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This paper presents the results of applying the Iterative Learning Control algorithms to a Twin-Rotor Multiple-Input Multiple-
Output System (TRMS) in order to achieve high performance in repetitive tracking of trajectories. The plant, which is similar to
a prototype of helicopter, is characterized by its highly nonlinear and cross-coupled dynamics. In the first phase, the system is
modelled using the Lagrangian approach and combining theoretical and experimental results. Thereafter, a hierarchical control
architecture which combines a baseline feedback controller with an Iterative Learning Control algorithm is developed. Finally, the
responses of the real device and a complete analysis of the learning behaviour are exposed.

1. Introduction

As a result of the development of modern society and its
technology, control problems have become quite common in
practically all engineering areas. In industry, control systems
can be found in numerous applications such as automa-
tion, robotics, machine tool control, transportation systems,
chemical processing, and medical engineering. The need of
efficient control systems has led to the appearance and devel-
opment of new branches among classical control, for exam-
ple, adaptive control, optimal control, neural network, or
intelligent control.

Iterative learning control (ILC), which has been cate-
gorized as an intelligent control methodology [1–6], is an
approach for improving the performance of systems that
operate repetitively. This area in control theory is based on
the idea that the performance of a system that executes
the same task multiple times can be improved by learning
from previous executions [5]. For such systems, a controller
designed using the classical tools is supposed to yield the
same tracking error on each iteration because it only uses
information provided by the current error. The objective of

ILC is to improve performance by storing error information
from previous iterations and incorporating it into the control
signals for subsequent iterations. By doing so, high perfor-
mance can be achieved with low transient tracking error
despite model uncertainty and repeating disturbances [5].

ILC has been applied to nonlinear system employ-
ing neural networks [7] and fuzzy strategies [8], using
an inverse identification procedure [5] and with iteration-
varying parameters [9]. A case for nonaffine MIMO systems
is presented in [10] with a combination of linear and non-
linear ILC. As it can be seen, all these approaches use rather
complex strategies to accomplish the repetitive task and the
nonlinear plant model at the same time.

In this work, a Twin-Rotor plant has been used as the
study case, a standard didactic device for control experi-
ments. This laboratory setup, which is similar to a model
of a helicopter, has attracted a great attention during the
last decades due to its highly nonlinear and cross-coupled
dynamics. Being seen as a challenging engineering problem,
the Twin Rotor has been widely used as an experimentation
platform in research projects [11–16] as well as inMS and PhD
theses [17] to validate different types of control algorithms.
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Several approaches to the tracking problem in the Twin-
Rotor system can be found in recent literature. Among them,
in [18], a fuzzy-PID strategy is proposed and, in [19], a
Model Predictive Control is used, while, in [20, 21], the
controller is based on a sliding mode strategy and, in [22],
a dynamic surface controller is proposed. Recently, an ILC
strategy combined with an online optimization algorithm
was implemented in [23] for the tracking trajectory of a
quadcopter. All these techniques show an important level of
complexity in order to achieve the desired performance.

In this paper, ILC has been successfully applied to a
Twin Rotor with the aim of reducing the tracking error. In
a first stage, two cascade PID loops are used as the baseline
controller. Although many tuning procedures can be applied
[24], this classical controller is designed to provide stability
at the nominal operational point and also is constructed with
enough stability margins to guarantee the stable operation
of the plant in a large interval around this point. Under
this concept, the PI controller cannot offer good tracking of
the repetitive task. Therefore an ILC strategy is then added
to deal with the tracking performance. In this manner, the
inherent robustness of the ILC combined with the selected
baseline controller makes this approach a particularly simple
and effective way of obtaining good tracking response to
repetitive tasks in the Twin-Rotor system. The advantage of
the proposed strategy relies on its simple structure compared
with other proposals applied to nonlinear plants and also for
the specific Twin-Rotor plant with repetitive tasks. Experi-
mental results show the excellent tracking properties of the
proposed strategy. Analysis of ILC tuning parameters and
their influence on tracking performance is discussed.

