Technical Report

|IRI--TR-17-02

ROS Wrapper
for Real-Time Multi-Person
Pose Estimation
with a Single Camera

Autor
Miguel Arduengo
Sven Jens Jorgensen

Supervisors
Kimberly Hambuchen
Luis Sentis

Francesc Moreno
Guillem Alenya

July 2017

CSIC

1l

Institut de Robotica i Informatica Industrial

Contents

1 Introduction

2 Pose Estimation (State-of-the-Art)

3 General Architecture of the System

3.1 Hardware Architecture . . .
3.2 Software Architecture . . .

3.2.1 Robot Operating System (ROS)

3.2.2 C+-+ libraries
3.2.3 OpenPose

3.2.4 Packages: usb cam, iai kinect2, tf2, RViz and OpenPose ROS

4 Multi-Person Pose Estimation

4.1 OpenPose (Convolutional Pose Machine)

4.2 ROS Wrapper for OpenPose
4.3 Skeleton-3d Package

5 Results

5.1 Human pose detection and visualization

5.2 Proccessing speed
5.3 Limitations

6 User Guide

6.1 Installing OpenPose ROS Wrapper
6.2 Running the OpenPose ROS Wrapper and the 3d Pose Extractor

6.2.1 2d Detection Module
6.2.2 3d Detection Module

7 Conclusions

12
14
16
16
19
19
20

21
21
25
30

36
36
41
41

44
44
45
45
48

55

For robots to be deployable in human occupied environments, the robots must have
human-awareness and generate human-aware behaviors and policies. Thus, a human-
aware robot must be capable of (1) human detection and tracking, (2) human action or
intent recognition and (3) intelligent, human-aware action generation. This work presents
a methodology for the first stated capability. Person detection and pose estimation are
necessary capabilities for robot engaging in side-by-side collaboration with a human.

Several software packages have been developed for human pose estimation from RGB
images or depth images, being the modules that use Convolutional Neural Networks
the most promising ones. For the incorporation of these software packages in robotic
applications in real time, it is fundamental to use them from ROS.

In general, the modules for 2d pose estimation from simple images are the most de-
veloped and there even are some quite effective open source packages that have reached
a certain popularity. A real-time method to estimate 2d multi-person pose efficiently is
the so-called OpenPose, developed at Robotics Institute of Carnegie Mellon University.
OpenPose is a library for real-time multi-person keypoint detection and multi-threading,
written in C++ using OpenCV and Caffe, authored by G. Hidalgo, Z. Cao, T. Simon,
S.E. Wei, H. Joo and Y. Sheikh. OpenPose represents a real-time system to jointly detect
human body, hand and facial keypoints (130 keypoints in total) on single images. In ad-
dition, the system computational performance on body keypoint estimation is invariant
to the number of people detected in the image [7,23]. OpenPose has been converted
into popular software and packages for ROS have been very recently developed by CTS
Robotics Group of Eindhoven University of Technology, K. Zhang of Carnegie Mellon
University and S.J.M. Jorgensen of University of Texas at Austin.

Considering the availability of hardware (webcam and Kinect One) to carry out this
work, we have considered the implementation of a ROS package that would allow the
estimation of 2d pose from simple RGB images, for which we have introduced a ROS
wrapper that automatically recovers the pose of several people from a single camera using
OpenPose. Additionally, a ROS node to obtain 3d pose estimation from the initial 2d
pose estimation when a depth image is synchronized with the RGB image (RGB-D image,
such as with a Kinect camera) has been developed. This aim is attained projecting the
2d pose estimation onto the point-cloud of the depth image.

In this way we can have a software package adaptable to different hardware, that will
allow us to obtain 2d or 3d pose estimation depending on the type of available images |[2].

The analysis of the processing time shows satisfactory results, since this time is less
than the minimun required for a robot to do a task involving human-robot interaction.
The most relevant limitation in the use of the implemented software is due to fact that
the package for 3d detections cannot deal with occlusions. Also, We have made a user
guide of the ROS packages implemented, to facilitate their use.

1 Introduction

A human-aware robot must be capable of human detection and tracking. Thus, person
detection is a necessary capability for a robot engaging in side-by-side collaboration with
a human. The problem of the recognition of postures involves two areas: computer vision
and automatic learning (machine learning). A real-time method to estimate multi-person
pose efficiently is the so-called OpenPose, developed at Robotics Institute of Carnegie
Mellon University.

OpenPose is a library for real-time multi-person keypoint detection and multi-threading
written in C++ using OpenCV and Caffe (https://github.com/CMU-Perceptual-Computing-
Lab/openpose). OpenPose represents a real-time system to jointly detect human body,
hand and facial keypoints (130 keypoints in total) on single images. In addition, the sys-
tem computational performance on body keypoint estimation is invariant to the number
of detected people in the image .

OpenPose has been converted into popular software and packages for ROS have been
very recently developed.

In this work, we introduce a ROS wrapper that automatically recovers 2d multi-person
pose from a single camera using OpenPose [2].

Additionally we have developed a ROS node that finds a 3d pose estimation from
the initial 2d pose estimation using a depth image synchronized with the RGB image
(for instance, both images can be obtained simultaneously with the Kinect camera) and
projecting the 2d pose estimation onto the point-cloud of the depth image [2].

Thus, the aim of this work is to implement a open C++ software application working on
the Robotic Operating System (ROS) that obtains a pose estimation (2d or 3d, depending
on the cases) from a single camera (a 2d image obtained with an RGB camera or a 3d
image -RGB-D- obtained with a depth camera) [2].

The program will be designed so that it can be used in a larger project. Thus, the
data outputs should be easily readable from another ROS program.

The general scheme that describes the objective of this work is shown in Figure 1.

uonewnsy asod pg

Paue]qO ST UO0II[NS PAIBNITLIE
3yl Jo spua pue sjuiof ayy jo yoea
Jo aeuIp100d Yadap ay) Jo arnseawn

uoneunsy asod pg
SOd

afewn pg

(pnop) juroq)
a8ewr] pdag

auQ aury erewe) Pdag

z mdug

s ‘(syutof £poq) uonejuasardal
W \ U013[aYS PIIL[NIIIE
=

3y JO SABUIPIO0D PZ

uonewnsy asod pz
il i sod
T

-—

| "

uonewnsy asod pz

afew pz

auQ auny
yoajisoT weaqam
eIauwe) goy

Scheme of this work

Figure 1

2 Pose Estimation (State-of-the-Art)

Human body pose recovery, or pose recovery in short, refers to the process of estimat-
ing the configuration of the underlying kinematic structure of a person. Vision-based
approaches are often used to provide such a solution, using cameras as sensor inputs.
Human pose estimation is one of the key problems in computer vision that has been
being studied well over 15 years.

The reason for its importance is the abundance of applications that could benefit
from such a technology. For instance, human pose estimation would allow for higher
level reasoning in the context of human-robot interaction (HRI) and activity recognition
(Figure 2).

Design Control
On.line fusion Interfaces
Sensors Biomimetics
Dependability Human metrics
Real time
architecture
Consistency
Software Dependability)
Planning

Figure 2: Main issues for Physical Human Robot Interaction (pHRI) [19]

A potential solution for human pose tracking is to require the human to wear specialized
markers so that the visual sensors can locate the markers on the human body and infer
the human’s kinematic pose (i.e. OptiTrack System).

However, using markers has issues as well. The markers may be sensitive to lighting
and other environmental conditions (Figure 3). Wearing multiple markers can also be
cumbersome to the user. Such systems carry the burden of specially designed equipment
or suits, which is inconvenient for many practical applications.

Figure 3: Optical markers that are tracked in real time to pose estimation [6]

Therefore, non-invasive marker-less approaches are the main focus of research in recent
years. Most marker-less motion tracking methods in computer vision (Figure 4) fall into
three categories [15].

- ™)
Appearance CZD‘ View <:>[Spatial C::)'Temporal (:::)‘ Behavior
Discrete il Tracking Activity
of parts
L Continuous Kinematic Mation Context
Description models
| ——

Figure 4: Different classification approaches for human pose recovery [17]

First, learning-based methods which rely on prior probabilities for human poses, and
assume therefore limited motions. Second, model-free methods which do not use any
a priori knowledge, and recover articulated structures automatically. However, the ar-
ticulated structure is likely to change in time, when encountering a new articulation
for instance, hence making identification or tracking difficult. Third, model-based ap-
proaches which fit and track a known model using image information.

In many applications, only one camera is available. In such cases, either only RGB
data is considered when still images are available, or it can be combined with temporal
information when input images are provided in a video sequence. Most of pose recovery
approaches recover the human body pose in the image plane, since, until recently, 2d
pose estimation was the main focus of investigation [17].

Despite many years of research, however, pose estimation remains a very difficult and
still largely unsolved problem. Among the most significant challenges are [21]:

e variability of human visual appearance in images,

e variability in lighting conditions,

e variability in human physique,

e partial occlusions due to self articulation and layering of objects in the scene,
e complexity of human skeletal structure,

e high dimensionality of the pose,

e the loss of 3d information that results from observing the pose from 2d planar image
projections.

Recent works have gone a step further and estimate the human pose in 3d. Without
using prior information, monocular 3d human pose estimation is known to be an ill-
posed problem [22|. Probably, the most challenging issue in 3d pose estimation is the
projection ambiguity of 3d pose from 2d image evidences. This problem is particularly
difficult for cluttered and realistic scenes with multiple people, were they appear partially
or fully occluded during certain intervals of time [17].

