
Planning clearing actions
in cluttered scenes

by phasing in geometrical constraints 1

Nicola COVALLERO a David MARTÍNEZ a Guillem ALENYÀ a,2, and
Carme TORRAS a

a Institut de Robotica i Informàtica Industrial, CSIC-UPC

Abstract. Manipulation planning of cluttered objects involves a mixture

of symbolic and geometric constraints which makes such planning very
time consuming and often unsuitable for real applications. We propose

to divide the geometric restrictions in two groups. The ones in the first
group are used to generate a set of symbolic states used for planning.

The evaluation of the ones in the second group is delayed after planning,

and only relevant ones are evaluated when necessary. We demonstrate
our proposal in a simple but effective implementation using pushing and

grasping actions.

1. Introduction

In this paper we explore how to combine symbolic planning with geometrical re-
strictions to perform robot table clearing tasks. This is a challenging problem be-
cause the robot will not be able to grasp directly most of the objects, as the pos-
sible trajectories will be blocked by other objects. In this scenario non-prehensile
actions are necessary in order to move the objects and grasp the desired ones.

We consider a real robot system with non-deterministic perceptions and im-
precise pushing and grasping actions. To solve this problem we propose to use
manipulation planning, which merges manipulation skills and planning to find
the sequences of actions to attain the goal. The difficulty of these problems lays
on the computational costs of considering a mixture of symbolic and geometric
restrictions, as the latter are very time-consuming. Therefore we propose an ap-
proach in which we plan symbolically to find the best sequence of actions given a
cost function. As planning symbolically is fast, but not all geometrical constraints
can be tackled within symbolic predicates, we delay the geometrical evaluation
after the plan is computed.

1This work has been supported by the MINECO project RobInstruct TIN2014-58178-R and
the ERA-Net CHIST-ERA project I-DRESS PCIN-2015-147.

2Corresponding Author: IRI, Llorens i Artigas 4-6, 08028 Barcelona, Spain; E-mail:

galenya@iri.upc.edu.



Many manipulation planning approaches, like aSyMov [1], assume that the
task can be treated as a geometric problem with the goal to place the objects in
their desired positions. Generally, hybrid planners that consider a combination
of symbolic predicates and geometric features usually require too much comput-
ing time even for slightly complex problems and could not be adapted to real
applications.

Similarly to ours, other approaches use a symbolic planner to tackle more
complex problems, and include geometrical restrictions separately. A recent alter-
native proposed by Msenlechner and Beetz [2] is to plan symbolically but evaluate
the plan geometrically with a simulator. The cost of this approach in cluttered
scenes can be very high.

Dogar and Srinivasa [3] use geometric planning to rearrange the objects that
are surrounding a target object. They can only consider goals with a single object;
in contrast, we provide a more complete symbolic planning approach that can find
the optimal sequence of actions to complete goals that involve a set of objects.

Recently, Laskey et al. [4] proposed a reactive strategy to push objects where
robot motion is learned using Learning from Demonstration. Using a different
approach but obtaining also complex pushing actions, King et al. [5] proposed to
embed the physical model into the motion planner to solve complex rearranging
problems. Our system can potentially use motions learned this way.

In this paper we propose a new system to compute the most convenient
plan (given a cost function) taking into account geometrical restrictions. To this
end, the states contain the symbolic information and the geometrical restrictions
that are easy to compute, and then the costly geometrical restrictions are only
considered in a lazy way. The system decides which objects to move or grasp,
the most convenient order and it handles the uncertainty of the outcomes by
replanning after each executed action. We also show that by combining pushing
and grasping actions we can solve complex tasks involving scenes with cluttered
objects, where finding a suitable plan is challenging. The performance of the
method is demonstrated by means of experiments with a real robot.

2. Planning with relational and reachability constraints

We propose to divide the geometric constraints in two groups: relational and
reachability. Relational geometric constraints are those generated between objects
when executing grasping or pushing operations. They are computed by simu-
lating pushing actions and checking all the collisions between objects, and also
simulating grasping actions and checking collisions between the robot and the
objects. Reachable constraints are generated when computing the robot motion
path, possibly taking into account obstacle avoidance.