The present paper is organized as follows. Section 2
describes the Twin Rotor and presents its dynamic model
developed using the Lagrangian approach. Sections 3 and
4 present the control architecture designed in this work,
which combines a baseline feedback controller with an ILC
algorithm. The baseline controller, as explained in Section 3,
consists of two cascade control loops: the inner one is
governed by two PI type controllers that adjust the rotational
speed of the main and the tail rotors, while the outer one is
governed by two PID type controllers which are intended to
stabilize the plant around a wide range of operating points.
The ILC algorithm, which is described in Section 4, has
been implemented in order to achieve high performance in
periodic reference tracking. The responses of the real device
and the experimental results are illustrated in Section 5.
Finally, conclusions are drawn in Section 6.

2. The Twin Rotor

The Twin-Rotor MIMO System (TRMS), shown in Figure 1,
is a laboratory setup developed by Feedback Instruments Ltd.
[25, 26] for control experiments. It is a mechanical system
formed by a beam that can rotate freely in both the vertical
and the horizontal planes bymeans of two joints placed on its
centre. The beam is driven by two perpendicular propellers
located at its ends and actuated by DC motors. The body
of the Twin Rotor is completed by a counterbalance beam
perpendicularly fixed on the main beam’s centre. The larger
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Figure 1: Twin-Rotor MIMO System [25].

propeller with vertical axis is called the main rotor, and the
half of the beam to which it is attached is called the main
beam.The second propeller and its corresponding half of the
beam are called the tail rotor and the tail beam, respectively.
Although the Twin Rotor has a similar structure to that of
a helicopter, the pitch angles of its rotating blades are fixed.
Thus, the aerodynamic forces are not controlled by changing
the orientation of the blades, as it is usual in conventional
helicopters, but by changing the rotational speed of the rotors.
The system inputs are then the tension values provided to the
DC motors.

To describe the dynamics of the Twin Rotor, the following
state vector has been chosen:

x = [q
𝜃
] = [[[[[[

𝑞V𝑞ℎ𝜃𝑡𝜃𝑚
]]]]]]
,

ẋ = [q̇
𝜔
] = [[[[[[

̇𝑞V̇𝑞ℎ𝜔𝑡𝜔𝑚
]]]]]]
,

(1)

where 𝑞V denotes the pitch angular position, 𝑞ℎ the yaw
angular position, 𝜃𝑡 the angular position of the tail rotor, and𝜃𝑚 the angular position of themain rotor. Together with these
state variables, a set of coordinate systems has been defined in
order to describe the dynamical laws of the device, as shown
in Figure 2.

Since the Twin Rotor is fundamentally a mechanical sys-
tem, its equations of motion can be obtained directly through
an energetic formulation based on the Euler-Lagrange equa-
tions [12, 13, 16]. For that, it is necessary to calculate the
kinetic energy 𝑇(x, ẋ) and the potential energy 𝑈(x) of its
moving parts.
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Figure 2: State variables and coordinate systems.

From the kinetic and the potential energies, Lagrangian𝐿(x, ẋ, 𝑡) = 𝑇(x, ẋ, 𝑡) − 𝑈(x) is directly obtained and finally
the equations of motion can be derived:

𝑑𝑑𝑡 (𝜕𝐿𝜕ẋ) − 𝜕𝐿𝜕x = F, (2)

where F denotes the external forces.
It can be proved that, expanding these expressions, the

equations of movement take the final form:

M (x) ẍ + c (x, ẋ) + g (x) = F, (3)

being M(x) ∈ R4×4 the inertia tensor, c(x, ẋ) ∈ R4 the
term related to the Coriolis forces, and g(x) ∈ R4 the term
associated with the potential energies (gravity).

This equation can be decomposed in its components:

[ Mq (q) Mq,𝜃 (q)
Mq,𝜃 (q)𝑇 M𝜃

][q̈
𝜔̇
] + [cq (q, q̇,𝜔)

c𝜃 (q, q̇) ]
+ [gq (q)

0
] = [Fq

F𝜔
] .

