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Abstract: Solving the problem of energy dispatch in a heterogeneous complex system is not a trivial task. 
The problem becomes even more complex considering uncertainties in demands and energy prices. This 
paper discusses the development of several Economic Model Predictive Control (EMPC) based strategies 
for solving an energy dispatch problem in a smart micro-grid. The smart grid components are described 
using control-oriented model approach. Considering uncertainty of load demands and energy prices 
simultaneously, and using an economic objective function, leads to a non-linear non-convex problem. 
The technique of using an affine dependent controller is used to convexify the problem. The goal of this 
research is the development of a controller based on EMPC strategies that tackles both endogenous and 
exogenous uncertainties, in order to minimize economic costs and guarantee service reliability of the 
system. The developed strategies have been applied to a hybrid system comprising some photovoltaic 
(PV) panels, a wind generator, a hydroelectric generator, a diesel generator, and some storage devices 
interconnected via a DC Bus. Additionally, a comparison between the standard EMPC, and its 
combination with MPC tracking in single-layer and two-layer approaches was also carried out based on 
the daily cost of energy production.  
Keywords: Smart grid, Model Predictive Control, Robust Optimization, Demand uncertainty, Energy      
        prices uncertainty 

 
1. INTRODUCTION 

 
Complex systems such as smart grids whereby several 
heterogeneous components attempt to interact with each 
other, require definitely a well-defined proactive control 
strategy in order to optimize its efficiency, and avoid 
conflicting interactions. Furthermore, the complexity of smart 
grids increases in the presence of uncertainties. 
Model uncertainty and noise are two important factors which 
need to be taken into consideration in the development of 
robust MPC based control strategies. In linear time-invariant 
(LTI) systems, the problem of model uncertainty and noise 
can be solved through enforcement of computational 
constraints as reported in [Bemporad et al. (1999), Loefberg 
(2003), Abate et al. (2004)]. However, this approach is 
usually raising the issue of tractability. 
A better approach of tackling uncertainties is reported in 
[Loefberg (2003), Löfberg (2012)] would be to consider 
optimization techniques such as Minimax MPC, even though 
Minimax is only based on worst case scenario. 
Moreover, in [Ben-Tal et al. (1998), Ben-Tal et al. (2004), 
Löfberg (2012)] Adjustable Robust Solutions have been 
proposed, which assume that adjustable control inputs can be 
made to depend affinely on the uncertainty parameters of the 
problem. This approach is more flexible, and is most of the 
time expected to result in a computationally tractable 
problem [Vandenberghe et al. (1996)]. In this work, we 

follow the technique of affine dependence to solve the 
problem of demand and energy price uncertainty in electrical 
micro-grid. 
In [Nassourou et al. (2016)], uncertainty of load demand was 
taken into consideration, it was shown that the standard 
EMPC was not only superior to the standard MPC tracking, 
but also to the integration of both in single-layer and two-
layer approaches. 
In this paper, we repeat the study in [Nassourou et al. (2016)] 
by considering simultaneously the uncertainty of load 
demands and energy prices. Several studies [Ocampo-
Martinez et al. (2009), Grosso (2012a), Grosso (2014), 
Limon (2014)] have dealt with the issue of tackling 
uncertainties separately using stochastic approaches. In this 
work, we use a deterministic approach namely robust 
optimization to model uncertainties. Considering both 
uncertainties at the same time, and using EMPC strategies, 
the optimization problem becomes non-linear and non-
convex. The technique of using an affine dependent 
controller is used to convexify the problem.  
Robust optimization based EMPC strategies for smart grids 
are discussed in this paper. We have explicitly included the 
uncertainty information into the Minmax optimization 
problem, by substituting the uncertain variables with their 
robust counterparts in the objective function, as well as in the 
constraints. Energy prices are split into actual prices and 
predicted ones. 



     

We consider a hybrid system comprising some photovoltaic 
(PV) panels, a wind generator, a hydroelectric generator, a 
diesel generator, and some storage devices interconnected via 
a DC Bus, from which load demands can be satisfied. 
EMPC based control strategies have been developed by using 
both single-layer and two-layer approaches. In the one-layer 
approach, standard EMPC strategy was applied to the hybrid 
system. After that, both the economic optimization and the 
tracking formulation were integrated in a single layer. 
In the two-layer approach, the upper layer consists of an 
EMPC controller acting as the supervisory unit, which is in 
charge of scheduling the operation of the subsystems, and 
computing their power references. At the lower layer, we 
used standard MPC tracking controllers responsible for 
implementing the computed reference values for each 
subsystem. 
 