With the advent of a cheap RGB-D sensor (the Microsoft Kinect), the rise of open-
source robotics (the Robot Operating System, ROS), and an open-sourced implementa-
tion of human pose detection and tracking, researchers have gained access to the necessary
off-the-shelf hardware and software implementation to bootstrap their needs for reliably
tracking and detecting human poses. However, the Kinect’s implementation for human
tracking has limited capability. First, due to hardware limitations, the human must be
at a minimum distance from the sensor to prevent point cloud distortion. Second, due to
their feature selection, their algorithm requires that the humans unobstructed full-body
must face the sensor. These two requirements are too restrictive for a robot engaging in
side-by-side collaboration, as humans might be partially occluded when they are on the
periphery of the robot’s vision [11].

Some pose estimation methods employ complex appearance models and rely on learning
algorithms to estimate model parameters from the training data. The performance of
these approaches crucially depends on the availability of the annotated training images
that are representative for the appearance of people clothing, strong articulation, partial
(self-)occlusions and truncation at image borders [1].

Recents advances in the field of Convolutional Neural Networks (CNNs) are defeat-
ing well engineered supervised classification problems (Figure 5). At least in the very
near future, CNNs methods are the most promising ones in creating general detection,
tracking, and recognition modules for human-aware robots [11].

In the last two years, several researchers have presented algorithms based on CNNs for
2d and 3d human pose estimation from monocular and depth images [4,5,7-9,13,14, 16,
24,25].

=] warped region ﬂlaeroplane? no. |
%ﬂ person? yes. |
= W= v - CNN™ :
.LL A 1 A1 S sl tvmonitor? n0.|
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Figure 5: The R-CNN pipeline that uses Caffe for object detection [10]

The configuration of the human body can be represented in a variety of ways. The most
direct and common representation is obtained parameterizing the body as a kinematic
tree (see Figure 6), where the pose is encoded using the position of the root segment, the
orientation of the root segment in the world and a set of relative joint angles (orientations
of body parts with respect to their parents along the tree) [21].

\
{
P

N - |

Figure 6: 3d and 2d kinematic tree skeleton representation (left and right, respectively) [21]

There are several databases that provide detailed information for the estimation of the
skeleton representation from images:

e Human3d.6M is currently the largest publicly available datasets for human 3d pose
estimation. The dataset consists of 3.6 million images featuring 7 professional actors
performing 15 everyday activities such as walking, eating, sitting, making a phone
call and engaging in a discussion. 2d joint locations and 3d ground truth positions
are available, as well as projection (camera) parameters and body proportions for
all the actors [13].

e MPII is a standard dataset for 2d human pose estimation based on thousands of
short youtube videos.

Also, each human pose estimation software uses a specific configuration of the skel-
eton model, with different number of body joints (the most common configurations have
between 14 and 23 joints). The Figure 7 shows some of these configurations.

HAND RIGHT HEAD SHOULDER CENTER HAND LEFT

ot \f C'.'ﬁ
WRIST RIGHT = 4 7 wrasT LeFT

] “
ELBOW RIGHT W ELBOW LEFT

SHOULDER RIGHT \:‘ il -) SHOULDER LEFT

SPINE
3

ol HIP CENTIR

)
HIPF RIGHT HIP_LEFT

wneE_ RIGHT (9 O wvEE LEFT

o A0 ANKLE RIGHT, ANKLE un,.‘_\y
\.,
FOOT RIGHT FOOT LEFT

(b)

Figure 7: (a) OpenPose output format (COCO) ; (b) Joints tracked by the Kinect sensor

In conclusion, several software packages have been developed for human pose estima-
tion from RGB images or depth images, being the ones based on CNNs the most prom-
ising ones.

For the incorporation of these software packages in robotic applications in real time it
is fundamental to use them from ROS.

10

In general, the modules for 2d pose estimation from single images are the most de-
veloped and there are even some quite effective open source packages that have reached
a certain popularity. In particular, OpenPose (based on Convolutional Neural Networks
architecture) is an efficiente open source software for 2d real-time multi-person pose es-
timation [7].

On the other hand, considering the availability of hardware to carry out this work (we
have a Logitech C300 webcam and a Kinect One camera that will be described in the
next chapter), we considered the implementation of a package ROS that allows 2d pose
estimation from simple RGB images [2].

Additionally, a ROS node that can obtain 3d pose estimation from the initial 2d pose
estimation and a depth image synchronized with the RGB image (as in the Kinect cam-
era), by means of projecting pose 2d pose estimation onto the point-cloud of the depth
image, has been developed [2].

In this way we can have a software package adaptable to the available hardware, that
will allow us to obtain 2d pose estimation or 3d pose estimation depending on the type
of available images [2].

11

3 General Architecture of the System

This chapter provides information about the general structure of the system, the hard-
ware devices and the software implemented.

The functional architecture is designed to accomplish the objectives presented in
chapter 1.

Figure 8 shows the general architecture of the Multi-Person Pose Estimation Module
and the connectivity between its modules.

Multi-person recognition and Pose estimation
System

Multi-Pose Estimation Manager and Extraction
Module Module

Figure 8: System Architecture

The first module consists of the multi-person human pose estimation process which
identifies and recognises the people that appear in the images captured by a single camera.
This subsystem estimates the pose for each recognised persons in the coordinate system
of the camera that takes the images.

The second module carries out the process of managing the information given by the
other module (camera sensor, human pose estimation and coordinate data points) and
extracting the data outputs, so that they can be easily read and handled from another
ROS program.

Figure 9 shows the architecture of the multi-pose estimation module.

12

Multi-Person Pose Estimation
Module

¥

Hardware

OpenPose
library

Figure 9: Architecture of Multi-Person Pose Estimation Module

and Figure 10 presents the managing and extraction module.

Managing and Extraction
Module

¥
Software

Drivers
OpenCV
PCL
Linux and
ROS

Figure 10: Architecture of Managing and Extraction Module

Hardware

The difference between the physical (hardware) and non-physical (software) entities
is clear and evident in the most engineering projects like the present one. Thus, two
schema, one for hardware and other for software will be constructed.

13

3.1 Hardware Architecture

The hardware architecture refers to the identification and description of the system phys-
ical components and their interactions and compatibility with the system architecture.
The hardware used in this project consist of camera sensors and a computer that man-
ages the whole system. The graphics card (GPU) that we have used in this is work is a
NVIDIA GeForce GTX 1080 (Driver Version: 381.22).

Also, Logitech C300 webcam (Figure 11) and Kinect One camera (Figure 12) have
been used in this project. Logitech C300 is a video camara and its 5-megapixel photo
capture allows high-resolution 2d snapshots. Its technical specifications are presented in
Table 1.

Figure 11: Logitech C300 webcam

TECHNICAL SPECIFICATIONS

* True 1.3-megapixel sensor (1280 x 1024 pixels) * Snapshot button for capturing photos

* Video capture: up to 1280 x 1024 pixels * Manual focus
(software enhanced)

* Photos: up to 5.0 megapixels Logitech® webcam software:
{software enhanced) * Logitech® Vid™

* Up to 30-frames per second video * Capture videos and images
(with recommended systems) * E-mail videos and images

* Built-in microphone with Logitech RightSound™ YouTube™ upload (registration required)
technology * Logitech® Video Effects™ Fun Filters

* Hi-Speed USB 2.0 certified

* Universal clip fits notebooks, LCD or CRT Works with most instant messaging applications
monitors

Table 1: Logitech C300 webcam technical specifications

Depth imaging technology has advanced dramatically over the last few years, and has
finally reached a consumer price point. The Kinect One (video game sensor developed
by Microsoft) uses a depth camera based on Time-of-Fligth (ToF) technology.

14

In a depth image, pixels indicate the calibrated distance in meters of 3d points in
the world from the imaging plane, rather than a measure of intensity or color. The
RGB-D format of the stream input captured by a Kinect sensor combines visual (RGB
colours) and geometric information (depth) in a synchronized format that provides us
with the possibility of extracting features from both [20]. This camera is widely used
in the robotics community in the field of computer vision due to its low cost. Their
technical specifications are present in Table 2.

IR depth
Sensor IR Emitter

Color sensor

Figure 12: Kinect One components

Kinect One Specifications

Technology Time-of-flight

Colour camera 1920 x 1080 @30fps

Depth camera 512 x 424 @30fps

Depth range 0.5m to 4.5m

Field of view R . oL .
(FoV) 60° vertical by 70° horizontal
Tilt motor No

Frame rate

(depth and Up to 30fps

colour stream)
USB standard 3.0

Four microphones to capture sound, record audio, as well as find the
location of the sound source and the direction of the audio wave.

Audio format

Dimensions 24.9cm x 6.6cm x 6.7cm. The Kinect cable is 2.9m long

Weight 1.4kg

Accelerometer No

Price 200 €

Table 2: Kinect One technical specifications

15

3.2 Software Architecture

The software architecture identifies and describes the system non-physical components
and their interaction and compatibility with the system architecture. Computer software
interprets the information provided by the physical hardware. Software can be divided
into application software and system software.

The first one uses the computer system to perform a specific functionality for the
benefit of the user (computer program). The second one includes operating systems,
which manage the resources and provide common services for other software working on
top of them and device drivers which control the devices connected to the computer [18].

The Multi-Person Pose Estimation System is programmed in C++ language and uses
the components shown in Figure 13, that describes the system software and the applic-
ation software used in this work. Additional information of each one is presented in the
following sections.

System Software \ Application Software
0S Libraries

Linux Ubuntu 16.04.2 LTS Caffe
CUDA 8.0

. cuDNN
Robot Operating ROS Indigo OI:JenCV 32

System PCL

Drivers ROS pkg

OpenPose-ROS
RViz

libfreenect2
OpenNI

tf2
usb_cam
iai_kinect2

Programs

Figure 13: Main software components used in this work

3.2.1 Robot Operating System (ROS)

The Robot Operating System (ROS) is a framework for building robot software. It
started at the Stanford University in the mid-2000s by the Stanford AI Robot (STAIR)
and the Personal Robots (PR) program. It is an open source software with a large
variety of tools, libraries and conventions that simplify the work of creating complex and
robust robot applications with a wide variety of robotic platforms. The ROS community
exchanges robot software and knowledge through ROS distributions that make easier
to install a collection of software. It provides repositories where different institutions
can develop and release their own robot software and a ROS wiki where anyone can
contribute with his/her own documentation and tutorials.

