∗ ∈ V(S), with vj

∗ being the vertices of S, or the
j-th row of V(S). Since the magnitude of the projection
on one axis can be represented by the magnitude of the
vector spanning that projection which is twice the infinite
norm, then{

max
j∈{1,...,2n}

{Ci vj
∗} − min

j∈{1,...,2n}
{Ci vj

∗}
}

= 2∥V(Ci S)∥∞},

(22)

where CiS will be the projection of the set in S on the
i-the axis and V(Ci S) = Hsi with Hs defined in (11).

By combining (21) and (22), the minimum detectable
sensor fault satisfies

fi > min
i∈{1,...,r}

{
|1− CiLi|−1{2∥Hsi∥∞}

}
,

fi < min
i∈{1,...,r}

{
|1− CiLi|−1{−2∥Hsi∥∞}

}
.

(23)

Relaxing the specification of one time instant detection of
faults, we can obtain certain conditions for characterizing
the minimum detectable fault based on the asymptotic
stable behavior of the faulty working mode.

Ignoring the effects of the disturbance in the system,
during the steady state of the faulty operation mode of
the system, the state estimation error as described in (13)
will converge to



x̃(k∞) = (I −A+ LC)−1(−LF ), (24)

as x̃(k+1) = x̃(k) and (I − (A−LC))x̃(k∞) = −LF with
k∞ denoting the time to converge into the steady state.
Note that the inverse of the matrix (I − A + LC) exists
since the matrix (A− LC) is Schur by design.

Therefore, if x̃(k) ∈ S during healthy mode, as implied
from (15), which is centered at the origin, then

x̃(k) ∈ S ⊕ (I −A+ LC)−1(−LF ). (25)

and hence the residual ri corresponding to each sensor as
in (6) during steady state of the permanent faulty working

mode, denoted by rfi (k), enters and stays in a set such that

rfi (k) ∈ Sfi with

Sfi = Ci{S ⊕ −Φ0Lifi}+ fi, (26)

where Φ0 = (I −A+ LC)−1.

Theorem 1. Given the dynamical system (8) and any
initial condition with an associated RPI set S as in (10),
the minimum guaranteed detectable additive sensor faults
fi satisfies

fi > min
i∈{1,...,r}

{
|1− CiΦ

0Li|−1{2∥Hsi∥∞}
}
,

fi < max
i∈{1,...,r}

{
|1− CiΦ

0Li|−1{−2∥Hsi∥∞}
}
.

(27)

Proof. During the permanent faulty mode of the sensor,
the residual rf (k), will converge to an invariant set Sf .
Sensor faults are guaranteed to be detected if Shi ∩Sfi ̸= ∅
for at least one i. Two sets are separated if their projections
on at least one of the coordinates are separated. The
projections of Sh and Sf on the i-th axis are described
(as intervals) as

Shi =

[
min

j∈{1,...,2n}
{Ci vj

∗}, max
j∈{1,...,2n}

{Ci vj
∗}
]
, (28)

Sfi =

[
min

j∈{1,...,2n}

{
Ci {vj∗ − Φ0Lifi}+ fi

}
,

max
j∈{1,...,2n}

{
Ci {vj∗ − Φ0Lifi}+ fi

}]
.

(29)

If the minimum of the interval of Shi is greater than
the maximum of the interval of Sfi (and vice-versa),
sensor fault detection can be guaranteed. Following similar
reasoning presented for the one step detection, Theorem 1
will be satisfied. Similarly, the minimum detectable fault
will be the most sensitive one of all the residuals to that
particular sensor fault and hence the proof is completed
as we obtain the results stated in Theorem 1 ■

4. INTERVAL OBSERVER APPROACH

The second approach to characterize the minimum de-
tectable faults is based on the set-invariance approach
extending the results presented in Pourasghar et al. (2016).

4.1 Interval observers

The set that includes the system state of (1) at every
time instant can be bounded using an zonotopic interval
observer of the form (Xu et al., 2013)

X̂ (k + 1) = (A− LC)X̂ (k)⊕ {Bu(k)} ⊕ {Ly(k)} ⊕W,

Ŷi(k) = CiX̂ (k),
(30)

where X̂ and Ŷi are the estimated state sets and predicted
output sets for the i-th sensor, respectively. As in the case
of observer (7), the gain L is selected such that the matrix
(A− LC) is Schur.

The estimated state sets X̂ obtained by (30) can be
expressed using center and segments form of a zonotope
as

X̂ (k + 1) = x̂c(k + 1)⊕ Ĥx(k + 1)Brx , (31)

with
x̂c(k + 1) = (A− LC)x̂c(k) +Bu(k) + Ly(k),

Ĥx(k + 1) =
[
(A− LC)Ĥx(k) Hω

]
.

