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Abstract— This paper presents an adaptive side-by-side
human-robot companion approach for navigation in urban
dynamic environments, based on the anticipative kinodynamic
planning. The adaptive means that the robot is capable of
adjusting its motion to the behavior of the person being
accompanied. Our main objective is to optimize in real time
the path performed by the pair human-robot, by modifying
dynamically the angle and distance between both throughout
different locations of the path. We have defined a new cost
function for finding the best planned path that takes into
account the cost of the geometrical configuration between the
human and the robot. Moreover, we have modified the Extended
Social Force Model (SFM) to include the required forces to
maintain the angle and distance between the robot and human
while the human-robot pair is moving towards the shared
goal. The method has been validated throughout a large set
of simulations and real-live experiments.

I. INTRODUCTION

In the future, we expect to see social robots sharing
urban areas with people. To achieve that, robots have to
develop several skills such as navigating along with humans.
There are many situations where robots have to develop the
accompany task: guiding people in museums [1], shopping in
malls [2], following people and learning objects and places
to future interactions [3], helping aging people as home-care
robots to live independently [4], accompanying a person to
some place while walking in side-by-side formation [5], or
accompanying groups of people [6].

In urban environments, people tend to walk in groups
while avoiding other people and obstacles, they usually walk
side-by-side or close to this configuration (in front or behind)
depending on the environment.

Human-robot side-by-side navigation is a challenging task
because the robot has to navigate in a safe and natural way
while accompanying a person. Also, the robot has to adapt
its behaviour to avoid collisions with obstacles while not
disturbing other people in the environment. An example of
this is shown in Fig. 1, where a robot maintains a formation,
and adapts its motion while navigates among obstacles. Also,
this behavior is a complex task for robots because requires
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Fig. 1. It can be seen three solution paths for the human-robot side-by-side
navigation. The second path is the best one, the shorter one, although the
geometrical configuration between the human and the robot is not side-by-
side.

several robotic cognitive functions as perception, prediction,
navigation and human-robot interaction.

In this paper, we propose a modification of the Anticipate
Kinodynamic Planning (AKP) [7], [8] that includes a new
model to find the optimal geometrical configuration between
the human and the robot (distance and angle between them)
at each discrete time of the path to afford the narrow pas-
sageways to arrive to the goal in the minimum time. In this
new model, we propose a new cost function (denominated
companion cost) that takes into account the cost of modifying
the angle and distance between the human and robot to afford
the dynamic and static passageways and a reformulation of
the Extended Social Force Model [9], [6]) to include the
new force that maintains the side-by-side configuration while
navigating. These new cost and new force are computed
taking into account that the robot always has to adapt to
the person’s trajectory decisions.

In the following sections, first the related work is dis-
played. Then, we explain how we improved the Anticipative
Kinodynamic Planner (AKP) including the navigation of
the pair robot-human. In Sec. III, we introduce a new cost
function, denominated companion cost, to take into account
the effect of the diverse geometrical configurations between
the robot and the person (distance and angle between them
to walk side-by-side) in the computation of the best path. In
Sec. IV, we extend the Extended Social Force Model (ESFM)
using a new force that takes into account the navigation of



the pair robot-human. In Sec. V we explain the results in the
simulations and finally, in Sec. VI, we show the results in
real-live experiments.

II. RELATED WORK

Human-robot side-by-side navigation research is relatively
new in comparison to traditional robot navigation, where
robots navigate in a safe and human like manner. However,
human-robot companion algorithms are increasingly evolv-
ing into safer and more realistic behaviours.

As a starting point, some researchers developed methods
which use reactive approaches for robots to accompany
people. Prassler et al. [10] perform a reactive companion
behavior for a mobile wheelchair robot. Sviestins et al. [11]
study the relative position and walking speed of people while
walking with a robot. They estimate the preferred speed
of the companion person allowing the robot to adapt its
speed while both walk side-by-side, but their method did
not consider walking in a dynamic environment. In our
work, we consider not only static, but also dynamic narrow
passageways while the pair human-robot walks side-by-side.

Since reactive approaches are not suited to obtain a
realistic and safe companion task, some studies developed
methods that include some prediction to anticipate the be-
haviour of the partner and, thus, to obtain a more intelligent
navigation. Murakami et al. [12] perform and compare two
approaches for walking side-by-side: the leader-follower and
the collaborative. In the collaborative approach, they make a
velocity based prediction method where both group members
know the goal. In the leader-follower, the robot does not
know the goal and follows the person by estimating the
local destination from the person direction. They finally
conclude that the leader-follower approach incorporates more
advantages than the other. Morales et al. [13], [14] proposed
a model which describes people walking side-by-side and
used this model to predict the future next position of the
partner and to plan the next robot position. In our approach,
we also predict the future next position, but we also look for
the best path to not bother the human group trajectories and
do the best path in the minimum time, moreover, we take
into account the dynamic narrow passageways.