16

Software in ROS is organized in packages. A package might contain ROS nodes, a
ROS-independent library, a dataset, configuration files, a third-party piece of software,
or anything else that logically constitutes a useful module. The goal of these packages is
to provide useful functionality that is easy-to-consume in a way that the software can be
easily reused. A typical structure of ROS package is shown in Figure 14. The structure
of the package folders is as follows:

talker.py talker.cpp
listener.py listener.cpp

Figure 14: Structure of a typical ROS package [12]

e config: All configuration files that are used in this ROS package are kept in this
folder. This folder is created by the user and is common practice to name the folder
config to keep the configuration files in it.

e include/package name: This folder consists of headers and libraries that we need
to use inside the package.

e scripts: This folder keeps executable Python scripts. In the block diagram, we can
see two example scripts.

e src: stores the C++ source codes. We can see two examples of the source code in
the block diagram.

e launch: keeps the launch files that are used to launch one or more ROS nodes.
e msg: contains custom message definitions.

e srv: contains the service definitions.

e action: contains the action definition.

e package.xml: This is the package manifest file.

e CMakeLists.txt: This is the CMake build file of this package.

17

Each package directory has to include a CMakeList.txt and package.xml file that describes
its contents and how catkin should interact with it. The commands in catkin are the
ROS build system that generates executable programs, libraries and interfaces.

The ROS system uses different nodes that communicate with each other, exchanging
information and data. However, the whole system needs a running ROS Master in order
to notice nodes the existence of other nodes and starting to communicate with each other.
The ROS Master enables individual ROS nodes to locate one another in the system and
it tracks publishers and subscribers to topics and services. The communications between
nodes can be done with client /server or publisher /subscriber methodologies. ROS topics
implement a publish /subscribe communication mechanism and ROS services and actions
uses a client/server communication method. Figure 15 shows a representation of these
three communication ways between nodes.

Publisher TOPIC

Subscriber

Client Subscriber Client reque

goal/cancel

I

E——
feedback/result

node B

Server

ACTION SERVICE

Figure 15: ROS comunication mechanisms [1§]

One of the most common ways to exchange data in a distributed system is a pub-
lish /subscribe communication mechanism implemented by topics. Before node (A) starts
to transmit data over topics, it must first advertise the topic name and the type of mes-
sage that is going to be sent. Node (B) and node (C) have to subscribe to this topic by
making a request to ROS Master. Then, both nodes will receive messages from this topic.
A topic is one-way communication and it is useful if there are multiple nodes listening.

A service is a synchronous two-way communication that allows one node to call a func-
tion that is executed in other node. The server node specifies a function and advertises
the service. By making a request, the client node can access this service and then, await
a response from the server node.

An action is an asynchronous two-way communication between nodes. It is similar to
the request and response of a service. An actions is requested with the aim of obtaining a
result. Moreover, the server node can provide feedback for some updates on the progress
and the client node can cancel the previous request at any time.

18

3.2.2 C++ libraries

This section presents different high-level C+-+ libraries providing useful utilities. Basic
colour image processing algorithms are managed using OpenCV library. Point Cloud lib-
rary (PCL) offers the most important point-cloud processing algorithms. Caffe provides
multimedia scientists and practitioners with a clean and modifiable framework for state-
of-the-art deep learning algorithms and a collection of reference models.

OpenCV: is an open source library licensed under Berkeley Software Distribution
(BSD) that provides real-time computer vision applications. OpenCV was developed to
provide a common infrastructure for computer vision applications and to accelerate the
use of machine perception in the commercial products. OpenCV is a library designed and
optimized for displaying 2d images. OpenCV application areas include: facial detection
and recognition, human gesture recognition, object segmentation and recognition, motion
tracking, produce 3d point-clouds from stereo cameras, stitch images together to produce
a high resolution image, etc. In this work we have installed and used the version OpenCV
3.2.

Point Cloud Library (PCL): is an open source library for 2d and 3d image and
point-cloud processing under Berkeley Software Distribution (BSD) license and thus free
for commercial and research use. FEach element of the array contains the Cartesian
(z,y,2) coordinates of that point in space and, if available, the RGB data or other
multi-dimensional channels for that point. The PCL library has many algorithms for
point-cloud processing such as filtering outliers from noisy data, stitch 3d point-clouds
together, feature extraction to recognise objects based on the geometric appearance,
surface reconstruction, registration, segment relevant parts of a scene, etc.

Caffe: is an open source C++ library under BSD-licensed with Python and MAT-
LAB bindings for training and deploying general purpose convolutional neural networks
(CNNs) and other deep models efficiently on commodity architectures. Caffe fits industry
and internet-scale media needs by CUDA GPU computation, processing over 40 million
images a day on a single K40 or Titan GPU (& 2.5 ms per image). By separating model
representation from actual implementation, Caffe allows experimentation and seamless
switching among platforms for ease of development and deployment from prototyping
machines to cloud environments. Caffe is maintained and developed by the Berkeley Vis-
ion and Learning Center (BVLC) with the help of an active community of contributors
on GitHub.

3.2.3 OpenPose

OpenPose is a library for real-time multi-person keypoint detection and multi-threading
written in C++ using OpenCV and Caffe, authored by G. Hidalgo, Z. Cao, T. Si-
mon, S.E. Wei, H. Joo and Y. Sheikh (Robotics Institute of Carnegie Mellon Univer-
sity). The code has been released for full reproducibility and it is maintained and de-
veloped by the authors with the help of an active comunity of contributors on GitHub
(https://github.com /CMU-Perceptual-Computing-Lab /openpose).

19

3.2.4 Packages: usb_cam, iai_kinect2, tf2, RViz and OpenPose ROS
The main ROS packages used in this work are the following:

usb _cam: This is a collection of tools and libraries for ROS to interface with standard
USB cameras (e. g. the Logitech Quickcam). It is developed and maintained by:

e Benjamin Pitzer and Russell Toris:
— (https://github.com /ros-drivers/usb _cam).
iai kinect2: this is a collection of tools and libraries for ROS to interface to the Kinect
One device using libfreenect?2.

It contains a calibration tool for calibrating the IR sensor to the RGB sensor and depth
measurements. It converts raw depth/RGB/IR streams to depth images and registered
point-clouds. It is developed and maintained by:

e Thiemo Wiedemeyer from the University of Bremen:
— (https://github.com/code-iai/iai_kinect2).
tf2: tf2 is the second generation of the transform library, which lets the user keep track of
multiple coordinate frames over time. tf2 maintains the relationship between coordinate
frames in a tree structure buffered in time, and lets the user transform points, vectors,

etc between any two coordinate frames at any desired point in time. It is developed and
maintained by:

e Tully Foote, Eitan Marden-Eppstein and Wim Meeussen:
— (https://github.com/ros/geometry2).

RViz: The RViz tool is an official 3d visualization tool of ROS. Almost all kinds of data
from sensors can be viewed through this tool. RViz will be installed along with the ROS
desktop full installation. It is developed and maintained by:

e Dave Dershberger, David Gossow, Josh Faust and William Woodall:
— (https://github.com /ros-visualization /rviz).

OpenPose ROS: OpenPose has been converted into popular software and packages
for ROS have been very recently developed by:

e CTS Robotics Group of Eindhoven University of Technology:
— (https://github.com/tue-robotics/openpose _ros).

e Kevin Zhang of Carnegie Mellon University:
— (https://github.com/firephinx /openpose _ros).

e Steven Jens M. Jorgensen of University of Texas at Austin:

— (https://github.com/stevenjj/openpose _ros).

20

4 Multi-Person Pose Estimation

Visual interpretation of people plays a central role in the quest for comprehensive image
understanding.

A major cornerstone in achieving these goals is the problem of human pose estimation,
defined as 2d or 3d localization of human joints on the arms, legs, and keypoints on torso
and face.

4.1 OpenPose (Convolutional Pose Machine)

Convolutional Neural Networks (CNNs) can be incorporated into the pose machine frame-
work for learning image features and image-dependent spatial models for the task of pose
estimation. At least in the very near future, CNNs are the most promising in creating
general detection, tracking, and recognition modules for human-aware robots.

A sequential architecture composed of convolutional networks directly operate on belief
maps from previous stages, producing increasingly refined estimates for part locations,
without the need for explicit graphical model-style inference.

Convolutional Pose Machines (CPMs) consist of a sequence of convolutional networks
that repeatedly produce 2d belief maps for the location of each part (Figure 16). At each
stage, image features and belief maps produced by the previous stage are used as input.

The belief maps provide the subsequent stage an expressive non-parametric encoding
of the spatial uncertainty of location for each part, allowing the CPM to learn rich
image-dependent spatial models of the relationships between parts. The overall proposed
multi-stage architecture is fully differentiable and therefore can be trained in an end-to-
end fashion using backpropagation [25].

At a particular stage in the CPM, the spatial context of part beliefs provide strong
disambiguating cues to a subsequent stage. As a result, each stage of a CPM produces
belief maps with increasingly refined estimates for the locations of each part.

In order to capture long-range interactions between parts, the design of the network in
each stage of our sequential prediction framework is motivated by the goal of achieving
a large receptive field on both the image and the belief maps [25].

Based on CPM architecture, OpenPose is an efficiente method for multi-person pose
estimation (Figure 19) what uses a nonparametric representacion of association scores
via Part Affinity Fields (PAFs), a set of 2d vectors fields that encode the location and
orientation of limbs over the image domanin [7,23].