(32)

Likewise, the predicted output set Ŷi can be expressed
using center and segments form as

Ŷi(k) = ŷci (k)⊕ Ĥyi(k)B
ry , (33)

with
ŷci (k) = Cix̂

c(k),

Ĥyi(k) =
[
CiĤx(k)

]
,

(34)

where ŷc and Ĥy denote the center and the segments of

the output prediction set Ŷi, respectively.

Then, the residual set in healthy conditions (fi = 0) can be
generated by means of the difference between the output
measurement and predicted output set that is denoted as

Ri(k) = ri(k)⊕Hi(k)B
rr , (35)

where rhi and Hhi denote the center and the segments of
the residual set Ri, respectively. Both center and segments
can be determined considering non-faulty conditions as
follows

rhi(k) =yi(k)− ŷc
i
(k)

=(I − P (q−1))yi(k)−N(q−1)u(k),

Hhi(k) = [−CiΦHω] ,

(36)

where q−1 is the shift operator, N(q−1) = CiΦB,

P (q−1) = CiΦL and Φ =
(
q−1I −A+ LC

)−1
.

Theorem 2. Given the dynamical system (8) and the
healthy residual set Rh considering uncertainty bounds
(35), the minimum guaranteed detectable additive sensor
faults fi for the ith sensor in steady state is given by

fi > min
i∈{1,...,r}

{
|1− CiΦ

0Li|−1{2∥Hhi(k∞)∥1}
}
,

fi < min
i∈{1,...,r}

{
|1− CiΦ

0Li|−1{−2∥Hhi(k∞)∥1}
}
.

(37)

Proof. The bounds of the interval hull of the healthy
residual in (35) in steady state can then be given by

Qmini = min{□Rhi(k)} = {rhi(k∞)− ∥Hhi(k∞)∥1},
Qmaxi = max{□Rhi(k)} = {rhi(k∞) + ∥Hhi(k∞)∥1},

(38)

where Qmaxi and Qmini are upper and lower bounds of the
obtained residual set in the healthy mode in steady state,
respectively. Sensor faults are detected when

ri /∈ Rhi . (39)

where

ri = (I−P (q−1))yhi(k)−N(q−1)u(k)+(I−P (q−1))Gffi(k)
(40)



Thus, the sensitivity of the residual to the sensor fault is
given by

Sfi = (I − P (q−1))Gf , (41)

where Sfi denotes the sensitivity of the residual to the
given fault. Hence, in steady state (q = 1), the sensitivity
(41) can be rewritten as

Sfi = 1− CiΦ
0Li. (42)

Therefore, the residual can be formulated based on the
sensitivity as

ri(k∞) = rhi
(∞) + Sfifi. (43)

Thus, the minimum detectable fault correponds to the one
that has a magnitude that brings the residual ri out of its
healthy interval setRhi that according to (Meseguer et al.,
2010) is achieved if

Sfifi < Qmini =⇒ fi < (Sfi)
−1Qmini ,

Sfifi > Qmaxi =⇒ fi > (Sfi)
−1Qmaxi .

Assuming that the mean of the healthy residuals over the
steady state to be zero (i.e., rhi(k∞) = 0) and the worst-
case disturbance affecting the system (making use of (38)
and (42)), the minimum detectable sensor faults are given
by (38). ■

5. DISCUSSION

This paper scrutinizes and attempts to bridge the ap-
proaches for minimum fault detectability undertaken by
the classical framework of defining fault sensitivity using
interval observers and the relatively new invariant set ap-
proach. Given the construction of the defining set mapping
the stable model behavior (the zonotopic convergence set
in steady state and the state estimation error invariant set
in the two approaches respectively), the effect of minimal
fault that can be detected remains the same in both the
approaches. The invariant set method, (obtained using a
conservative ultimate bound approach in the presented
example in Section 6) gives weaker minimal detectable
fault compared to the sensitivity approach.

The reason for this difference is that the construction of
the invariant set using ultimate bounds will lead to a larger
set as the offline construction is independent of an active
input signal. However, in the sensitivity approach, the
determination of the convergence set of the residual using
zonotopic iterations, even though increases the complexity
significantly in each iteration (the segment matrix grows),
taking into account the active input signal, approximates
the set to a smaller region than the former. The penalty
the sensitivity method has to pay is the use of online
monitoring and computation resources while the former
generates a conservative set in the broader sense.