(4)

Note that theMq,𝜃(q) terms take the following form:

[𝐽tr 00 𝐽mr cos 𝑞V] , (5)

where 𝐽tr and 𝐽mr are the tail and main rotor masses. In this
type of systems, these two terms are considerably smaller
than the masses of the other elements. Consequently, the
simplificationMq,𝜃(q) ≈ 0 is usually assumed, which leads to
a resultant decoupled system formed of two subsystems. On
the one hand, we have a simplifiedmodel which describes the
dynamics of the mechanical system:

Mq (q) q̈ + cq (q, q̇,𝜔) + gq (q) = Fq (6)

and, on the other hand, we have the model which describes
the rotational dynamics of the propellers:

M𝜃𝜔̇ + c𝜃 (q, q̇) = F𝜔. (7)

In the first case (see (6)), the external forces Fq can be
divided into two terms. The first one is related to friction in
the joints (a linear model is assumed) and the second one
is referred to the resultant propulsion forces exerted by the
propellers:

Fq = −Bqq̇ + 𝛾q (q,𝜔) . (8)

In thiswork,Bq and𝛾q have been experimentally determined.
In the second case (see (7)), the external forces F𝜔 can be

also decomposed in two parts. The first one is due to friction
between the air and the blades of the propellers, while the
second one is the torque exerted by the corresponding DC
motors:

F𝜔 = −B𝜔𝜔 + 𝜙𝜔 (k) , (9)

where k denotes the voltage applied to the propellers’ motors.
As before, B𝜔 and 𝜙𝜔 have been experimentally determined.

3. Baseline Controller

Thecontrol system that is proposed in this paper is based on a
strategy known as Current-Iteration Iterative Learning Con-
trol, which is described in [5] as a method for incorporating
a baseline feedback controller with ILC algorithms.

Figure 3 shows the complete control scheme that has
been developed. Note that all of its branches correspond to
two-dimensional signals. Subscripts 𝑗 are used to indicate
the iteration number (these indicators are needed because
learning is achieved by repeating the same task multiple
times). Thus, in an iteration 𝑗, qdes = (𝑞desV , 𝑞desℎ ) is the
reference trajectory, uj = (𝑢V,𝑗, 𝑢ℎ,𝑗) are the signals provided
by the ILC algorithm, ej = (𝑒V,𝑗, 𝑒ℎ,𝑗) are the pitch and yaw
position errors, Γdes𝑗 = (ΓdesV,𝑗 , Γdesℎ,𝑗 ) are the desired torques in
the TRMS’s articulations, 𝜔des𝑗 = (𝜔des

𝑚,𝑗, 𝜔des
𝑡,𝑗 ) are the desired

rotational speed of the rotors, Vj = (𝑉𝑚,𝑗, 𝑉𝑡,𝑗) are the voltage
levels applied to the DCmotors, and qj = (𝑞V,𝑗, 𝑞ℎ,𝑗) and 𝜔𝑗 =(𝜔𝑚,𝑗, 𝜔𝑡,𝑗) are, respectively, the measured angular positions
of the TRMS body and the measured rotors’ speed.

As shown in Figure 3, the control system can be divided
into two main parts: the baseline feedback controllers and
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Figure 3: General control scheme.

the learning algorithm. This section focuses on the baseline
control architecture, which its main goal is to assure a
stable behaviour of the plant in a wide range of operating
points. Issues related to the ILC algorithm will be detailed in
Section 4.

In this work, the baseline control scheme is composed
by two cascade feedback loops. Similar hierarchical control
structures have been proposed in some reference papers
[12, 14, 17]. As a starting point, it is important to distinguish
between the external and the inner loops (see Figure 3).

The external control loop, namely, the position control
loop, is governed by two linear PID type controllers that
have been designed to stabilize the plant around the (0, 0)
operating point. The stability in other point has been tested
through a robust stability test (assuming the plant variation in
different equilibrium point as uncertainty). These controllers
provide the reference torques that have to be applied on the
pitch and yaw angles to reach the desired position.

The inner loop, namely, the rotors’ speed control loop,
is governed by two linear PI type controllers that adjust the
rotational speed of the rotors to reach the desired position.
It is preceded by a computational block that calculates the
desired rotors’ speed from the reference torques provided by
the position controllers, that is, function 𝜔des

𝑖 (Γdes𝑖 ), which is
shown in Table 3.

3.1. Rotors’ Speed PI Controllers Design. As it has been already
introduced, the goal of the rotor’s speed controllers is to adjust
the rotational speed of the propellers to a desired velocity in
a fast and proper way.

