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Abstract— This paper presents a first attempt at a unified
kinematics analysis of all serial and parallel solvable robots,
that is, robots whose position analysis can be carried out
without relying on numerical methods. The efforts herein are
focused on finding a unified formulation for all quartically-
solvable robots, as all other solvable robots can be seen as
particular cases of them. The first part is centered on the quest
for the most general quartically-solvable parallel and serial
robots. As a result, representatives of both classes are selected.
Then, using Distance Geometry, it is shown how solving the
forward kinematics of the parallel representative is equivalent
to solve the inverse kinematics of the serial representative, thus
providing a unified formulation. Finally, it is shown that the
position and singularity analysis of these robots reduces to the
analysis of the relative position of two coplanar ellipses.

I. INTRODUCTION

A serial/parallel robot is said to be solvable if its in-

verse/forward kinematics can be solved by computing the

roots of polynomials up to order four. Since the Abel-

Ruffini theorem states that the roots of polynomials of degree

five or higher cannot be expressed, in general, in terms of

additions, subtractions, multiplications, divisions, and square

root extractions, a solvable robot is a robot whose position

analysis can be carried out without relying on numerical

methods.

Among all solvable robots, those that require the solution

of quartic polynomials, or quartically-solvable robots, are the

most general ones as all other solvable robots can be seen

as particular cases of them.

In general, we can make any non-solvable robot solvable

by introducing some extra geometric constraints —such as

congruency, coincidence, paralelism, colinearity, coplanarity,

etc.— between the geometric elements defining their joints.

A plethora of quartically-solvable robots can thus be derived.

Nevertheless, we are only interested in genuinely quartically-

solvable robots, that is, robots that are quartically-solvable

when their joints are placed arbitrarily.

While the quintessential quartically-solvable serial robot

is the 3R regional robot [1], [2], at least 5 quartically-

solvable parallel robots, with no apparent connection be-

tween them (see Fig.1), have been identified in the literature.

Nevertheless, we next show that, using singularity-invariant

transformations, these 5 robots can be seen to belong to two

different classes [3].
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Fig. 1. Five quartically-solvable parallel robots. The joints of Q1 can
be placed arbitrarily. On the contrary, Q2 requires two alignments; Q3, 1
alignment and 1 coplanarity; Q4, 2 coplanarities; and Q5, 2 coplanarities
and 1 alignment. Using singularity-invariant transformations, it can be seen
that they belong to two different classes. See text for details.

Two parallel robots are said to be connected through a

singularity-invariant transformation if, for the same pose of

their moving platforms with respect to the base, the squared

leg lengths of one robot can be affinely expressed in the terms

of the squared leg lengths of the other. Then, if the forward

kinematics of any of the two robots is solved, the same prob-

lem is automatically solved for the other. Moreover, it is easy

to prove that both robots have the same singularity locus,

and hence the name of this kind of transformations. Space

limitations prevents us from giving a detailed description of

these transformations, but the interested reader can find a

summary in [4].

Now, observe that Q1 contains a line-line and a point-

line component [5]. The multiple spherical joints in the line-

line component can be eliminated by using the singularity-

invariant transformation presented in [6]. This leads to Q2.

Thus, the kinematics analysis of both, Q1 and Q2, can be

said to be equivalent.

Q3 is another parallel robot that was proved to be

quartically-solvable provided that the joints in the base and



the moving platform are coplanar [7]. It was also studied

in [8] were it was shown that the number of its assembly

modes remains the same if the coplanarity constraints are

relaxed, in which case it is not longer solvable. Since it

contains a line-point component, the singularity-invariant

transformation presented in [6] can be applied to rearrange

the joints in the line so that a line-plane component arises.

Then, the singularity-invariant transformation for line-plane

components described in [6] can be applied to derive Q4,

a parallel robot already studied in [9]. This uncovers an

unnoticed connection between the results presented in [9]

and [7]. Finally, as explained in [10], a bit more complicated

sequence of transformations permits to derive Q5 from Q4.

Summing up, Q1 and Q3 can be seen as representatives of

two different classes of quartically-solvable robots, but Q3 is

not solvable if the coplanarity constraints are relaxed. Thus,

it is reasonable to take Q1 as the genuine representative of

the family of quartically-solvable parallel robots because the

location of its joints is unconstrained.

Now, although at first glance Q1 seems to have little

in common with a 3R serial robot, we will see how their

position analyses are equivalent in spite of their disparate

number of degrees of freedom, and how this equivalence

have important repercussions for their singularity analysis.