21

Convolutional (a) Stage 1 (b) Smge =0

Pose Machines
x
(T-stage) . br

T mo el o

€ Convolution
(C) Stage 1 I}N tuput o ol 5 faxo | 2x floxa] 2x 55 | () Stage > 2 F'TH
' S |- | Plcielc|®|ec| I
X 03 A L L J
x| i W B
:"‘““ 90| 2 ||0x0 2x [lox8 | 25 x5 |0x0| 1t |1t |||, -ﬂ _ o nafhsenffuen|{ et i fiin
e lelleflelellell el e |l.". e | e -‘r-:-u- | C C|, P 1)
Y~ S — 1 = = = : L
| | | |
| | | |
| | : - .
| y - I e
| - o g o
9x9 26 % 26 60 = Gl 96 = 96 160 = 160 240 = 240 320 x 320 A0 = 400

(e) Effective Receptive Field

Figure 16: Architecture of Convolutional Pose Machines (CPMs) [25]

RiN AdN

4 N,

(b) Part Confidence Maps

[/

(c) Part Affinity Fields

(e) Parsing Results

(a) Input lmagc (d) Bipartite Matching

Figure 17: Overall pipeline of OpenPose software [7]

The part affinity is a 2d vector field for each limb for each pixel in the area belonging to
a particular limb, that encodes the direction that points from one part of the limb to the
other. Each type of limb has a corresponding affinity field joining its two associated body
parts. A greedy parsing algorithm is sufficient to produce high-quality parses of body
poses, that maintains efficiency even as the number of people in the image increase [7].

Figure 17 illustrates the overall pipeline of OPenPose software [7].

e OpenPose takes, as input, a color image of size w x h (Fig. 17a) and produces,
as output, the 2d locations of anatomical key-points for each person in the image
(Fig. 17e).

e First, a feed-forward network simultaneously predicts a set of 2d confidence maps
of body part locations (Fig. 17b) and a set of 2d vector fields of part affinities,
which encode the degree of association between parts (Fig. 17c).

e Finally, the confidence maps and the affinity fields are parsed by greedy inference
(Fig. 17d) to output the 2d keypoints for all people in the image.

Htage 1 Stage &, (t = 2)

- : Lot 4
Rranch 1 .I!'JIJ ; 1 : Rranch 1 Pr E .
Convolution ! :
. g : < B
P06 1 BRHTL TR 1| B | _“:" : Pl sTfinefrarific el O s .
o C i i3 'n i h = : s C o | [0 s . b sear .—:
| ! . | / 1 §
all fijlelii=1 M o T v T T T T T 1x1] !
o Meleclellellc ™ veler T Tollclalclalcl ol T
| P |
t : N
Branch 2 l'.':'l Ies " Branch 2 {.{p! | Lo '

Figure 18: Architecture of the two-branch multi-stage CNN in OpenPose

The architecture of OpenPose, shown in Figure 18, simultaneously predicts detection
confidence maps and affinity fields that encode part-to-part association. The network is
split into two branches: the top branch, shown in beige, predicts the confidence maps,
and the bottom branch, shown in blue, predicts the affinity fields. Each branch is an
iterative prediction architecture, Following the typical structure of a CMP, which refines
the predictions over successive stages, with intermediate supervision at each stage [7].

The runtime analysis, performed on a laptop with one NVIDIA GeForce GTX-1080
GPU, has shown that this software has achieved the speed of 8.8 fps for a video with 19
people, which would allow its use in real-time applications.

OpenPose takes a 2d color image as input and produces the 2d locations of anatomical
key-points for each person in the image as output (Figures 19 and 20). The (z,y)
coordinates of the final pose data array can be normalized to the range: [0, sourcesize],
[0, outputsize], [0,1], [-1,1], depending on the flag keypoint scale. The values can be
assigned to this flag are: 0 to scale it to the original source resolution; 1 to scale it to the
net output size (set with net resolution);2 to scale it to the final output size (set with
resolution); 3 to scale it in the range [0, 1]; and 4 to scale it in the range [—1, 1].

The OpenPose library main functionalities are:
e Multi-person 15 or 18-keypoint body pose estimation and rendering.
e Running time invariant to number of people on the image.
e Image, video and webcam reader.

e Able to save and load the results in various formats (JSON, XML, PNG, JPG, ...).
The code has been publically released by the Robotics Institute of Carnegie Mellon

University for full reproducibility, representing the first real-time open source system for
multi-person 2d pose detection.

23

' for help

Figure 19: Multi-person pose estimation with OpenPose [7]

Figure 20: Multi-person pose estimation with OpenPose [7]

24

4.2 ROS Wrapper for OpenPose

OpenPose has been converted into popular software and, taking into account the Open-
Pose functionalities for 2d pose estimation and its open-source condition, several groups
have considered incorporating all their functionalities into a simple-to-use ROS wrapper.

The ROS wrapper for OpenPose is a open C++ software application working on ROS
that obtains a 2d multi-person pose estimation from a simple camera.

From the previous work, and particularly the OpenPose ROS package published by
Steve Jens M. Jorgensen (NSTRF Fellow at NASA and PhD Student at The University
of Texas at Austin, to which we especially thank for the help provided), we have imple-
mented a ROS wrapper that automatically recovers the pose of several people from a
single camera RGB using OpenPose (Figure 21) |[2].

OpenPose_ROS Package
(openpose_ros_pkg)

| openpose.cpp
openpose_ros_node.cpp
openpose_ros_node_3d.cpp

openpose_ros_node_firephinx.cpp

test_openpose_ros_service _call.cpp

Figure 21: OpenPose-ROS package

A simplified scheme of the operation of the OpenPose ROS package is shown in the
Figure 22, where the topics are mentioned in a rectangle and nodes are represented in
ellipses.

openpose_ros_node

usb_cam

/openpose_ros_node

| — - openpose_ros
image_view

fusb_cam Jusb_cam/image_raw | |
Xy [

openpose_ros_service_node

/openpose_rosfinput_image

Jopenpose_ros/detected_poses_image
|| —>

-|- Jopenpose_ros/detected_poses_keypoints

Figure 22: ROS wrapper for OpenPose

On the one hand, we introduce the flow of images, which in our case we do using the
usb__cam driver.

This image stream (Figure 23) is visualized by image view, which is independent of
the openpose ROS wrapper.

Figure 23: Image from /usb cam

The topics in the OpenPose ROS package (openpose ros pkg) are as follows:
e /openpose ros/input image:

— Publisher: openpose ros node.

— The image that is received from the camera, and is next used to do the seg-
mentation with OpenPose, is published by the node openpose ros node at
the topic /openpose ros/input image for further comparisson with the im-
age with the skeleton drawn in it. The messages published in this topic are of
type sensor msgs::Image. The is no subscriber for this topic as this is only
for user’s visualization.

e /openpose ros/detected poses image:

— Publisher: openpose ros_service node.

— The image processed by OpenPose with the skeleton drawn in it, is pub-
lished in this topic by the openpose ros_ service node implemented inside
the node openpose ros node. The messages published here are of type
sensor _msgs::Image (Figure 24).

26

Figure 24: Image processed by OpenPose with the skeleton drawn in it

e /openpose ros/detected poses kepoints:

— Publisher: openpose ros_service node.

— The estimated 2d positions of the keypoints and the confidence of the estim-
ation are published in the topic /openpose ros/detected poses keypoints.
They are published by the openpose ros service node as a response of the
image sent as a request. This topic has no subscribers contained in this pack-
age as these data are published for further analysis in other packages.

Figure 25 shows an example of the output. The message has not an standard
format so we have defined it.

The message contains a field for the number of people detected, a field for the
ID of each detection and a field for each bodypart. Each bodypart contains
a field for the = coordinate, for the y coordinate and for the confidence of
the estimation (Figure 26). It should be noted that normally we use model
COCO and we get 18 bodyparts, since it is the one that uses the program,
and it does not seem that the computing capacity is a limit.

In addition, we see how each measure is associated with your time stamp, as
in every ROS message.

27

B] C | D E F
time field.num_people_detected [field.person_ID field.nose.x field.nose.y field.nose.confidence

_2__ 1.49993152815341E+018 4 0 0 0 0
3 | 1.49993152815341E+018 4 1 0 0 0
4 | 1.49993152815341E+018 4 2 0 0 0
5 | 1.49993152815342E+018 4 3 525 335 0.7854701877
6 1.49993152826207E+018 4 0 0 0 0
7 | 1.48993152826207E+018 4 1 0 0 o
8 | 1.49993152826208E+018 4 2 0 0 0
9 | 1.49993152826208E+018 4 3 525 335 0.7854701877
10 | 1.49993152837404E+018 4 0 0 0 0
11 | 1.49993152837404E+018 4 1 0 0 0

12 | 1.49993152837773E+018 4 2 0 0 0
13 1.49993152837774E+018 4 3 525 335 0.7854701877

Figure 25: Outoput of openpose ros/detected poses_keypoints

Person ID B ris X pixel coordinate

neck —____» Ypixelcoordinate
right_shoulder

> confidence

Figure 26: Message published by openpose ros_service node

The topics that are involved while running the 2d detection and the flow between them
can be seen in the scheme shows in Figure 27. These are all topic while running open-
pose_ros_node at the same time as openpose ros node firephinx during the publica-
tion of images from a camera.

The services in the OpenPose ROS package (openpose ros pkg) are as follows:
e detect poses:

— Server: openpose ros_service node — Client: openpose ros node_firephinx.
— Request: Input image — Response: Detections.

— The service involved is the service detect poses implemented inside open-
pose_ros_node. The service request field is .image of type sensor msgs::Image
and the service response field is .detections and is associated to a vector where
the detections of one image are stored (Figure 28).