To apply classical controller design methods, the DC
motors dynamics have been modelled as first-order sys-
tems plus nonlinear static characteristics which establish

a relationship between the control inputs 𝑉𝑖 and the rotating
speed 𝜔𝑖 of the propellers:

𝑊𝑖 (𝑠) = 𝐾𝑖1 + 𝜏𝑖 ⋅ 𝑠 ⋅ 𝑊𝑟𝑝,𝑖 (𝑉𝑖 (𝑠)) , (10)

where 𝐾𝑖 is the gain, 𝜏𝑖 is the time constant of the sys-
tem, 𝑊𝑖(𝑠) and 𝑊𝑟𝑝,𝑖(𝑉𝑖(𝑠)) are the Laplace transforms of𝜔𝑖 and 𝜔𝑟𝑝,𝑖(𝑉𝑖), respectively. These parameters have been
experimentally determined together with the 𝜔𝑟𝑝,𝑖(𝑉𝑖) static
characteristic for each DC motor.

To control the DC motors by means of reference velocity
signals, the inverse static characteristics 𝑉𝑖(𝜔𝑟𝑝,𝑖) can be used
as shown in Figure 4 so that the behaviour of the resulting
system is that of a linear first-order system:

𝑊𝑖 (𝑠) = 𝐾𝑖1 + 𝜏𝑖 ⋅ 𝑠 ⋅ 𝑊𝑟𝑝,𝑖 (𝑉𝑖 (𝑊𝑑𝑖 (𝑠)))
≈ 𝐾𝑖1 + 𝜏𝑖 ⋅ 𝑠𝑊𝑑𝑖 (𝑠) .

(11)

Therefore, linear controllers can be designed using classi-
cal control strategies. For the purposes of thiswork, two linear
PI controllers have been implemented to guarantee a fast and
nonoscillatory response of the DCmotors.The gains of these
controllers have been tuned to stabilize the response in less
than 2 seconds. Table 1 shows the PI controller values.

It is important to point out that the rotors’ speed is
measured by encoders. Encoders quantification generates
similar effect to that of a noise into the control system.
What is more, the noise is amplified as the rotational speed
increases (see Figures 5 and 6). This phenomenon has had to
be taken into account in the design of the control architecture,
because the ILC algorithms are highly sensitive to noise. So,
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Table 1: Speed controller values.

Motor Main Tail𝐾𝑝 2.427 1.600𝐾𝑖 2.445 3.682

𝑉𝑖(𝜔𝑟𝑝,𝑖)
7.8762 ⋅ 10−13𝜔7𝑚 −3.7020 ⋅ 10−12𝜔6𝑚 −5.0381 ⋅ 10−9𝜔5𝑚 +9.3735 ⋅ 10−9𝜔4𝑚 +1.6150 ⋅ 10−5𝜔3𝑚 −7.1247 ⋅ 10−6𝜔2𝑚 +0.0084𝜔𝑚 − 0.0293

5.4367 ⋅ 10−13𝜔7𝑡 +3.8501 ⋅ 10−12𝜔6𝑡 −4.2122 ⋅10−9𝜔5𝑡 −1.6967 ⋅10−8𝜔4𝑡 + 1.3784 ⋅10−5𝜔3𝑡 +7.4374⋅10−5𝜔2𝑡 +0.0241𝜔𝑡 + 0.0580
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Figure 5: Simulated and real response of the main rotor’s control
loop.

to minimize the noise introduced by the encoders, two FIR
filters with a bandwidth of 250Hz have been placed in the
feedback loops as shown in Figure 4.

Figures 5 and 6 show the performance of the main and
tail rotors’ speed control loops for step signals after all its
parameters have been tuned.

3.2. PID Position Controllers Design. As described in Sec-
tion 2, the Twin Rotor has nonlinear dynamic equations. To
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Figure 6: Simulated and real response of the tail rotor’s control loop.

design linear PID controllers on the system, these equations
have been linearised in the state-space formulation around
the (0, 0) point. Designing linear controllers using this strat-
egy is justified for controlling nonlinear systems that work
around an operation point. In this case, the main goal is not
to achieve very good performance with these controllers but
stabilize the system in a wide enough workspace.

From (6) and (8), the nonlinear model results are as
follows:

ẋ = [ q̇

M (q)−1 [𝛾 − Bq̇ − c (q, q̇) − g (q)]] ,
y = q,

(12)

where

M (q) = [ 𝑀𝑞,11 𝑀𝑞,12 (𝑞V)𝑀𝑞,12 (𝑞V) 𝑀𝑞,22 (𝑞V)] ,
c (q, q̇) = [ 𝑐𝑞,1 (𝑞V) ̇𝑞2ℎ𝑐𝑞,12 (𝑞V) ̇𝑞V ̇𝑞ℎ + 𝑐𝑞,2 (𝑞V) ̇𝑞2V] ,
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Table 2: Speed controller values.