2. PROBLEM FORMULATION 
 
The main objectives of this work is the development of a 
controller based on EMPC strategies, that tackles load 
demand and energy prices uncertainties, in order to minimize 
economic costs and guarantee service reliability of the 
system. To achieve this aim, three operational goals have 
been considered: 
Economic cost: 
The total economic cost is given by:  

fE(k)  = (α1 +α2(k))Tu(k)∆t          (1) 
where: u(k) is a vector of control actions at time k;       
∆t is the sampling time in seconds; 
α1 is a known vector related to economic costs of 
maintenance of generators and its accessories;  
α2(k) is an unknown time-varying vector associated to the 
economic cost of power flows related to transmission and 
distribution. 
In this study we consider α2(k)  to be uncertain but with 
known bounds:  

α2
min(k) ≤ α2(k)  ≤ α2

max(k)                       (2)                
where α2

min(k) and α2
max(k)   are the lower and upper bounds 

of the energy prices respectively that are known functions. 
Safety Storage Measures: 
This function is used to penalize quadratically the amount of 
power that goes below the pre-specified security threshold δ 
in (8). The safety measures are defined as:  

fS(k)  =  ε(k)Tε(k)           (3) 
where ε(k) is the amount of soft constraint violation. ε = 0 
means there is no violation. 
Smoothness/Stability of the control action: 
This function is used to avoid excessive power on the DC 
Bus. 

f∆u(k)  =  ∆u(k)T∆u(k)              (4) 
where ∆u(k) is the rate of change of control signal, defined as 
∆u(k)=u(k) – u(k-1). 
 

3. CONTROL-ORIENTED MODELING 
 
Smart grids could be viewed as instances of generalized flow-
based networks. Basically every flow-based network is made 

up of some components [Ocampo-Martinez et al. (2009), 
Nassourou et al. 2016] e.g.: flow sources, links, nodes, 
storage, flow handling, and sink elements. 
 
3.1. Control-oriented model 
 
A smart grid consisting of nx storage elements, nu  energy 
flow handling and source elements, nd sinks and nq 
intersection nodes is considered. The source elements are 
considered as inflows. 
 
3.1.1. State space model 
The hybrid power system is an example of a MIMO 
(multiple-input multiple-output) system, whose linear state 
space modelling is given by the following equations: 
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where: 
 xn∈x   is the state vector, un∈u   stands for the vector of 
control inputs, dn∈d   denotes the disturbances vector. 

x xn n×∈A   , xn nu×∈B  ,
 

xn nd
d

×∈B   are system matrices.
 n nq u

u
×∈E 

 and n nq d
d

×∈E 

 are matrices of suitable 
dimensions relating the supply and the load demand on the nq

 

DC Bus(ses).   
                                                      
3.1.2. Constraints 
Control inputs are subject to some bounds (upper and lower 
limits): 

umin(k) ≤ u (k) ≤  umax(k)                  (6) 
 (umin(k) is in this case always zero, because energy flow from 
the generators is positive). 
The state of charge (SOC) of each storage element is subject 
to the following constraint: 
                             xmin ≤ x(k) ≤ xmax                (7)            
where xmin and xmax are the lower and upper limit values of 
the state of charge respectively. 
To guarantee availability of energy in the batteries we set:       

     xmin (k) ≥ δ                                           (8) 
where δ is the minimum quantity of energy that should 
always be available in the batteries. 
The disturbance d(k) representing the load demand is 
uncertain but with known bounds: 

      dmin(k) ≤ d(k)  ≤ dmax(k)                                    (9) 
where  dmin(k) and dmax(k)  are the lower and upper bounds of 
load demands respectively. 
 