28

fopenpose_ros/detected_poses_image |

fopenpose_ros/detected_poses_keypoints

fopenpose_rosfinput_image |

fopenpose_ros_node

Jusb_cam/image_raw
fimage_view/parameter_updates |

Jusb_cam/camera_info fimage_view
fimage_view/output

Jusb_cam/image_raw/compressedDepth/parameter_descriptions

fimage_view/parameter_descriptions ‘

‘fush_,cumllmune_- P pth/p ter_updat l

lusb_cam/image_raw/theora |

>

Jusb_cam | [usb_cam/fimage_raw/compressed ‘

fusb_camfimage_raw/compressed/parameter_descriptions ‘

Jusb_cam/image_rawit! P _up |

fush_cam/image_raw/theora/parameter_descriptions

Jusb_c ge_raw/comp parameter_up ‘

fusb_cam/fimage_raw/compressedDepth ‘

Figure 27: Topics involved with 2d pose detection

SERVICE
detect_poses

REQUEST RESPONSE

RN of . (42 L OWRLSHE L ML RS TR IR IR
] ¥

e R] 3 2
4 LA LOERHIeAR ' & c > 3
R e L] ' L 0 " 3
L] i 3 L] . AT 1T
2 - L 0 " bl
5 = - F: [N]
] . Fl a e X ST
s 3] [v 2
m L 1 g £ a 5
R e ik L] L s 3 i 3
11 e 4 L] o L AT 1T

Figure 28: Service detec poses

29

A workflow diagram of the OpenPose ROS package shows in Figure 29.

CAMERA

v
) —

Visualization

openpose_ros_node

T N\ee

/openpose_rosdinput_image

fopenpose rosfdetec’[ed_poses keypoints

!open;_mae_rosﬂetected _poses_image

Figure 29: Workflow diagram of the OpenPose ROS package

4.3 Skeleton-3d Package

Through this node, we can project the 2d pose detections provided by the OpenPose ROS
wrapper in the point-cloud of the depth images, to obtain an 3d multi-person pose es-
timation in real-time at the camera space coordinate system [2].

For the Kinect camera, the camera space (that is to say, the 3d coordinate system used
by the camera) is defined as follows (Figure 30):

e the origin (z =0,y =0,z = 0) is located at the center of the IR sensor.
e 1 grows towards the left of the sensor,
e y grows upwards (note that this direction is based on the sensor’s tilt),

e 2 grows out in the direction the sensor is facing, and

1 unit = 1Im.

30

Figure 30: The Kinect camera space coordinate system

Depth space is the term used to describe a 2d location on the depth image. It can be
considered as a row/column location (index value, i) of a pixel, where x is the column
and y is the row.

So, for a 960 x 540 resolution depth image, the point = 0, y = 0 (i = 1) corresponds
to the top left corner of the image, and the point x = 960, y = 540 (i = 518400) is the
bottom right corner of the image.

In some cases, a z value is needed to map out of depth space. For these cases, simply
locate the value associated with the point of the depth image located in the row/column
in question, and use that value (which is the depth in millimeters) directly as z.

To know the value of the depth coordinate associated with a pixel of the color image,
the operation is relatively easy because the depth and the infrared come from the same
sensor in Kinect camera. It is simply necessary to locate the row/column (index value)
corresponding to that pixel in the depth image.

The principle of operation is based on associating the pixel corresponding to the co-
ordinates (usually in pixels) provided with the openpose in the 2d image of the RGB
camera with the corresponding points (or pixels) of the point-cloud of the 3d image of
the depth camera.

The correspondence between the pixels of RGB image and the points of the point-cloud
image, according to the coordinate system used by OpenPose and PointCloud, is shown
in Figure 31.

Since a body joint "occupies" on the 2d image a "size" larger than a single pixel, and to
prevent an incorrect reading of the depth camera at a particular point is very important,
projection onto the point-cloud of body joints were performed considering the pixels
of a 3x3 square, centered at the point corresponding to the coordinates extracted by
OpenPose. The arithmetic mean of the depth readings detected at those 9 points was
performed.

In this way we extract the 3d "real world" coordinates (in the camera space system)
corresponding to the keypoints that we obtain in the 2d detections.

31

(i=1) (i=960)

(0 ,IO} -------- (959,0) J— (959, 0)
PIXEL | PIXEL |
i S |
(xy) | | | rto
| | | l
(0,539) ------- (959,539) (0,539) ----em- (959, 539)
(i=518400)
(xy) coordinate system OpenPose i (=index value), and (x'y') coordinate system PointCloud

Figure 31: Correspondence between pixels in RGB and point-cloud images

The skeleton-3d package has two main nodes (Figure 32).

Skeleton-3d Package
(skeleton_extract_3d)

Name

=] skeleton_extract_3d_node.cpp
=

skeleton_extract_3d_visualization_node.cpp

Figure 32: Skeleton-3d package

The services in this package are as follows:

e detect poses:
— Server: openpose ros_service node 3d — Client: skeleton extract 3d node.
— Request: Input image — Response: Detections.

— The service involved is the service detect poses is implemented inside open-
pose ros_mnode.

32

The relevant topics in the skeleton extract 3d node node are the following:
e /openpose ros/skeleton 3d/detected poses image:

— Publisher: openpose ros node 3d node.

— In this topic we are publishing, as we did in 2d pose detection, the images with
the skeleton drawn. We have selected another name so it will not conflict if
we want to run the 2d display simultaneously. There is no subscriber.

e openpose ros/skeleton 3d/detected poses keypoints:

— Publisher: openpose ros node 3d node.
— In this topic we are publishing the 2d pose detections with the same format.

There is no subscriber.

e /openpose ros/skeleton 3d/detected poses keypoints 3d:

— Publisher: skeleton extract 3d node.

— This topic displays the 3d detections in real world coordinates. The format is
shown in Figure 33. This message has the same fields as 2d detections with the
particularity that the z,y, z coordinates are real numbers and are in "world
coordinates" (referred to camera space). There is no subscriber.

B [¢ | o T[T e [F] G

1 |sstime field.num_people_detected field.person_ID field.nosex field.nosey field.nosez field.nose.confidence
_ 2 | 1.50063613590885E+018 1 0 -0.0154055497|0.283746779 2.793222427 0.9070804119
3 1.50063613639442E+018 1 0 -0.1511128396|0.282182634 2.831222296 0.8941964507
4 1.50063613674613E+018 1 0 -0.3620795608 0.238503262 2.828000069 0.8935434222
5 1.5006361370928E+018 1 0 -0.497540921/0.195191279 2.828666925 0.8885506988
6 1.5006361375121E+018 1 0 -0.5640754104 0.150795802 2.809444427 0.9802207351
7 1.50063613785775E+018 1 0 -0.5086706877 0.206158832 2.830333471 0.9354715943
8 1.50063613840778E+018 1 0 -0.1935517788/0.286243141 2.817777872 0.8981478214
9 | 1.50063613875576E+018 1 0 0.1060125083 0.349728584 2896333456 0.9211901426
10 | 1.50063613918272E+018 1 0nan nan nan 0.9030799866
1.50063613956958E+018 1 0 0.0281499829 0.352424055 2.873000145 0.9531800747
1.50063613991233E+018 1 0 -0.0426955 0.347103447 2.829666853 0.9489462972
1.5006361402873E+018 1 0 -0.1622225791/0.298954248 2 835889101 0.9798388481
1.50063614068655E+018 1 0 -0.0319262519 0.288048893 2.835555792 0.992808938
1.50063614111584E+018 1 0 0.3764834106 0.223607928 2.845333338 0.9758233428
1.50063614155636E+018 1 0 0.5064209104/0.194773033 2.903222322 0.8522841334
1.50063614189855E+018 1 0 nan nan nan 0.9137311578
18 | 1.50063614233049E+018 1 0 0.4597145319 0.227052569 2.88911128 0.9590835571
1.50063614278862E+018 1 0 0.2294183224 0.28903982 2.845333576 0.9223447442
1.50063614316825E+018 1 0 0.0006340896 0.338341564 2 802000046 0.9007762671
1.50063614351344E+018 1 0 -0.0261285957 0.342978179 2.796000004 0.9720357656
1.50063614385818E+018 1 0 -0.1542401612 0,354478061 2.889777899 0.9318256974
23 | 1.50063614427402E+018 1 0 -0.1324286014 0.33568424 2.78000021 0.7785298228
24 | 1.50063614461974E+018 0 -0.161109075/0.329264045 2.816111326 0.8870015144

Figure 33: Format of the 3d detection message

e /openpose ros/skeleton 3d/input_pointcloud:

— Publisher: skeleton extract 3d_node.

— In this topic the depth images received are published when a synchronized
RGB image has been found.

33

e /openpose ros/skeleton 3d/input rgh
— Publisher: skeleton extract 3d node.

— The RGB images received are published in this topic .

The relevant topics in the skeleton extract 3d_visualization node node are the follow-
ing:

e /openpose ros/skeleton 3d/visualization markers: In this topic, the markers cor-
responding to each joint are published in the form of sphere list (Figure 34). You
can adjust various parameters, such as the color, size and shape of markers. These
markers can be easily visualized in RViz, which gives us the tool for 3d visualization
of the human pose estimation.

Figure 34: Markes for visualization of bodyjoints in RViz

e /openpose ros/skeleton 3d/visualization skeleton: In this topic we publish the
"skeleton" detected. To do this, we simply attach the previously published markers
using lines to obtain a human skeleton. We publish this skeleton in the form of a
line list. As in the previous case, we can visualize it with RViz (Figure 35a). If
we visualize both, the skeleton and the body members, at the same time, the view
would be as shown in the Figure 35b.

Summarizing, the operation of the skeleton extract 3d visualization node node can
be described as follows (Figure 36): we process the message published by the skel-
eton extract 3d node node, and publish a message visualization msgs::marker type,
in which the position of the points are obtained by assigning the estimated 3d position
coordinates for each of the bodyjoints. These messages can be easily viewed with RViz.