Finally, Kuderer et al. [15] explored the possibility to
face the problem using reinforcement learning. They apply
reinforcement learning to teach a tele-operated robot how
to navigate in a cooperative way avoiding collisions with
obstacles.

In contrast to previous studies that only considered navi-
gating near the person in a fixed side-by-side formation, our
method allows a dynamic positioning around the human part-
ner facilitating the navigation inside the group and minimiz-
ing the effort to avoid people in the dynamic environment.
This dynamic positioning around the human allows to deal
with cases where it is better to break momentarily the side-
by-side formation to navigate in a joint, as humans do in a
natural way.Furthermore, the presented approach selects the
path that allows the group to walk in side-by-side formation,
but if the human prefers to go through a narrow passage

the robot reformulates its path and goes through the passage
accompanying the person. Moreover, most of the previous
approaches only take into account one step prediction. In
contrary, our approach predicts in real time the dynamic
movement of the partner and the rest of people in a horizon
time [16] (the horizon time sets the amount of time that the
planner forecasts the movement of all the dynamic elements)
including the static obstacles. This horizon time allows the
robot to predict the next movements of people and it is able
to anticipate their navigation behaviours. Works on people
tracking are numerous, we follow the approach of Vaquero
et al. [17].

III. GLOBAL HUMAN-ROBOT COMPANION
NAVIGATION

As we have discussed previously, the goal of this work
is to make robots capable of navigating side-by-side (see
Fig. 1), although they can modify the geometrical config-
uration (see Fig. 3-right) in diverse parts of the path due
to narrow passageways. These narrow passageways can be
formed by static obstacles of the infrastructure or by people
walking in front of the couple human-robot, and in this case,
the narrow passageways will be created dynamically. In any
of these cases the computation of the best navigation side-
by-side has to be done on-line and in real time. In this
section, we will explain a modification of the Anticipate
Kinodynamic Planning explained in [8] which includes a
new cost function that takes into account the cost of walking
depending on the configuration. This cost function is added
to the cost functions defined in the AKP method [8], which
includes the cost of the distance until the destination, the
robot orientation to the destination, the robot control and
the costs obtained from the objects and other persons in the
environment. These cost functions are used to select the best
path between each one of the steps in the computation of the
RRT planner [18] for obtaining the best path to destination.

When the couple human-robot is navigating in a narrow
passageway they can dynamically change their configuration.
The robot can select to go in front of the person, if the
person reduces its speed, or vice versa, the person can select
going in front of the formation. In both cases, changing
the configuration implies an additional cost that has to be
considered.

Before explaining the new cost function, let us define the
parameters and variables of the geometrical configuration of
the pair human-robot, see Fig. 3. R, is the radius of the
circle containing the inflated robot (radius R,) and person
(Rp), and the minimum distance between the center of the
person and the robot, 2R;. Below, the formulas that relate
these parameters and variables are shown.

R. = R, + max(R,, R,) (1)

R; > (R, + Rp)/2 )

Now, let us compute the best angle between the person and
the robot (of the pair) for each point of the path, to navigate

while avoiding static and dynamic obstacles. Let us define
do, Eq. (3), as the minimum distance between the center of
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Fig. 2. A pair robot-human going to a destination is shown, while two
groups of people are moving in the opposite direction. Three alternative
and valid paths are plotted. The red path is the best path to go to the
destination and the blue paths are the discarded paths, due to their higher
cost. In reference to the forces, the summation of all the forces applied
to the center of the pair is the red arrow Fy. The blue arrow represents
the attractive force to the destination, fgf’;;lt. The green and black arrows
represent the different interaction forces between the pair and other people
F/°" and obstacles F °b°.
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Fig. 3. The right figure shows the cost companion graph and the left

figure shows the computation of the companion angle for a possible obstacle
collision.

the pair and the nearest obstacle. Also, 2R; is the distance
between the center of the person position and the center of
the robot position and the value of R; is advisable to be R; >
0.75 m. Let’s remark that its R; includes the max(R,, R),)
and one half of the real distance between person and robot.
Then, we can obtain the best angle between the person and
the robot, 6 of Fig. 3, to navigate while avoiding obstacles,
using the Eq. (5). To calculate potential collisions we use a
predefined map and laser scans. Also, these two were used
to localize the robot inside the environment.