This paper is essentially devoted to show these facts.

This paper is organized as follows. The unified formula-

tion, using Distance Geometry, is derived in Section II. The

position and the singularity analyses of quartically-solvable

robots using this formulation is presented in Section III and

Section IV, respectively. Section V contains an illustrative

example. Finally, some conclusions and prospects for future

research are given in Section VI.

II. UNIFIED FORMULATION

Consider the 3R and the Q1 robots depicted in Fig. 2. We

have placed in each of them 7 points, P1, . . . , P7, which

define the location of their joints. Now, observe that the

resulting distance graphs, having an edge when the distance

between the two corresponding points does not depend on

the robots’ configurations, are isomorphic to the graph shown

in the center of the same figure.

According to the notation used in Fig. 2, the dis-

tances between the set of points {P1, P2, P3, P4, P7} or

{P3, P4, P5, P6, P7} are not independent because they are

embedded in R
3. This dependency, using the theory of

Cayley-Menger determinants, which follows from Menger’s

intrinsic characterization of the Euclidean metric [11], trans-

lates into the following algebraic conditions:
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where si,j stands for the squared distance between Pi and

Pj . The above two equations are quadratic forms in the

unknown distances s3,7 and s4,7. They actually represent

two real ellipses, A : xAxT = 0 and B : xBxT = 0,

where x = (s3,7, s4,7, 1) and

A =





a1 c1 d1
c1 b1 e1
d1 e1 f1



 and B =





a2 c2 d2
c2 b2 e2
d2 e2 f2



 . (3)

The entries of A and B can, in turn, be expressed in terms

of determinants (see Table I).

Now, if we eliminate, for example, s3,7 from the system

formed by equations (1) and (2), a quartic closure polynomial

in s4,7 is obtained. The result cannot be included here for

space limitation reasons, but it can be easily reproduce using

a computer algebra system. Nevertheless, instead of using

this closure quartic polynomial, we will see that it is highly

advantageous to proceed using the equations of both ellipses.

After all, the geometric interpretation of the solution of the

general quartic polynomial reduces to the intersection of two

ellipses [12].

III. POSITION ANALYSIS

If we have n > 4 points in R
3 and we know all the

pairwise distances between them, we can assign a unique

set of coordinates to them up to isometries (translations,

rotations and reflections). If, besides these pairwise distances,

we already know the coordinates of three of these points,

the coordinates are unique up to a reflection about the plane

defined by these three points. If, instead of the coordinates

of three points, we know the coordinates of four points, the

coordinates of all other points are univocally determined. Al-

ternatively, if we know the coordinates of three points and the

orientation of a tetrahedron defined by a set of four points,

the coordinates of all points are also univocally determined.

From the practical point of view, these coordinates can be

obtained by generate-and-test sequences of trilaterations [13].

Once we have values for s3,7 and s4,7 resulting from

intersecting A and B, then all the pairwise distances

between the points in the sets {P7, P1, P2, P3, P4} and

{P7, P3, P4, P5, P6} are known. In this context, the inverse

kinematics of the serial 3R robot in Fig. 2 can be restated

as to find the feasible location of the segments P3P4 and

P5P6 in R
3 given the locations of P1, P2, and P7 and the

orientations of the tetrahedra defined by the sets of points

{P1, P2, P3, P4} and {P3, P4, P5, P6}. The solution to this

problem can be obtained in two steps:

1) Assign coordinates to P3 and P4. This assignment

is unique because the coordinates of P1, P2 and
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Fig. 2. The graph in the center is isomorphic to the distance graphs associated with the seven points defining the location of the joints of 3R serial robot
on the left, and the parallel robot on the right.

TABLE I

COEFFICIENTS OF THE ELLIPSES A AND B EXPRESSED AS DETERMINANTS OF SQUARED DISTANCES BETWEEN P1, . . . , P7
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P7 are known and the orientation of the tetrahedron

{P1, P2, P3, P4} is fixed.

2) Assign coordinates to P5 and P6. Again, the assign-

ment is unique because the coordinates of P3, P4 and

P7 are known and the orientation of the tetrahedron

{P3, P4, P5, P6} is fixed.