Term Value Units𝑀𝑞,11 0.0349 kg⋅m2𝑀𝑞,12(𝑞V) −2.8218 ⋅ 10−4 sin(𝑞V) + 5.0500 ⋅ 10−4 cos(𝑞V) kg⋅m2𝑀𝑞,22(𝑞V) 0.0233 cos2𝑞V + 0.0089 kg⋅m2𝑐𝑞,1(𝑞V) 0.0233 cos(𝑞V) sin(𝑞V) kg⋅m2𝑐𝑞,12(𝑞V) −0.0466 cos(𝑞V) sin(𝑞V) kg⋅m2𝑐𝑞,2(𝑞V) −2.8218 ⋅ 10−4 sin(𝑞V) − 5.0500 ⋅ 10−4 cos(𝑞V) kg⋅m2𝑔𝑞,1(𝑞V) 0.1982 sin(𝑞V) + 0.1547 cos(𝑞V) N⋅m𝑔𝑞,2(𝑞ℎ) 0.0075(𝑞ℎ − 1.455) N⋅m𝐵𝑞,11 0.0016𝐵𝑞,22 0.009

g (q) = [𝑔𝑞,1 (𝑞V)𝑔𝑞,2 (𝑞ℎ)] ,
B = [𝐵𝑞,11 00 𝐵𝑞,22] ,

(13)

with x = [𝑞V 𝑞ℎ ̇𝑞V ̇𝑞ℎ]𝑇 and q = [𝑞V 𝑞ℎ]𝑇. Numerical
values of these matrices are shown in Table 2. In this manner,
the linearised system around the equilibrium point q = (0, 0)
is obtained:

ẋ = [[[[[[

0 0 1 00 0 0 1−5.6825 0.0034 −0.0459 0.00410.0892 −0.2333 0.0007 −0.2799
]]]]]]
x

+ [[[[[[

0 00 028.6760 −0.4503−0.4503 31.1042
]]]]]]
Γ

y = [1 0 0 00 1 0 0] x.

(14)

To design the position control loop, control actions in
the pitch and yaw angles have been considered separately.
Thus, two decoupled PID controllers have been implemented:
the first one adjusts the desired torque in the pitch angle
according to the pitch position error (design based on transfer
function from first input to first output of the linearised plant
model), whereas the second one sets the desired torque in the
yaw angle depending on the yaw position error (design based
on transfer function from second input to second output of
the linearised plant model). See PID values on Table 3.

Once the desired torque is obtained, the propulsion force
is calculated as follows:

[𝑇des
𝑚𝑇des
𝑡

]
= [ 𝐿𝑚 𝑘𝑡−𝐿𝑑 sin 𝑞V − 𝑘𝑚 cos 𝑞V 𝐿 𝑡 cos 𝑞V]

−1 [Γdes𝑚Γdes𝑡 ] ,
(15)

where 𝐿𝑚 = 0.24m, 𝐿 𝑡 = 0.25m, and 𝐿𝑑 = 0.025m
are the distances shown in Figure 2, 𝑘𝑚 = 0.0235 and𝑘𝑡 = 0.02 are the constants that relate the reactive torques
of propellers, 𝑄𝑖, and the propulsion forces 𝑇𝑖, which are
obtained experimentally. Finally, to obtain the desired speeds
of themotors, the functions that relate the desired propulsion
forces and rotor speeds have been derived experimentally and
are presented in Table 3.

As with the rotors’ speed, the pitch and yaw angles are
measured by encoders which add noise into the system. To
avoid problems with the control signals, introducing two FIR
filters with a bandwidth of 250Hz in the position feedback
loops is needed (see Figure 3).

Figure 7 shows the step response of the baseline control
architecture after it has been implemented on the real device.
Additional experiments have demonstrated that the PID
controllers are capable of stabilizing the TRMS body in a
wide set of positions around the (0, 0) point. However, to deal
with nonlinearities and avoid abrupt oscillations during the
transient period, they have been tuned to make the system’s
response quite slow (note that the plant’s desired position
is reached after approximately 30 seconds). Consequently,
only with these controllers, good reference tracking cannot
be achieved. Table 3 shows the PID controller values together
with the propulsion forces-speed function.