do > dy +max(R,, Ry) 3)

dy = R;sin(m — 0) 4)

—— i (%) g ae(—ﬁ q (5)
=T arc st RZ , I0or 9 ) 9

The term d,, is the shortest distance between the robot
center and the direction of movement of the group. The
new cost function is based on #. When the pair human-
robot is navigating side-by-side, the minimum cost is for
6 = /2, and any other angle implies a cost of navigation.
The worst cost case is for § = m, when the robot (person) is
in front the person (robot). The pair robot-human will try to
navigate keeping the side-by-side formation, but sometimes

it is needed to obtain a worst companion cost to pass
through a narrow passage or avoid different groups of people.
One example of this situations can be seen in the Fig. 1.
Furthermore, if the pair robot-human has to chose between
a path where they can walk side-by-side or a path where they
have to breach this formation, the couple will select the path
that has the minimum cost. The new cost J., denominated
companion cost, is defined as follows:

Je(S) = nllot) — °|1%, (6)

where S is the state of the robot and all the people, which
includes position, velocity and time and additionally orien-
tation for the robot[7]. The n is a normalization parameter,
taking into account that 6(t) € [0— =] and we want to obtain
a maximum value of 1 around 7 /2, 6(t) is the needed angle
between person and robot in each position of the path at time
t, and 0" is the best companion angle, which is /2 degrees
in our case, to allow the walking side-by-side. Fig. 3-left
plots the companion cost of Eq. (6).

This new companion cost, J. is added to the cost func-
tions defined in the AKP method as was previously com-
mented. Then the new cost function J(S,sgoas, U) will
contain all the associated costs, that is: J(S, Sgoai,U) =
Va,Jors Jrs Ip,Jo,Jc]. These cost functions are described
in [8] and Eq. (6). Then, the multi-objective cost function
becomes a single-objective cost function by applying a
three step calculation. First, we obtain each individual cost
function. Second, to avoid the scaling effect of weighted-sum
method, we normalize each cost function to (-1,1), according

to the equation: v
Ji(X>=erf( “"’”), @)

Ox

where the variables p, and o, are estimated after the tree of
the RRT’s possible planning paths are computed. And finally,
we calculate a projection via weighted sum J : R — R
as follows and we obtain the final weighted cost formula
(see [8] for additional explanation):

J(Sv SgoalvU) = szjz(sv SgoalvU)~ (8)

In our dynamic planning we minimize the multiple cost
functions and we use the same computation process de-
scribed in [8]. With respect to the weights, we use the same
procedure described in that paper, but for the simulations and
real-live experiments we have used the following weights:
5/6 for the previous costs, because they consider 5 naviga-
tion aspects and 1/6 for the new companion cost. Finally,
for each time ¢, we calculate the different solution paths,
where each of these paths have a final cost that includes
the companion cost, and the robot selects the path with the
minimum cost. An example of several path calculation for
each iteration time is shown in the Fig. 2.

IV. EXTENSION OF THE SOCIAL FORCE MODEL

So far, we have computed the best path for the pair human-
robot, which is obtained with the extension of the AKP,
presented previously in Sec. III. Then, we have to control
the robot movement by computing the force F, that has



to be applied in order to follow the best path. This force is
computed as follows using the Extended Social Force Model:
F,=af%(Dy)+(FPF"+6F") (9
a=1—-~v-96 (10)

where, v and § were obtained as described in [5].

The attractive force assuming that the robot 7 tries to
adapt its velocity within a relaxation time k=!, but taking
into account at the same time the distance and angle of
the accompany person to destination (D,,), is computed as

follows: al 0
fr,gp (Dn) = k(v,.(Dyn) — vs) (11)

Where v¥(D,,) is the desired velocity vector to reach the
goal according to the destination D,, and v, is the current
velocity of the robot. This is the force that keeps the robot
in the computed geometrical configuration (robot-human) to
allow the joint navigation.