The forward kinematics of the Q1 parallel robot in Fig. 2

can be restated as to find the feasible locations of P5, P6 and

P7 given the locations of P1, P2, P3 and P4. The solution

can be obtained as follows:

1) Assign coordinates to P7. This assignment is unique

because the coordinates of P1, P2, P3, and P4 are

known.

2) Assign coordinates to P5 and P6. In this case, we

have two possible assignments, one being the mirror

projection of the other with respect to the plane defined

by P2, P4, and P7. Once the coordinates for P6

are assigned, we have two possible assignments for

those of P5, and conversely. Both assignments would

coincide if P3, P4, P5, and P6 on a plane.

As a consequence, for each intersection of A and B, there

is a single configuration for the 3R robot and two possible

configurations for Q1. In other words, we can have up to

4 inverse kinematics solutions for a serial 3R robot and 8

forward kinematics solutions for a Q1 parallel robot. This

difference between both robots is important when analyzing

their singularities, but this is better explained through an

example, as it is done in Section V.

IV. SINGULARITY ANALYSIS

A singularity occurs when we have a repeated solution of

the inverse/forward kinematics, that is, when A and B are

tangent. The positional relationship between A and B can be

derived from the study of the pencil of conics they define,

that is, from the family of conics defined by pT (λA+B)p =
0, λ ∈ R (see [14] for an introductory explanation). The



values of λ for which a conic of this pencil is degenerate

correspond to those in which

f(λ) = det(λA+B) = l3λ
3 + 3l2λ

2 + 3l1λ+ l0 = 0, (4)

where the coefficients li, i = 0, 1, 2, 3, can expressed in a

neat and elegant way as [15, p. 191]:
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= det(B). (8)

The above polynomial in λ is known as the generalized

characteristic polynomial of the pencil.

When the two ellipses defining the pencil are tangent, two

of the three degenerate conics in the pencil become identical.

This implies that the characteristic equation of the pencil

has a repeated root for λ [16]. By definition, f(λ) = 0 has a

multiple root if, and only if, its discriminant, say ∆, vanishes.

Furthermore, it can be shown that f(λ) = 0 has three simple

real roots if ∆ > 0, and f(λ) = 0 has two complex conjugate

roots and a real root if ∆ < 0. Then, the roots of ∆ = 0 give

information on the positional relationship between A and B.

Actually, the sign of the discriminant ∆ gives information

about the order of accessibility of the robot’s workspace. It

permits to decompose it in the following three regions:

• ∆ < 0 corresponds to a two-way (four-way) accessible

region of the 3R robot (Q1 robot);

• ∆ = 0 corresponds to singularities of the robot; and

• ∆ > 0 corresponds to a four-way (eight-way) accessible

region or an inaccessible region of the 3R robot (Q1

robot).

The discriminant of a cubic conveniently expressed as

follows [17]:

∆ =
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l2 l1
l1 l0

∣
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∣
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. (10)

Observe that the condition of singularity ∆ = 0 is

expressed as a determinant of determinants of determinants

of determinants (four levels of nested determinants). It can

be shown that the elements of the third level of determinants

depend quadratically on s3,7 and s4,7. Then, since the two

outer levels of determinants are quadratic with respect to

their elements, the singularity locus can be displayed as a

curve of order 23 in the plane defined by s1,7 and s2,7.
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Fig. 3. The ellipses A and B for the serial and parallel quartically-solvable
robots analyzed as an example.

V. EXAMPLE

Let us consider a serial and a parallel robot with the same

topologies as the ones depicted in Fig. 2 with

S =





















0 4 2 6 ? ? 4
4 0 2 6 ? ? 12
2 2 0 4 0.89 4.89 ?
6 6 4 0 2.89 6.89 ?
? ? 0.89 2.89 0 4 6.25
? ? 4.89 6.89 4 0 2.25
4 12 ? ? 6.25 2.25 0





















, (11)

where si,j = S(i, j). Then, substituting these squared dis-

tances in (1) and (2), we obtain

A :
(

s3,7 s4,7
)





80 −16 −448
−16 16 −64
−448 −64 3584





(

s3,7
s4,7

)

= 0, (12)

and

B :
(

s3,7 s4,7
)





46.2 1.8 −346.2
1.8 14.2 −142.7

−346.2 −142.7 340.8





(

s3,7
s4,7

)

= 0,

(13)

whose intersection points are (see Fig. 3):

z1 = (4.613, 7.162),

z2 = (5.113, 12.940),

z3 = (6.514, 4.256),

z4 = (9.953, 8.231).