4. ILC Algorithm

Once a stable behaviour is guaranteed, the ILC algorithm can
be implemented to achieve higher performance in reference
tracking. This section explains the basic concepts of the ILC
laws and describes the structure of the learning algorithm
that has been implemented together with the baseline control
architecture.

As an introduction to the formulation of the ILCproblem,
consider a discrete-time, linear time-invariant SISO system:

𝑦𝑗 (𝑘) = 𝑃 (q) 𝑢𝑗 (𝑘) + 𝑑 (𝑘) , (16)

where 𝑘 is the time index, 𝑗 is the iteration index, q is the
forward time-shift operator q𝑥(𝑘) = 𝑥(𝑘+1), 𝑦𝑗 is the output,𝑢𝑗 is the control signal, and 𝑑 represents a disturbance that
repeats each iteration. The plant 𝑃(q) has a relative degree of𝑚 and is assumed to be asymptotically stable (or stabilized
by a feedback controller, as in this case). In addition, initial
conditions are assumed to be the same on each trial.

The performance will be measured through the error
signal defined by 𝑒𝑗(𝑘) = 𝑦𝑑(𝑘) − 𝑦𝑗(𝑘), being 𝑦𝑑(𝑘) the
desired system output. Thus, the objective of the ILC is to
infer a control signal 𝑢∗(𝑘), 𝑘 ∈ [0,𝑁 − 1], by evaluating the



Mathematical Problems in Engineering 7

Table 3: Position controller values.

Motor Main Tail𝐾𝑝 0.0250 0.0250𝐾𝑖 0.0350 0.0030𝐾𝑑 0.0250 0.0250

𝜔des
𝑖 (𝑇des
𝑖 ) −8.7395𝑇𝑚 + 69.0628√𝑇𝑚, 𝑇𝑚 ≥ 0−36.7207(−𝑇𝑚) − 60.9066√−𝑇𝑚, 𝑇𝑚 < 0

−5.9652𝑇𝑡 + 96.9668√𝑇𝑡, 𝑇𝑡 ≥ 0
68,2969(−𝑇𝑡) − 126,0478√−𝑇𝑡, 𝑇𝑡 < 0
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Figure 7: Step response (qdes = (0, 0)) of the position control loop on the TRMS.

error 𝑒𝑗 in the interval 𝑘 ∈ [𝑚,𝑁 + 𝑚 − 1] and updating
the next iteration control signal 𝑢𝑗+1(𝑘) accordingly. Note
that discrete time is the natural domain for ILC because it
explicitly requires the storage of past-iteration data, which is
typically sampled.

A widely used ILC learning algorithm [5] is

𝑢𝑗+1 (𝑘) = 𝑄 (q) [𝑢𝑗 (𝑘) + 𝐿 (q) 𝑒𝑗 (𝑘 + 1)] , (17)

where the LTI dynamics 𝑄(q) and 𝐿(q) are defined as the 𝑄-
filter and learning function, respectively.

At this point, it should be noted that the ILCobjective is to
generate an open-loop signal that inverts the plant’s dynamics
and is capable of compensating periodic disturbances and
getting good reference tracking. Ideally, ILC learns only from
repetitive disturbances, but it does not provide any feedback
mechanism to react to noise or unanticipated, nonperiodic
disturbances [5]. Consequently, a feedback controller com-
bined with an ILC algorithm is used in this work to achieve
robustness and higher performance. The complete control
structure in Figure 3, as explained in the previous section,
shows the simultaneous implementation of both feedback
and ILC strategies.

To implement an ILC algorithm in the TRMS control
scheme, one of the most popular design techniques has been
used: the PD-type learning function, which consists of a
proportional and derivative gain on the error.This is probably

the most widely used type of learning function so far. In the
particular case of nonlinear systems, like the Twin Rotor, this
learning function is well suited because it does not require
extensive analysis nor plant modelling to be applied [5]. The
integrator is rarely used for learning functions because ILC
has a natural integrator action from one trial to the next.