34

(a) (b)

Figure 35: Skeleton in RViz with: (a) line list and (b) sphere list-+line list

CAMERA (RGB-D)
Color + Depth
. image
D e lopenpose_ros/skeleton_3d
I‘~. =i ,»‘I o . finput_pointcloud
e | skeleton_extract_3d | W -
call service openpose et
detect_poses 3d | | detections /v :
e :
skeleton_extract_3d node jopenpose_ros/skeleton_3d
J/openpose_ros/skeleton_3d finput_rgb

/detected_poses_keypoints_3d |

skeleton_extract_3d visualization_node

v N

/openpose_ros/skeleton_3d Jopenpose_ros/skeleton_3d
Nisualization_markers Avisualization_skeleton

Figure 36: Workflow diagram of the Skeleton-3d package

35

5 Results

This chapter describes the results obtained in this work, the functionalities and the
operation of the ROS packages implemented.

5.1 Human pose detection and visualization
In principle, the mode of operation is streaming and the images captured by the video
camera are processed to obtain the multi-person pose estimation in real-time.

The main functionality of this software is 2d multi-person pose estimation from the
RGB images emitted by a single camera.

The results obtained (2d real-time multi-person pose estimation) with the streaming
processing of RGB images captured by a single webcam are shown in the Figure 37.

Figure 37: 2d real-time multi-person pose estimation from RGB images captured by a webcam

The processing of the RGB images allows us to obtain a confidence value for the
estimation of the position of each body joint, as shown in the Figure 38.

We have also verified that the coordinates of the obtained keypoints correspond ef-
fectively with those of the segmented image, as seen in the Figure 39. Note that the
coordinates (in pixels) are rotated 180° and located in a specular way to the image that
we visualize.

36

ki

P

doag = L

o
lomoos . omatn

-
fomats st ol

epenpase_rosdetecied poves e ge

openpase_tosdetected poses_keypo

openpose_rosina image

oot 006 aog 004 0gs 005

Figure 39: 2d keypoints coordinates and correspondence with segmented image

When the camera captures simultaneously RGB and depth images (RGB-D image),
the software projects the body joints of 2d pose estimation, extracted from the RGB
image, onto the point-cloud obtained by the depth camera and extracts 3d multi-person
pose estimation (Figure 1). This 3d pose estimation can be visualized in RViz.

The results obtained (3d real-time multi-person pose estimation) with the streaming
processing of RGB-D images captured by a Kinect One are shown in Figure 40. As we
can see, the code matches the 2d detections in the RGB with the pointcloud succesfully
and extracts the 3d world coordinates.

37

Mnectz_v.sptcal ame.
mo

5

=

@
BT T -y

(= M- Click: M . i

[E
w

e

. T

e | L Clich: e, MleeClik: s 47T Wight-Clicks: W £, Shift: Mo gt

W 1508

Fixad Frama.
Frarme iy il data i ramiored before e deplinped

BOS T 1SE1IBSOUSI O U 3950 i 101105002 el Bl 225 30

st il lichs e 3. Right-Clicks: Arun = hift b oy

Figure 40: 3d pose estimation from RGB-D images captured by a Kinect One camera

38

Other mode of operation is the reproduction of images previously stored in a bag. A
bag is a file format in ROS for storing ROS message data. Bags (so called because of
their .bag extension) have an important role in ROS, and a variety of tools have been
written to allow to store, process, analyze, and visualize them. Bags are the primary
mechanism in ROS for data logging, which means that they have a variety of offline uses.
Researchers can use the bag file toolchain to record datasets, then visualize, label, and
store them for future use.

Using bag files within a ROS Computation Graph is generally no different from having
ROS nodes sending the same data, though it can run into issues with timestamped data
stored inside of message data. For this reason, the rosbag tool includes an option to
publish a simulated clock that corresponds to the time the data was recorded in the file.

The bag file format is very efficient for both recording and playing back, as messages
are stored in the same representation used in the network transport layer of ROS.

The process of extracting archived images from a bag is shown in Figure 41.

‘ rosbag ‘

rostopic echo... ; - export_images.launch

Figure 41: Extraction and processing of images from a bag

We consider that it is interesting to be able to use sequences corresponding to image
databases, to contrast and validate the operation of the software that we have implemen-
ted. The images obtained from the database will be overturned to a bag, so that they
can be processed in this ROS packages.

The bag is prepared for the data to be published in the same topics that have been
configured to publish the images coming from the camera.

Using the ROS nodes (openpose ros node and openpose ros node_firephinx), the
images extracted from the bag are processed as if a camera were connected. The Figure
42 illustrates the processing of images obtained from a bag.

39

openpose_ros/detected_poses_image

openpose_ros/detected_poses_keypoints

openpose_ros/input_image

Figure 42: Processing of images obtained from a database

For example, in 2016 the Institut de Robotica i Informatica Industrial (IRI) prepared
a database with RGB-D human images obtained with Kinect One and simultaneously
recorded the position of a series of markers with OptiTrack System [3]. This database
allows to know the position of certain bodyjoints of the person whose movements have
been registered with OptiTrack and also captured with RGB-D images (Figure 43).

Figure 43: Human pose estimation from images of a database [3]

40

Therefore, we can compare the estimates of the position coordinates of the keypoints,
obtained with this ROS packages for 3d pose detection, with their true coordinates,
recorded by Optitrack System, to contrast and validate the results obtained.

5.2 Proccessing speed

If we record a rosbag and, by running rqt _bag, we have a look at the frequency that the
3d detections are sent, we obtain the results shown in the Figure 44.

'1.0s 11.55 2.0

openpose_../skeleton_3d/detected _p.. 1

Figure 44: Frequency of the 3d detections

We can see that we get around seven detections per second. This is a satisfactory result
that allow the management of the 3d pose estimation practically in real time. Processing
time is less than the minimun required for a robot to do a task involving human-robot
interaction.

If we record a rosbag with all the topics published by the package, we can see the
results shown in the Figure 45.

i0.0s i0.58 i1.0s

openpose_ros/skeleton_3d/detected_paoses_image | | | i | I | i I
openpose_ros/skeleton_3d/detected_poses_keypoints | I | i | | | : |
openpose_ros/skeleton_3d/input_pointcloud | I | I : I I I 3 |
openpose_ros/skeleton_3d/input_rgb | | | | | | | ‘
openpose_ros/skeleton_3d/visualization_markers [l |
openpose_ros/skeleton_3d/visualization_skeleton 1] I u]

Figure 45: Messages published within the Skeleton-3d package

The first message to arrive, naturally, are the point-cloud and the RGB images. Next,
the OpenPose 2d detection, that is the task that clearly takes more time. The following
3d detection and the visualizer messages are published after a very short time interval.
This results shows that the implemented code is quite efficient, so it is not necessary
to introduce more optimizations, because the proccesing time is little compared to the
proccesing time of OpenPose package.

5.3 Limitations

The software works quite well but has, of course, some limitations. The most significant
limitation is the occlusions of some part of the body, particulary when trying to obtain
3d human pose estimation. OpenPose solves fairly well the 2d human pose estimation
even with occlusions, as we can see in the Figure 46.

41

Figure 46: OpenPose with occlusions

But this is not the case with the software we have implemented for 3d human pose
estimation. We extract the depth coordinate from the point-cloud, given a 2d pixel
coordinate in the RGB image. But what happens if the camera is at one side, fo instance,
the left side of a person, as in Figure 47.

Figure 47: OPenPose with occlusions: camera in the left side

As the camera is in the left side, the detection of the left shoulder will be quite accurate,
but what about the right shoulder? As we see, it is behind the chest in the image but
OpenPose still detects it. But when we take the depth coordinate of the right shoulder
we will use instead the depth coordinate of the chest. That means that our software for
3d detections cannot deal with occlusions.

42

Figure 48: Camera in the left side: 2d and 3d pose estimations

The results when one joint is hidden are described in the Figures 48 and 49. Figure 48
shows the same view in the RGB image and in the depth image. To calculate the depth
coordinate, we can move in the cloud of points to check the same with a view from above,
as shown in the Figure 49. We can see that the x, y coordinate are taken correctly, but
when taking the depth coordinate, z, we have taken the depth of the bodypart that is in
front. In our case, we are taking the depth coordinate of the left shoulder instead of the
right shoulder.

Figure 49: Camera in the left side: 3d pose estimation - View from above

With the method we have used to estimate the 3d pose, it is impossible to estimate
the position of the occluded parts as we do not have their depth coordinate. We could
try some filtering to obtain the detections of the occluded part.

43

6 User Guide

This chapter describes the ROS implemented packages to facilitate its use.

e ROS wrapper for OpenPose (https://github.com/CMU-Perceptual—Computing-Lab/openpose
- see commit number ale0a5f4136e702b5731a268¢2993fb75cad753¢) allows the estimation of
2d multi-person pose from a single RGB camera.

e When a depth image is synchronized with the RGB image (RGB-D image), a 3d
extractor node has been implemented to obtain 3d pose estimation from the 2d pose
estimation given by OpenPose through the projection of the 2d pose estimation onto
the point-cloud of the depth image. Also, a visualization node for the 3d results
has been implemented.

The package is accessible on the repository GitHub [2]:

https://github.com/Miguel ARD /openpose _ros-1.

6.1 Installing OpenPose ROS Wrapper

1. Install openpose and its dependencies (https://github.com /CMU-Perceptual-Computing-
Lab/openpose/blob/master/doc/installation.md)

NOTE: OpenCV 3.2 recommended, as OpenCV 2.4 might cause some errors.