Equation 11 is applied at each discrete point of the path to
reach the goal. Let us consider that there are t = 1,2,..., M
discrete points in the path, then the attractive force of the
next discrete point f,9°* (¢ + 1) will be computed as:

£900(t+ 1) = k(V2(Pr(t+ 1)) — v (Po(t)) (12)

where P,.(t+ 1) is the next position of the robot taken into

account the constraints in distance and angle imposed by the
person (see Fig. 3-right) and P,.(t) is the current position of
the robot. Because the robot has always to follow the person
and there are constraints in distance and angle between the
robot and the person, the computation of the next position of
the robot, P,.(t+ 1), will depend on the next position of the
person, P,(t+ 1). If we consider the two components of the
position of the robot, P,.(t+1) = (X, (t+1),Y,.(t+1)) and of
the position of the person, P, (t+1) = (X, (t+1), Y, (t+1)),
then, the computation of P.(¢t + 1) will be:

Zr(t+1) =2,(t+1) +2R; cos (6, —sgn (6, — 0.)0;) (13)
Ur(t +1) = gp(t + 1) + 2R; sin(0, — sgn(6, — 0.)0) (14)

where, 2R; is the distance between the robot and the person
center positions. 6, is the person orientation to the destina-
tion and is obtained with the Eq. (15). Then, 6. is the real
companion angle between the person and robot positions.
Finally, 6 is the ideal companion angle between the robot and
the person, which takes into account the person position and
orientation of movement and is calculated with the Eq. (5).
R;, 0,5, 6. and 6 are computed in the discrete time ¢. These
equations are meant to place the robot in one of the sides of
the person taking into account the proximity of the robot to
one of the person sides.

Ygoal - Y;J ) (15)

0, =atan | ——
P (Xgoal - Xp

where, (X,,,Y}) is the person position and (Xgoa1; Ygoar) is
the goal position which is selected amount all the possible
goals of the environment taking into account the companion
person prediction [16], both in discrete time ¢. In case that the
final destination is not know, the robot predicts few meters
in advance the person path to accompany her/him.

The repulsive force respect to the other pedestrians in the
dynamic environment is:

per __ nt
Fo = E :fm'

Jjer

(16)

The repulsive force respect to the obstacles in the envi-

ronment is: .
obs __ § int
Fr - fr,o

0€0

A7)

These repulsive forces are used by the robot to avoid
possible collisions or unnecessary interactions with other
pedestrians (see Ferrer et al. [5]).

V. SIMULATIONS

We have first evaluated the model in simulation, in order
to test controlled situations that may occur. We have carried
out 2126 simulations of the companion task for the robot
in presence of obstacles and other people. Our simulated
robot is modelled as a non-holonomic vehicle, as the real
robot. Also, in all the experiments we use n = 1.2346e* to
normalize the equation 6. We have used the people simulator
which uses the same extended social force model from [7]
and we have randomly changed the velocity for all the people
between [0—1]m/s. To test the algorithm, we have made three
experimental settings. The first consists of a situation where
the robot has to accompany the person to a destination and
the couple has to pass through a static narrow passageway
(Fig. 6). In the second one, the robot has to accompany a
person to a destination and the couple crosses two other peo-
ple groups that forms a dynamic narrow passageway, where
the couple has to pass through (Fig. 7). The third experiment
combines both cases, where the couple has to avoid obstacles
and people at the same time (Fig. 8). In each environment
the robot is able to overcome the obstacles walking in front
or behind of the companion person. Furthermore, the best
companion angle for the task was changed to 57/9 to get
closer to the real experiments, where the robot has a small
laser gap in the side-by-side position of /2.

The metric to evaluate the companion task for the robot is
plotted in Fig. 4. For the performance in distance, we have
considered that the robot makes a good performance if keeps
its position inside of the following interval: [0.75—2] m. The
horizontal axis of the plot is 2R;, that is, the distance between
the centers of the person and the robot, and the vertical axis
is the interval [0— 1], where 1 is the best performance. Then,
we penalise with 0 performance if 2R; < 0.75m or if 2R; >
3m. For the performance in angle, we have considered in
the horizontal axis the difference between 0(t) — 6,., where
6(t) is the angle between the couple human-robot that allows
the joint navigation while both avoid the obstacles and 6,
is the actual angle between the couple human-robot. The
best performance is for 0 < 6(¢t) — 0, < 10 degrees. If
the difference is greater than 10 degrees, we penalize each
increment of 10 degrees with —0.1 in performance.

In each of the simulation experiments, we evaluate both
performances, distance in Fig. 5-left and angle in Fig. 5-
right. The results obtained for all the simulations show the
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Fig. 4. The plot of the left shows the metric for the performance in distance
and the plot of the right shows the metric for the performance in angle.

mean and the standard error of the performance. The results
are very positive, since we have obtained a distance mean
of 0.8996 and an angle mean of 0.9933. The standard errors
are 0.0155 for distance and 9.4694e~* for the angle.
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Fig. 5. The plot shows the mean and the standard error of the performance
in distance and angle of the companion task of all the simulated experiments.