The discrete-time, PD-type learning function applied to a
SISO system can be written as follows:

𝑢𝑗+1 (𝑘) = 𝑄 (q)
⋅ [𝑢𝑗 (𝑘) + 𝑘𝑝𝑒𝑗 (𝑘 + 1) + 𝑘𝑑 (𝑒𝑗 (𝑘 + 1) − 𝑒𝑗 (𝑘))] , (18)

where 𝑘𝑝 is the proportional gain and 𝑘𝑑 is the derivative gain.
In the case of the TRMS, as it is a MIMO system with two

input and two output signals, the learning function takes the
following form:

[𝑢𝑞V ,𝑗+1 (𝑘)𝑢𝑞ℎ,𝑗+1 (𝑘)] = [
𝑄𝑞V (q) 00 𝑄𝑞ℎ (q)]([

𝑢𝑞V ,𝑗 (𝑘)𝑢𝑞ℎ,𝑗 (𝑘)]
+ [𝑘𝑝,𝑞V 00 𝑘𝑝,𝑞ℎ][

𝑒𝑞V ,𝑗 (𝑘 + 1)𝑒𝑞ℎ ,𝑗 (𝑘 + 1)]
+ [𝑘𝑑,𝑞V 00 𝑘𝑑,𝑞ℎ][

𝑒𝑞V ,𝑗 (𝑘 + 1) − 𝑒𝑞V ,𝑗 (𝑘)𝑒𝑞ℎ ,𝑗 (𝑘 + 1) − 𝑒𝑞ℎ ,𝑗 (𝑘)]) .
(19)
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Figure 8: Transient behaviour and asymptotic performance for 𝑃 gains tuning, with 𝑘𝑑,𝑞V = 𝑘𝑑,𝑞ℎ = 0 and 𝑄-filters bandwidths set to 0,1 Hz.
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Figure 9: Transient behaviour and asymptotic performance for 𝐷 gains tuning, with 𝑘𝑝,𝑞V = 1, 𝑘𝑝,𝑞ℎ = 0,75 and 𝑄𝑞V , 𝑄𝑞ℎ filters bandwidths
set to 0,2Hz and 0,15Hz, respectively.

Although it is not strictly necessary in this type of learning
functions, including a low-pass 𝑄-filter is usually favourable
to achievingmonotonic convergence because it can be used to
disable learning at high frequencies [5]. The 𝑄-filter also has
the benefits of added robustness and high-frequency noise
filtering.

The gains of the PD-type learning function have been
tunedwith the aimof achieving both good learning transients
and low error. For each set of gains 𝑘𝑝 and 𝑘𝑑, the learning
has been reset and run in simulation for sufficient iterations
to determine the transient behaviour and asymptotic error.
Initially, the learning gains and filter bandwidth have been

set low. After a stable baseline transient behaviour and
error performance have been obtained, the gains and the
bandwidth have been increased. As shown in Figures 8, 9,
and 10, experiments have demonstrated that the learning
gains influence the rate of convergence, whereas the 𝑄-filter
influences the converged error performance.

More specifically, plots in Figures 8 and 9 show that
increasing the proportional and derivative learning gains
makes the error converge in fewer iterations. However,
if the gains are set too high, the learning transients do
not converge monotonically and can lead to problems of
stability.
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Figure 10: Transient behaviour and asymptotic performance for 𝑄-filters bandwidths tuning (where 𝐹𝑐 is the cutoff frequency), with the
following PD learning gains: 𝑘𝑝,𝑞V = 1, 𝑘𝑝,𝑞ℎ = 0,75, and 𝑘𝑑,𝑞V = 𝑘𝑑,𝑞ℎ = 0.

Pitch angle

Reference
PID control
PID+ILC control

Reference
PID control
PID+ILC control

Yaw angle

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

A
ng

ul
ar

 p
os

iti
on

 q
v (

ra
d)

−1

−0.5

0

0.5

1

1.5

2

A
ng

ul
ar

 p
os

iti
on

 q
h 

(r
ad

)

20 40 60 80 1000
Time (s)

20 40 60 80 1000
Time (s)

Figure 11: Tracking results with and without ILC on the TRMS.

In addition, plots in Figure 10 show that the 𝑄-filter has
little effect on the convergence rate of the error but instead
primarily determines the magnitude of the converged error
and stability of the system. Although increased bandwidth
improves the error, too high bandwidth will result in tran-
sients that do not converge monotonically.