44

2. Enable the package running in openpose ros directory:
./install _openpose and enable package.sh

3. Install PCL (http://pointclouds.org/downloads/)

4. If it succeds, compile:
cd T /catkin _ws/src
catkin build
cd ..

source devel/setup.bash

6.2 Running the OpenPose ROS Wrapper and the 3d Pose
Extractor

The package can be divided into two modules that work independently. One for 2d pose
detections, with a visualization tool like the one in OpenPose but implemented in ROS.
And another for 3d pose detections, with a visualization node to view the results with
RViz. We use the same node to get OpenPose 2d detections for both modules, but we
have duplicated it and the services it provides with different names to avoid trouble while
calling it with the 2d visualization tool and the 3d extractor node simultaneously.

6.2.1 2d Detection Module

This module is composed of a service node for getting 2d detections and a node for the
output visualization.

First of all, you might want to change some things in the code to adapt it to your

necessities:

e Go to /openpose ros pkg/src/openpose ros node firephinx.cpp, and change
"/usb cam/image raw" for the topic your camera is publishing the sensor msgs::Image

messages to:

/] Camera Topic
DEFINE_string(camera_topic, "fusb_cam/image_raw", "Image topic that OpenPose will process.");

e You may change the output image resolution. To do so, go to
Jopenpose _ros_pkg/src/openpose ros _node_firephinx.cpp and change:

#define OUTPUT RES X 1280 f/ Display Resolution Output Width
#define OUTPUT_RES_Y 720 [// Display Resolution Output Height

Once you have set those parameters repeat step 4 of installation.

45

Now you can run the code. First connect a RGB camera and run the corresponding
ROS drivers to start to publish the images (they must be image raw). For example
you can connect a webcam and use https://github.com /ros-drivers/usb cam. With this
drivers run:

roslaunch usb cam usb _cam-test.launch
You should get the something like:

fush_camyimange. raw n

=+t +@D05DONS

ash_cam ush_ean-test launch ... 1ngging T fRame/|
3c-11e7-9802 - 2CAI54507 155/ rosLaunch-especn- 307, L

narduengaf . ros/log
g

checking log directory for disk usage. This may take awhile
Press Ctrl-C to interrupt
Dene checking Log flle disk usage. Usage 13 <1CH.

storted roslaunch server hitp://espeon: 44023/

Lmage_vien
R

o Uagge_w Lew}
ram_rade)

AnmT, p=1801 = A Low 20! 8220

Then, initialize the 2d detection service node:

rosrun openpose ros_pkg openpose ros node

If everything works fine you should see the following output in your shell:

[INFO] [1501140533.950685432]: Initialization Successfull

Finally, to get the 2d poses of the images from the camera and visualize the output,
run:

rosrun openpose ros_pkg openpose ros node firephinx

You should obtain something similar to:

46

If everything is running correctly, the package should be publishing in the topics:
/openpose _ros/input_image
/openpose _ros/detected poses image

Jopenpose ros/detected poses keypoints

e /openpose ros/input image: The images the 2d detection node is taking to
make the segmentation are published here.

e /openpose ros/detected poses image: Images with the segmentation skeleton
drawn in it are published here.

e /openpose ros/detected poses keypoints: In this topic, the messages with the
2d detections keypoints (openpose bodyjoints) are being published. The messages
have the following fields:

47

- num_people detected: number of people that are in the image.
- person_ ID: ID number assigned to each person.

- bodypart (i.e. Nose): Each bodypart has the following fields:

— x: x openpose keypoint pixel coordinate.
— y: y openpose keypoint pixel coordinate.

— confidence: confidence of the detection.

If you write the data in a csv it should be like this:

B | c [T T - F

time rield.num_people_detected field.person 1D fleld.nosex field.nose.y field.nose confidence

2 | 1.49993152815341E+018 4 0 0 0 0
3 | 1.49993152815341E+018 4 1 0 0 0
4 | 1.49993152B15341E+018 4 2 0 0 0
5 | 1.49993152815342E+018 4 3 525 a3s 0.7854701877
6 | 1.49993152826207E+018 4 0 0 0 0
7 | 1.49993152826207E+018 4 1 0 0 0
8 | 1.49993152826208E+018 4 2 0 0 0
9 | 1.49993152826208E+018 4 3 525 a3s 0.7854701877
10 | 1.49993152837404E+018 4 0 0 0 0
11 | 1.49003152837404E+018 4 1 0 0
12 | 1.49903152837773E+018 4 2 0 0
13 | 1.49993152837774E+018 4 3 525 a3s 0.7854701877

6.2.2 3d Detection Module

This module is composed of the same 2d extractor node described in the previous section,
a node for getting 3d pose detection and a node for visualization of the output in RViz.
We can see the resulting 3d human skeleton and the resulting 3d detections for the joints
or both at the same time with the visualization node. An RGB-D camera is needed to
run this module.

First of all you might want to change some things in the code to adapt it to your
necessities:

e Go to /skeleton extract 3d/launch/openpose skeleton extract.launch. You will

see this:
<launch>
<!-- Launch openpose service-->
<node name="openpose_ros_node_3d" pkg="openpose_ros_pkg" type="openpose_ros_node_3d" output="screen" [>
<1-- Launch the skeleton extractor node --»

<node name="skeleton_extract 3d_node" pkg="skeleton extract_3d" type="skeleton_extract_3d_node">
<remap from="~point_cloud” to="/kinect2/qhd/points” />

to="fusb_cam_3d/image_raw" />
<remap from="~skeleton_2d detector" to="detect_poses_3d" />

</node>

</launchs>

— Here you should change “/usb _cam_3d/image raw/” for the topic your cam-
era will be publishing the sensor msgs::Image messages (RGB images). You
should also change “/kinect2/qhd/points” for the topic your camera will be
publishing the sensor msgs::Pointcloud2 messages (depth images).

48

e Go to /skeleton extract 3d/src/skeleton extract 3d mnode.cpp and set the in-
put resolution of the images (the resolution of the depth and the RGB images must
be the same):

// Set resolution

#define width 960
#define height 540

e Goto /skeleton extract 3d/src/skeleton extract 3d visualization node.cpp. You
might want to change the color, shape, size etc. of the markers. To see the options
you have go to http://wiki.ros.org/rviz/DisplayTypes/Marker.

— To set the options of the bodyjoints:

f// Set boyjoints markers

marker.header.frame_id = "/kinect2_ir_optical_frame";
marker.id = person_msg.person_ID;
marker.ns = "joints";

marker.header.stamp = ros::Time();

// Markers will be spheres

marker.type = visualization_msgs::Marker::SPHERE_LIST;
marker.action = visualization_msgs::Marker::ADD;

marker.scale.x = 8,05;

marker.scale.y = 8.85;

marker.scale.z = 8.85;

// Joints are red

marker.color.a = 1.8}

marker.color.r = 1.8;

marker.color.q = 0.@;

marker.color.b = 8.8;

// 5et marker duration in 15@ms
marker.lifetime = ros::Duration(®.15);

— To set the options of the skeleton, go to:

skeleton.id = person_msg.person_ID;
skeleton.header.frame_id = "/kinect2_ir_optical_frame";
skeleton.ns = "skeleton";

skeleton.header.stamp = ros::Time();

// Skeleton will be lines

skeleton.type = visualization_msgs::Marker::LINE_LIST;
skeleton.scale.x = 8.83;

skeleton.scale.y = 8.83;

skeleton.scale.z 9.83;
// Skeleton is blue
skeleton.color.a
skeleton.color.r
skeleton.color.g
skeleton.color.b =]

// Set skeleton lifetime
skeleton.lifetime = ros::Duration(@.15);

o ne

1.0
2.0
8.0
1.0

Once you have set the options repeat step 4 of the installation process. Now that you
have configured it, you can run the code. First of all, connect your RGB-D and run the
corresponding ROS drivers.

49

For example you can use a KinectOne and https://github.com/code- iai/iai kinect2
ROS drivers. To initialize the camera with this drivers run:

roslaunch kinect2 bridge kinect2 bridge.launch

rosrun kinect2 viewer kinect2 viewer

Then you will see the camera output:

Cloud Viaweer Rl
ain] calor
19.5500ms -+ 2
iy o 24742

b4 dapth procerking:

1 coler processing: - o - L i i 1‘1

1 11327905 -> -8, 27714z
1860603 > ~B4Z.G9HE
] depth processing: a1 EaEmE nEs|

rain] coler processing: -5 Zoas

18.7416mrs -> -91,00!
rain] depth process

iln] ealsr processing:

il

joa-a. a,'m Ml.l.bopen t no version infarnation svallable (required by Jhome
kot et e cvcl .private/kinect? registration/1ib/libkinect2 registra

,mm-e,wa nue:\gn/(a(hr WA abyic e el Racei vl fiar) daeat e
ca-a.3/11b64 {1able (required by jhone
|imardue rgnm km u(f m-l n/lib/libkinects registra

§ ros

/bore [marduengocatkin.
[¢a-a.8/11bs4/ L1bopencL

duel uuﬂca kln_ws/devel/

kinectz wiewer kinectz viewer

devel fLibjkinectz_wiewer (kinect? viewer ety
11 o verston Anfarnation avatlable (required by shone
rivate/kinect2_registration/1ib/ibkinect2_reglstra

2 duengoj catkn | LU KLneCED_wiener/

no version in*arnation

ct2_wlewer: just/local/cu
Alable (required by /home
n{lib/libkincct? registra

[1 [n:
[1nko] [rain]
INFQ] [nai

Once your camera is publishing, launch the 2d extractor node and the 3d extractor
node by running;:

roslaunch roslaunch skeleton extract 3d openpose skeleton extract.launch

If everything is working fine you should have something similar to:

[INFO] [1501152408.961898483]: Detected 6 persons

Minimum pointcloud (x,y,z) coordinates:
(-4.53544, -2.76288, 0.839)

Maximum pointcloud (x,y,z) coordinates:
(3.04243, 2.85475, 9.771)

Nose pixel coordinates (x,y,z):

(598, 42, 3.10267)

Nose real world coordinates (x,y,z):

(©.685628, -1.4638, 3.10267)

Neck pixel coordinates (x,y,z):

(643, 53, 2.98111)

Neck real world coordinates (x,y,z):

(0.918424, -1.34303, 2.98111)

Right shoulder pixel coordinates (x,y,z):

(620, 67, 3.06156)

Right shoulder real world coordinates (x,y,z):

(©.806914, -1.29637, 3.06156)

Right elbow pixel coordinates (x,y,z):

(624, 114, 3.189)

Right elbow real world coordinates (x,y,z):

(©.865194, -1.06046, 3.189)

50

Then you can run the visualization node:

rosrun skeleton extract 3d skeleton extract 3d _visualization node

Note: To have the fixed frame for visualization you must run:

rosrun kinect2 bridge kinect2 bridge publish tf:=true.