The planning sequence is described in Alg. 1. We propose to embed the re-
lational and reachability constraints in the state definition and thus are tackled
naturally by the planner (see Sec. 2.1). After finding an initial plan without lim-
its regarding the reachability (line 1) the reachability constraints are evaluated.
If they can be fulfilled (line 4), the next action is executed (line 10); otherwise,
the state is updated accordingly and replanning is triggered (lines 5-6) to find



Algorithm 1 Planning iteration

Input: state
1: plan ← planning(state);
2: if hasSolution(plan) then
3: action ← IK(plan[0]); {Compute the IK of the first action of the plan}
4: while ¬isFeasible(action) and hasSolution(plan) do
5: state ← updateState(action);
6: plan ← planning(state);
7: action ← IK(plan[0]);
8: end while
9: if isFeasible(action) and hasSolution(plan) then

10: execute(action);
11: end if
12: end if

an alternative solution. In our implementation we validate only the robot inverse
kinematic (IK) for the next action as a proof-of-concept, but the same scheme
holds for more elaborated strategies, like using heuristics to compute only some
key actions [7], compute all actions [8], or use complex robot motion planners [9].

The planner used is the Fast Downward planner [10], a very well-known classic
one. This planner is feature-wise complete, stable and fast in solving planning
problems. The planning takes the state of the scene(Sec. 2.1) and uses the action
model (Sec. 2.2) to compute a plan. In our current implementation, the whole plan
until the goal is fulfilled is computed. If the plan cannot be found and replanning
is not effective, the system cannot continue. To overcome this limitation, sub-
goals [6] could be used to find a feasible sub-plan that allows the robot to continue
towards the goal.

It has been proved that for non-probabilistic interesting problems a well-
written replanner outperforms a well-written probabilistic planner [11]; this may
hold also for probabilistic interesting planning problems. Planning at a determin-
istic symbolic level makes the planning stage fast and this allows the system to
work efficiently both with replanning and backtracking. If an unexpected effect
happens it will be naturally considered in the next iteration, as we propose to
replan every time the state is updated, as has been demonstrated to be effective
for robotics applications [12].

2.1. State

The scene is described with symbolic predicates:

• (removed obj0): object obj0 has been grasped and removed from the
table.

• (on obj1 obj0): obj1 is on top of obj0.
• (block grasp obj1 obj0): obj1 prevents the robot to grasp obj0 because

the gripper would collide with obj1.
• (block push obj1 obj0 dir1): obj1 prevents the robot to push obj0

along the pushing direction dir1 because obj1 would collide either with
obj0 or with the end effector.



• (ik unfeasible push obj0 dir1): either the IK of the action which
pushes obj0 along pushing direction dir1 has no solution or obj0 would
be pushed outside the working space.

• (ik unfeasible grasp obj0): the IK of the action which grasps obj0 has
no solution.

2.2. Action Model

The action model consists of a set of rules that represent the actions. For simplicity
we have considered two actions with few parameters. This can be enlarged, for
example, by considering different grasping poses to grasp the same object, as well
as considering other actions like pull.

(grasp obj0)

The robot grasps obj0 and then drops it into a bin. In our implementation,
the robot grasps the object at its centroid and the orientation of the gripper
is computed accordingly to the principal components of the object, but general
grasping algorithms can be also considered instead [13].
Preconditions:

• no object stands on top of obj0 (if obj0 has objects on the top and the
robot would grasp obj0 the objects on the top would likely fall),

• no object collides with the gripper,
• the IK has solution.

Effects:

• obj0 is removed,
• obj0 no more impedes other objects to be pushed or grasped,
• obj0 is not on top of other objects.

Cost: The cost for the grasping action is 1.

(push obj0 dir1)

The pushing action consists of translating obj0 along pushing direction dir1

until it can be grasped. We simplify our implementation by considering only the
object’s principal axis projected onto the table plane and the axis orthogonal to
the principal one. In total there are 4 possible pushing directions per object, 2
per axis. The principal axis is computed using principal component analysis.
Preconditions:

• no object stands on top of obj0 (otherwise the objects on the top would
likely fall),

• obj0 does not stand on top of other objects (otherwise obj0 would likely
fall),

• when obj0 is pushed along dir1 no object collides with obj0 and with the
gripper,

• the IK has solution.

Effects:



(a) (b) (c) (d) (e)

Figure 1. Table clearing experiment. (a) 7 objects and superimposed labels. (b)(c)(d) and (e)
the robot is respectively executing the action (push obj6 dir1), (grasp obj6), (push obj2

dir1), (push obj1 dir1).

• obj0 no more blocks other objects from being pushed or grasped,
• the other objects no more block obj0 from being pushed or grasped,
• grasping obj0 is feasible (It is possible that obj0 cannot be grasped in a

certain pose, because the IK has no solution, but it could be moved in a
new pose in which it can be grasped).

Cost: Penalize actions with small collision free range that could result in collision
between the robot arm and the objects. In our implementation, the cost is defined
as a function of the minimum distance dmin between the end effector and the
other objects along the path of the action

c = dek(n−dmin)e

where k = 100 is the gain factor and n = 0.05 refers to the minimum distance, in
metres, to consider the pushing action safe. When dmin ≥ n the cost is 1.