Furthermore, we include a plot where we compare the
mean of the real angle and the desired angle of the compan-
ion along different experiments which can be seen in Fig. 6,
Fig. 7 and Fig. 8. For the case of static obstacles, we can
compare these angles for all the experiments, because is a
static environment and the robot needs to achieve the same
desired angle to accomplish the companion task throughout
the experiment. In the case of the dynamic obstacles, we
made the same comparisons, but only in the 4.7% of the
experiments. In these 4.7% of the experiments, we consider
a velocity of 0.3 m/s for all the people of the environment.
The same velocity is to obtain the same changes in angles at
the same instant of time, and this velocity can be up of 0.3
m/s. In these experiments, we obtained the same differences
between the two angles. Finally, we have a combination of
both results in the case that we combine static and dynamic
obstacles in the task.

VI. REAL-LIFE EXPERIMENTS

The proposed method was also tested in real-live ex-
periments with the Tibi robot of our institute. We used a
controlled environment with a limited number of people, in
a similar configuration of the simulation tests ( see Fig. 9).
The location to do the experiments has been the FME
(Facultat de Matematiques i Estadistica) lab, an outdoor
urban environment located at the South Campus of the
Universitat Politecnica de Catalunya (UPC). We made 22
real-live experiments with 10 volunteers and no instructions
were given to them. The volunteers were Master students,
Phd and technicians. Their ages were between 21 and 35
years old. In these experiments, we evaluated the method in

— Real angle
— Desired angle

Angle [grad]

Fig. 6. The plot of the top shows the comparison between the real and
desired angle of the couple. The plot of the bottom shows the simulated
experiment for the case of joint static obstacle avoidance. The obstacles
were the two squares of the center, the companion person was the green
cylinder of id 1 and is inside the black circle with the robot in orange. The
goals were the purple cylinders. The robot path is the yellow line and the
companion person path is the green line.
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Fig. 7. The plot of the top shows the comparison between the real and
desired angle for the couple. The plot of the bottom shows the simulated
experiment for the case of joint dynamic obstacle avoidance. The companion
person was the green cylinder of id 4, which is inside the black circle with
the orange robot, and the other green cylinders were the two people groups.
The goals were the purple cylinders. The robot path is the yellow line and
the companion person path is the green line.

a quantitative way using the same performance metrics that
were used in simulation. The real-live experiments are shown
in Fig. 9 and results in distance and angle performance can
be seen in Fig. 10. Positive results were obtained. Regarding
to the performance in distance we obtained a mean of 0.9115
and a standard error of 0.0094, and in the angle performance,
we obtained a mean of 0.7348 and a standard error of 0.0178.

We added a link where you can see the video of the results
of this work, https://youtu.be/4nKSdL;jVu-c.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an adaptive human-robot side-by-side
navigation approach based on Kinodynamic Anticipate Plan-
ning and Extended Social forces Model. Our model extends
the work [8] to allow side-by-side accompany of a person
by a robot in a dynamic environment.

The major contributions of this paper are twofold. First,
we obtain the best path to go to the goal while accompanying
a person in dynamic and static narrow passageways, by using
a new cost function that takes into account the geometrical
configuration between the human and the robot. The best
path is obtained by minimizing all the cost functions in
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Fig. 8. The plot of the top shows the comparison between the real and
desired angle for the couple. The plot of the bottom shows the simulated
experiment for the case of joint dynamic and static obstacle avoidance. The
companion person was the green cylinder of id 3, which is inside the black

circle with the orange robot. The goals were the purple cylinders. The robot
path is the yellow line and the companion person path is the green line.
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Fig. 9. The first three images show the case of static obstacle avoidance; the
second three images show the case of dynamic obstacle avoidance; and the
three last images show the case of dynamic and static obstacle avoidance.

a RRT planner. Second, we have redefined the Extended
Social Force Model [8] to include a social force that tries
to maintain the best geometrical configuration for the side-
by-side accompany task while the couple follows the best
path found. The result is a path where the geometrical
configuration (distance and angle) between the human and
the robot, adapts to the different static (due to obstacles) and
dynamic (due to moving people) narrow passageways. The
computation is done on-line and in real time. The new model
has been tested in simulation and real-live experiments.

In future work, we will perform a qualitative analysis with
non-trained volunteers. Also, we will ask people which path
considers best to go to the final destination. Furthermore,
we will intend to include a dependence between distance
and angle performance and human walking speed.
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