Using the procedures given in Section III, it is possible to

obtain the 4 inverse kinematics solutions and the 8 assembly

modes of the studied serial and parallel robot, respectively.

Fig. 4 shows the inverse kinematics solutions for the serial

robot in the case in which p1 = (0, 0, 0)T , p2 = (0, 0, 2)T ,

and p7 = (1.414, 1,−1)T . Fig. 5 shows the resulting

assembly modes for the parallel robot in the case in which

p1 = (0, 0, 0)T , p2 = (0, 0, 2)T , p3 = (0.919, 0.394, 1)T ,

and p4 = (0.132, 2.232, 1)T .

To analyze the singularities of the serial robot, we have

to treat s1,7 and s2,7 as variables. In this case, (9) defines



s1,3 = 4.613
s1,4 = 7.162

s1,3 = 5.113
s1,4 = 12.940

s1,3 = 6.514
s1,4 = 4.256

s1,3 = 9.953
s1,4 = 8.231

Fig. 4. The four inverse kinematics solutions for the analyzed 3R serial robot with p1 = (0, 0, 0)T , p2 = (0, 0, 2)T , and p7 = (1.414, 1,−1)T

depicted in green.

s1,3 = 4.613

s1,4 = 7.162

s1,3 = 4.613

s1,4 = 7.162

s1,3 = 5.113

s1,4 = 12.940

s1,3 = 5.113

s1,4 = 12.940

s1,3 = 6.514

s1,4 = 4.256

s1,3 = 6.514

s1,4 = 4.256

s1,3 = 9.953

s1,4 = 8.231

s1,3 = 9.953

s1,4 = 8.231

Fig. 5. The eight forward kinematics solutions for the analyzed parallel robot with p1 = (0, 0, 0)T , p2 = (0, 0, 2)T , p3 = (0.919, 0.394, 1)T , and
p4 = (0.132, 2.232, 1)T depicted in green.

a curve in the plane defined by (s1,7, s2,7). This curve is

plotted in Fig. 6(left). It segments the plane into regions with

the same number of intersections between A and B. This

singularity locus, defined in the space of squared distances,

can be straightforwardly mapped onto the robot’s workspace.

Indeed, if we represent the location of the end-effector of the

3R robot using cylindrical coordinates given by (ρ, θ, z), then

z =
s1,2 − s2,7 + s1,7

2
√
s1,2

, ρ = +
√

s2,7 − (d1,2 − z)2. (14)

This mapping is independent of θ because the singularity

locus has a a symmetry respect to the axis defined by P1

and P2 (in this case, the z-azis). The result is plotted in

Fig. 6(right).

In the case of the parallel robot singularities, we have

to treat s1,7, s2,7, s3,5, s3,6, s4,5, and s4,6 as variables.

Four slices of this singularity locus are plotted in Fig. 7.

At this point we have also to take into account that, in this

case, each intersection of A and B does not lead to a single

configuration for the robot, but two. This introduces an extra

singularity that corresponds to the case in which P3, P4, P5,

and P6 are coplanar, as described in Section III. That is,

when

∣
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∣

∣

∣
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= 0, (15)
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Fig. 6. Singularity locus of the analyzed 3R robot in the space of squared
distances (left), and the same plot mapped onto the robot’s workspace
(right).
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Fig. 7. Six slices of the singularity locus of the analyzed parallel robot
in its operational space. Observe how one of these slices is identical to the
singularity locus of the analyzed 3R robot.

which is independent of s1,7 and s2,7. Two slices of this

singularity, for fixed values of s3,5 and s4,5, are also plotted

in Fig. 7.

VI. CONCLUSION

A unified formulation for the position and singularity anal-

ysis of quartically-solvable robots has been presented, which

boils down to study the positional relationship between two

coplanar ellipses. This formulation paves thus the way for

the development of a general theory of solvable robots. As a

first step, it should be verified that all quadratically-solvable

robots correspond to those cases in which at least one of

these two ellipses degenerate into two lines.

Finally, it is worth observing that the singularity loci of

quartically-solvable robots contain, in general, cusps, which

suggests the possibility of changing the assembly/working

modes of these robots without meeting a singularity. This has

extensively been studied for 3R robots, but now, thanks to the

unified formulation presented in this paper, the strategies for

working mode changing developed for this kind of robots can

directly applied to the Q1 parallel robot and all other parallel

robot that can be deduced from it using singularity-invariant

transformations.
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