3. Experiments

The system designed has been implemented using ROS on a Barrett WAM arm.
We present here a detail of the trace of one clearing trial for a scenario with 7
objects (Fig. 1) 3.

The setup of the experiment can be observed in Fig. 1a. It contains 7 objects
in a very close position. The next couple of images show an example of the strategy
of pushing an object to place it in a grasping-enabled position. The objective is
to grasp object 6. Figure 1b corresponds to the execution of a push action applied
to object 6. Observe that in its original position the object cannot be grasped
because the gripper would collide with object 3 and object 5. But after the push
action it becomes graspable (Fig.1c).

The next couple of images show a different strategy based on clear all the
clutter around an object. The objective is to grasp object 0, but observe that the
gripper can collide with object 1. The planner finds a solutions to that situation
by first selecting a push action applied to object 2 (Fig 1d), and then a push
action to object 1 (Fig.1e).

For the experiment in Fig. 1a we performed 3 runs with the goal to clear the
table. The total average time spent in the planning and geometrical constraints

3Additional material: www.iri.upc.edu/groups/perception/phasinginplan



checking were of 82 seconds and 46 seconds respectively, and the task was solved
with 12 actions (7 grasp and 5 push).

4. Conclusions

In this work, a symbolic system that plans at a deterministic semantic level and
accounts for geometrical restrictions is proposed. Geometrical constraints are di-
vided into relational (collisions between objects or with the robot) and reacha-
bility (unfeasible actions due to non-solvable IK or path planning failures). Rela-
tional constraints generate a set of symbolic states that are used by the planner
to compute a plan. The evaluation of reachability constraints is delayed until the
plan has to be executed. A simple implementation is presented showing that the
planner can discover different combinations of pushing-grasping actions.

References

[1] S. Cambon, F. Gravot, and R. Alami, “A robot task planner that merges symbolic and
geometric reasoning,” in ECAI, vol. 16, 2004, p. 895.

[2] L. Mösenlechner and M. Beetz, “Using physics- and sensor-based simulation for high-
fidelity temporal projection of realistic robot behavior,” in AIPS, 2009.

[3] M. Dogar and S. Srinivasa, “A framework for push-grasping in clutter,” in Robotics: Sci-

ence and Systems VII, N. R. Hugh Durrant-Whyte and P. Abbeel, Eds. MIT Press, July
2011.

[4] M. Laskey, J. Lee, C. Chuck, D. Gealy, W. Hsieh, F. T. Pokorny, A. D. Dragan, and

K. Goldberg, “Robot grasping in clutter: Using a hierarchy of supervisors for learning
from demonstrations,” in IEEE Conf. on Automation Science and Engineering, 2016.

[5] J. E. King, J. A. Haustein, S. S. Srinivasa, and T. Asfour, “Nonprehensile whole arm rear-

rangement planning on physics manifolds,” in IEEE International Conference on Robotics
and Automation, 2015, pp. 2508–2515.

[6] D. Mart́ınez, G. Alenyà, and C. Torras, “Relational reinforcement learning with

guided demonstrations,” Artificial Intelligence, 2016, to appear. [Online]. Available:
http://www.iri.upc.edu/publications/show/1621

[7] T. Lozano-Prez and L. P. Kaelbling, “A constraint-based method for solving sequential

manipulation planning problems,” in 2014 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2014, pp. 3684–3691.

[8] F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson, “Constraint propagation on in-
terval bounds for dealing with geometric backtracking,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012, pp. 957–964.

[9] I. A. Sucan and S. Chitta, “Moveit!” [Online] Available:http://moveit.ros.org.
[10] M. Helmert, “The fast downward planning system,” Journal of Artificial Intelligence

Research, vol. 26, pp. 191–246, 2006.

[11] I. Little, S. Thiebaux et al., “Probabilistic planning vs. replanning,” in ICAPS Workshop
on IPC: Past, Present and Future, 2007.

[12] D. Mart́ınez, G. Alenyà, and C. Torras, “Planning robot manipulation to clean planar

surfaces,” Engineering Applications of Artificial Intelligence, vol. 39, pp. 23–32, 2015.
[13] M. Kopicki, R. Detry, M. Adjigble, R. Stolkin, A. Leonardis, and J. L. Wyatt, “One-shot

learning and generation of dexterous grasps for novel objects,” The International Journal

of Robotics Research, vol. 35, no. 8, pp. 959–976, 2016.

http://www.iri.upc.edu/publications/show/1621
http://moveit.ros.org
http://moveit.ros.org