In the field of ILC, a practical stability condition is to
achieve good learning transient behaviour, which is defined
as monotonic convergence [5]. Furthermore, when robust-
ness is considered, model uncertainty and noise lead to limi-
tations on the performance of LTI learning algorithms. So, as
the real device is affected by noise and high nonlinearities,

the learning gains and the 𝑄-filter bandwidths have been
selected in a conservative way to guarantee the stability of the
complete system.

5. Experimental Results

In this section, the results from the experimental application
of the ILC algorithm to the TRMS are exposed.

To test the ILC law, a fifth-order polynomial trajectory
has been set as the tracking reference. Figure 11 shows a
comparison between the followed trajectory without ILC
(first trial) and after 20 learning iterations. Note that the



10 Mathematical Problems in Engineering

Evolution of the error on the pitch angle qv Evolution of the error on the pitch angle qv

5 10 15 200
Iteration number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
ax

 er
ro

r (
ra

d)

5 10 15 200
Iteration number

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
RM

S 
er

ro
r (

ra
d)

Figure 12: Transient behaviour and asymptotic performance on pitch angle of the TRMS.
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Figure 13: Transient behaviour and asymptotic performance on the yaw angle of the TRMS.

feedback controllers show a lagged response, whereas the ILC
algorithm increases considerably the system’s performance by
achieving nearly perfect tracking.

The error on each axis is calculated as the difference
between the reference and obtained angle at given instant 𝑘
and iteration 𝑗, resulting in

𝑒V,𝑗 (𝑘) = 𝑞V,des (𝑘) − 𝑞V, 𝑗 (𝑘) ,
𝑒ℎ,𝑗 (𝑘) = 𝑞ℎ,des (𝑘) − 𝑞ℎ, 𝑗 (𝑘) . (20)

After that, the root mean square (RMS) and maximum error
are calculated for each axis 𝑖 = {V, ℎ} and each iteration 𝑗 as
follows:

𝐸RMS
𝑖,𝑗 = √ 1𝑁

𝑁∑
𝑘=1

𝑒𝑖,𝑗 (𝑘),
𝐸max
𝑖,𝑗 = max

𝑘
(𝑒𝑖,𝑗 (𝑘)) .

(21)

Thus, Figures 12 and 13 show the transient learning behaviour
by capturing the RMS and the maximum tracking errors on
each iteration in the pitch and yaw angles, respectively. Note
that initial errors decrease rapidly during the first iterations,
so that the learning process converges in approximately six
trials. In addition,monotonic convergence is achieved, which
is fundamental to assure the stability of the ILC law.

From these results, the ability of the ILC algorithm
to reduce tracking errors has been analysed. For that, the
following expression,

% Δ𝑝error = 𝐸
𝑝
𝑖,0 − (1/15)∑20𝑗=6 𝐸𝑝𝑖,𝑗𝐸𝑝𝑖,0 ⋅ 100,

𝑝 = {RMS,max} ,
(22)

has been used to calculate the percentage difference between
the initial error and the mean of the errors after learning has
converged.
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Note that the 𝐸𝑖,𝑗 variables in expression (22) denote the
RMS error or the maximum absolute error, depending on the
case, in the corresponding axis with 𝑖 = {V, ℎ} and in the 𝑗
iteration. It is important to distinguish them from 𝑒𝑗 variables
used in this paper to denote the tracking error vector on each
trial.

After applying (22) to experimental results, it follows that,
with the ILC algorithm, RMS errors are reduced by 91,83%
in the pitch angle and a 71,62% in the yaw angle. Similarly,
maximum absolute errors are reduced by 86,78% in the pitch
angle and 68,19% in the yaw angle.

6. Conclusions

This paper has presented the implementation of an ILC
algorithm to achieve high performance in trajectory tracking
with a Twin Rotor, a mechanical system characterized by
its nonlinear and cross-coupled dynamics. As any control
problem, the initial phase has been focused on obtaining an
accuratemodel of the system’s behaviour. For that, a complete
simulator of the TRMS’s dynamics has been developed using
the Lagrangian formulation and adjusting its parameters
experimentally. This model has been used to design a feed-
back control system with the aim of stabilizing the TRMS’s
body in different operation points. Finally, a PD-type learning
function based on the principles of the ILC has been tuned
and implemented together with the feedback controllers.The
efficiency of the complete control system has been tested
on both the simulation model and the real device and has
demonstrated the capability of ILC algorithms to improve the
performance of systems that operate in a repetitive way.
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