Now open RViz and select as fixed frame the one you have set for the markers. For
example, I have chosen:

kinect2 ir optical frame.
Select the topics:
Jopenpose _ros/skeleton 3d/visualization markers, and

/openpose _ros/skeleton 3d/visualization _skeleton,

and you should have something similar to:

ol

If everything is running correctly the package should be publishing in the following
topics:

Jopenpose _ros/skeleton 3d/detected poses image
/openpose _ros/skeleton 3d/detected poses keypoints
/openpose _ros/skeleton 3d/detected poses keypoints 3d
Jopenpose _ros/skeleton 3d/input_ pointcloud
/openpose _ros/skeleton 3d/input_rgb
/openpose _ros/skeleton 3d/visualization markers

/openpose _ros/skeleton 3d/visualization _skeleton

e /openpose ros/skeleton 3d/detected poses image: the same kind of mes-
sages are published in this topic as in topic:

/openpose ros/detected poses image in the 2d module.

e /openpose ros/skeleton 3d/detected poses keypoints: the same kind of mes-
sages are published in this topic as in topic:

/openpose _ros/detected poses keypoints in the 2d module.

e /openpose ros/skeleton 3d/detected poses keypoints 3d: the 3d detections
are published in this topic. The fields are the same as the mesagges published in:

/openpose _ros/skeleton 3d/detected poses keypoints,
but the fields of each bodypart change. Now they are:

x: x real world coordinate of the joint.

y: y real world coordinate of the joint.

z: depth real world coordinate of the joint.

confidence: confidence of the 2d detections.

If you write the message in a .csv, it should look like this:

B — p | E | °F G
time f field.nose.x field.nose.z

ield.num_people _detected field.person ID field.nose.x

92

field.nose,y field.nose.z field.nose.confidence

& 1.50063613590885E+018| 1 0 -0.0154055497 0.283746779 2.793222427 0.9070804119
3 1.50063613639442E+018 1 0 -0.1511128396 0.282182634 2.831222296 0.8941964507
4 | 1.50063613674613E+018 1 0 -0.3620795608 0.238503262 2.828000069 0.8935434222
5 1.5006361370928E+018 1 0 -0.497540921 0.195191279 2.828666925 0.8885506988
6 | 1.5006361375121E+018 1 0 -0.5640754104 0.150795802 2.809444427 0.9802207351

e /openpose ros/skeleton 3d/input pointcloud: Here is published the point-
cloud that is synchronized with the RGB image from where we extract the z,
y, z real world coordinates of the keypoints.

e /openpose ros/skeleton 3d/input rgb: the RGB image that we use to make
the 2d detections is published in this topic and it is synchronized with the input
point-cloud.

93

e /openpose ros/skeleton 3d/visualization markers: the markers to visualize in
RViz the 3d detections of the joints are published in this topic.

e /openpose ros/skeleton 3d/visualization skeleton: the skeleton to visualize
in RViz the 3d detections is published in this topic.

o4

7 Conclusions

At least in the very near future, Convolutional Neural Networks (CNNs) are the most
promising tools to obtain general detection, tracking, and recognition modules for human-
aware robots. In general, the modules for 2d pose estimation from simple images are the
most developed and there are even some quite effective open source packages that have
reached a certain popularity. In particular, OpenPose (based on CNNs) is an efficiente
open source software for 2d real-time multi-person pose estimation.

We introduce a ROS wrapper that automatically recovers 2d multi-person pose from a
single camera using OpenPose. Additionally we have developed a ROS node that obtains
3d human pose estimation from the initial 2d human pose estimation, when a depth image
synchronized with the RGB image is captured, projecting the 2d pose estimation onto the
point-cloud of the depth image. In this work, we have implemented a software application
working on the Robotic Operating System (ROS) that obtains a pose estimation (2d or
3d, depending on the cases) from a simple image (a 2d image obtained with an RGB
camera or a 3d image -RGB-D- obtained with a depth camera). The mode of operation
is streaming and the images captured by the video camera are processed to obtain the
multi-person pose estimation in real-time. The main functionality of the OpenPose ROS
package is 2d multi-person pose estimation from the RGB images captured by a single
camera. When that camera simultaneously captures RGB and depth images (RGB-D
images), the Skeleton-3d package projects the keypoints of 2d pose estimation (extracted
from the RGB image) onto the point-cloud obtained by the depth camera and extracts
3d multi-person pose estimation.

Also, we consider that it is interesting to be able to use sequences corresponding to
image databases, to contrast and validate the operation of the software that we have
implemented. The images obtained from the database will be overturned to a bag. Us-
ing the ROS packages, the images extracted from the bag are processed simulating a
connected camera. For example, in 2016 the Institut de Robotica i Informatica Indus-
trial (IRI) generated a database with RGB-D human images obtained with Kinect One
andsimultaneously recorded the position of a series of markers with OptiTrack System.
This database can be used to contrast and validate the results of the 3d pose estimation
obtained with this ROS package.

The analysis of the processing time shows satisfactory results, since this time is less
than the minimun required for a robot to do a task involving human-robot interaction.
The most relevant limitation in the use of the implemented software is due to fact that
the package for 3d detections cannot deal with occlusions.

Finally, we have made a user guide of the ROS packages implemented, to facilitate
their utilization to potential users.

95

Bibliography

1]

2]

13]

4]

[5]

[6]

7]

8]

19]

[10]

[11]

M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose estimation:
New benchmark and state of the art analysis. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3686-3693, 2014.

Miguel Arduengo. ROS Wrapper for Real-Time Multi-Person Pose Estimation with
a Single Camera. https://github.com/MiguelARD/openpose_ros-1, 2017.

Miguel Arduengo, Guillem Alenya, and Frances Moreno-Noguer. Database for 3d
human pose estimation from single depth images. Technical report, IRI-TR-16-05,
Institut de Robotica i Informatica Industrial, 2016.

F. Bogo, A. Kanazawa, C. Lassner, P. Geher, J. Romero, and M. J. Black. Keep it
smpl: Automatic estimation of 3d human pose and shape from a single image. In
EECYV, 2016.

E. Brau and H. Jiang. 3d human pose estimation via deep learning from 2d annota-
tions. In Fourth International Conference on 3D Vision, 2016.

Martin Bunger. Evaluation of skeleton trackers and gesture recognition for human-
robot interaction. Technical report, Master Thesis, Aalborg University, 2013.

Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person 2d pose estim-
ation using part affinity fields. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

A. Haque, B. Peng, Z. Luo, A. Alahi, S. Yeung, and L. Fei-Fei. Towards viewpoint
invariant 3d human pose estimation. In Furopean Conference on Computer Vision
(ECCV), October 2016.

J. Huang and D. Altamar. Pose estimation on depth images with convolutional
neural network. Report, Stanford University, 2016.

Y.-Q. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding.

In Proceedings of the 22nd ACM International Conference on Multimedia, pages
675-678, 2017.

Steven Jens M. Jorgensen. Human detection, gesture recognition and policy gener-
ation for human-aware robots. Technical report, Master Thesis, The University of
Texas at Austin, 2016.

o6

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]
[22]

23]

[24]

[25]

Lentin Joseph. Mastering ROS for Robotics Programming. Packt Publishing Ltd.
Birmingham, UK, 2015.

J. Martinez, R. Hossain, J. Romero, and J.J. Little. A simple yet effective baseline
for 3d human pose estimation. arXiv preprint arXiv:1705.03098, 2017.

D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.-P. Seidel, W. Xu,
D. Casas, and C. Theobalt. Vnect: Real-time 3d human pose estimation with a
single rgb camera. In ACM TOG (SIGGRAPH), 2017.

C. Menier, E. Boyer, and B. Raffin. 3d skeleton-based pose body recovery. In
Proceedings of 3rd International Symposium 3D Data Processing, Visualization and
Transmission, pages 389-396, 2006.

A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose
estimation. In Furopean Conference on Computer Vision (ECCV), 2016.

X. Perez-Sala, S. Escalera, C. Angulo, and J. Gonzalez. A survey on model based
approaches for 2d and 3d visual human pose recovery. Sensors, 14, 2014.

Aleix Ripoll Ruiz. Object recognition and grasping using bimanual robot. Technical
report, Master Thesis, Escola Tecnica Superior d’Enginyeria Industrial Barcelona,
Universitat Politecnica de Catalunya, 2016.

A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi. An atlas of physical human-
robot interaction. Mechanism and Machine Theory, 43:253-270, 2008.

J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook,
and R. Mooore. Real-time human pose recognition in parts from single depth images.
Mechanism and Machine Theory, 56:116—124, 2013.

L. Sigal. Human pose estimation. Encyclopedia of Computer Vision, Springer, 2011.

E. Simo-Serra, A. Quattoni, C. Torras, and F. Moreno-Noguer. A joint model for 2d
and 3d pose estimation from a single image. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2013.

T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint detection in single
images using multiview bootstrapping. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

D. Tome, C. Russell, and L. Agapito. Lifting from the deep: Convolutional 3d pose
estimation from a single image. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose ma-
chines. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

o7