The asymptotic convergence of the set-based observer
leads to a tight zonotopic approximation of the mRPI
while the invariance based method provides offline a tight
invariant approximation of the minimal RPI set which can
be represented (loosely) in a zonotopic form.

Although the results from (27) and (37) obtained from
both approaches are comparable and are quite similar,

there are few minor differences. Equation (27) uses the
infinity norm of the interval vector of the projection of
the ultimately bounded RPI zonotopic set while (37) uses
one-norm of interval vector of the minimum convergence
zonotipic set reached in steady state using active monitor-
ing of the evolution of the dynamics. This will also lead
to different zonotopic generator matrices and therefore the
comparison is not qualitatively exact, but still gives a fair
idea of these two approaches.

However, the guarantees of detectability in one time step
and nullifying the effect of reinjection of faulty residu-
als into the active healthy set is advantageous from the
invariant-set perspective. Nevertheless, the sensitivity ap-
proach is able to handle faults and their anticipation even
during the transitory of the system dynamics as well as
during the faulty operations where as the invariant set
approach, though computationally attractive, gives infor-
mation only in the steady state. The invariant-set method
guarantees detection of faults in the next time instant of
the occurrence of the fault while the sensitivity method
might also detect the same but does not give those guar-
antees.

Fig. 1. Set S(blue), {S ⊕ −LF} (green) and {S ⊕
−Φ0LF}(red) for a fault magnitude F = 2. The
trajectory of the state estimation error dynamics is
shown by the magenta line with x̃(kf ) and x̃(kf + 1)
shown as yellow dots.

6. ILLUSTRATIVE EXAMPLE

Let the dynamical model in (1) be defined as follows:

A =

[
0.9067 −0.0687
0.0104 0.7933

]
, B =

[
0.0272
0.3127

]
, C = [0 1] . (44)

The disturbances are bounded such that |g(w)| ≤ 0.2. The
observer gain L is placed such that

Ae =

[
0.9067 −0.3909
0.0104 0.2933

]
. (45)

The Jordan decomposition of Ae is formed as J =
V −1AeV with

J =

[
0.9000 0.0000
0.0000 0.3000

]
, V =

[
0.9999 0.5416
0.0171 0.8407

]
, (46)

and the invariant set S can be constructed using (10).

Following the invariant-set-based approach and deriving
the guaranteed detectability conditions from (23), the
minimum faults that are detected in one step are



|F | > 1.4034, (47)

for the selected C and observer gain L = [0.3222 0.5000]
⊤
.

Relaxing the conditions of the one-step detection, the
minimum detectable fault now becomes

|F | > 0.9824, (48)

The invariant set for the error dynamics S(blue), the set
where the dynamics will go at ri(kf + 1) ∈ {S ⊕ −LF}
and the invariant faulty set {S ⊕ −Φ0LF} for a fault
magnitude F = 2 are depicted in Fig. 1. Inferring from the
above results, for fault magnitude satisfying Shi ∩ Sfi = ∅
but not Shi ∩ S∗

fi
̸= ∅ will guarantee its detection after

asymptotic stability of the faulty behavior but not in one
time step after its occurrence as shown in Fig. 2, i.e., when
the magnitude of fault is greater than 0.9824 but less than
1.4034, fault is guaranteed to be detected but not in one
time instant.

Fig. 2. Set S(blue), {S ⊕ −LF} (green) and {S ⊕
−Φ0LF}(red) for a fault magnitude F = 0.99. The
movement of the state estimation error from the oc-
currence of fault shown by the magenta line with
x̃(kf ) and x̃(kf + 1) shown as yellow dots.

On the other hand, in the case of interval obsersers
using the sensitivity approach, fault detectability analysis
is carried out at the steady state of the system for
comparative homogeneity. Similarly, same C matrix and
observer gain L are used. The sensitivity of the residual
with respect to the fault parameter F as in (42) is

Sfi = 0.2856,with Φ =

[
10.0904 −5.6313
0.1485 1.3322

]
. (49)

In steady state, the minimal detectable fault can be
obtained as

|F | > 0.8290. (50)

7. CONCLUSION

This paper presented the comparison between two ap-
proaches (invariant sets and interval observers) in finding
the minimal detectable sensor faults when observers are
used for fault detection. This paper extends a comparative
study regarding state estimation, with an application to
fault detection and minimal faults characterization that
were not addressed in the previous works. The difference is
reasoned qualitatively and a quantitative comparison with
an illustrative example has also been presented. Future

work shall include incorporating the advantages of both
approaches handling multiple concomitant faults and also
input-state constraints.
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