4. ROBUSTNESS IN EMPC STRATEGY 
 
The performance and accuracy of MPC relies principally on 
the model used to predict the behaviour of the plant. 
Unfortunately for real systems, there are frequently 
uncertainties about the model parameters, as well as 
occurrences of external disturbances. These uncertainties 
degrade the performance of the controllers. They can be 
tackled using stochastic or deterministic approaches. In this 



     

work, a deterministic approach namely robust optimization is 
selected, which offers some possibilities of bounding 
uncertain parameters and variables. 
Load demand d(k) and the energy prices namely α2(k)  (as 
explained in Section 2)  are chosen to be uncertain. 
 
4.1. Modelling uncertain energy prices 
 
In this paper, we will consider that there is independence 
between the different uncertain variables. i.e. for the 
uncertain energy prices: 
α2,i

min(k) ≤ α2,i(k)  ≤ α2,i
max(k)             1,..., ui n∀ =              (10) 

Therefore, at every time instant k energy prices α2(k)  can be 
bounded by a box Θα(k): 

min max min max
2 2,1 2,1 2,nu 2,nu( ) ( ) α ( ),α ( ) α ( ),α ( )k k k k k ka    ∈ = × ×   α Θ 

Upper and lower limits of the price (α2,i
min(k) and α2,i

max(k)) 
can be found by means of a forecast considering additive 
bounded error:       

2,1

0
2,1 2,1 αα ( ) α ( ) ( )k k kδ= +                     (11) 

where 0
2,1α ( )k  is the price forecast and 

2,1α ( )kδ  is the additive 

error that is bounded by 
2,1 2α α( ) ( )k kδ ≤ ∆  with 

2α ( )k∆  a known 

function. Then, the prices upper and lower limits can be 
computed as: 

2 2

min 0 max 0
2,1 2,1 α 2,1 2,1 αα ( ) α ( ) ( );    α ( ) α ( ) ( )k k k k k k= − ∆ = + ∆  

 
4.2. Modelling uncertain load demands 
 
The load demand d(k) is split into two parts: a nominal de-
mand and an uncertain additive demand.   
The uncertain additive load demand is bounded at every time 
instant k by a box Θd(k): 

min max min max
d 1 1 nd nd( ) ( ) d ( ),d ( ) d ( ),d ( )k k k k k k   ∈ = × ×   d Θ 

 

Upper and lower limits of the demand (di
min(k) and di

max(k)) 
can be found by means of a forecast considering additive 
bounded error:          0

dd ( ) d ( ) ( )
ii ik k kδ= +                     (12) 

where 0d ( )i k  is the price forecast and d ( )
i

kδ  is the additive 

error that is bounded by d d( ) ( )
i i

k kδ ≤ ∆  with d ( )
i

k∆  a known 

function. Then, the demands upper and lower limits can be 
computed as: 

min 0 max 0
d dd ( ) ( ) ( );    d ( ) d ( ) ( )

i ii i i ik d k k k k k= − ∆ = + ∆  

Using the affine dependence method, it is possible to 
establish a relationship between the control and the load 
demands and the control inputs. A mathematical derivation of 
this relationship has been developed in [Nassourou et al. 
(2016)]. 
 
 4.3. Parameterization of control inputs with respect to both 
uncertainties 
 
Considering price and demand uncertainties simultaneously, 
and using the economic cost function defined in (1), we end 
up with a non-linear non-convex problem. In fact, equation 
(1) consists of a multiplication of the two uncertainties. 

A non-convex optimization problem in the case of smart grids 
is not desirable, because of the fact that, there could be many 
local optimal solutions, which make the identification of a 
global optimal solution extremely difficult. 
One optimal approach to deal with multiple uncertainties 
simultaneously would be to convert the non-convex problem 
into a convex one. 
The relationship between control inputs and the disturbances 
is evident through the equation (5b). This justifies as well the 
affine dependence [Abate et al. (2004)] between the control 
inputs and the load demand. However, the relationship 
between the control inputs and the energy prices is not 
evident. 
For this study, following approach of dealing with the 
uncertainties has been considered: 
I. Affine dependence between the control inputs and both 
uncertainties 
Based on [Loefberg (2003)] the dependence can be expressed 
as follows: 
 

u= v + Wd + Zα2    
       (13) 

where  
u=[u(k|k),…, u(k+N-1|k)]T 

v=[v(k|k),…, v(k+N-1|k)]T 

d=[d(k|k),…, d(k+N-1|k)]T 

α2=[α2(k|k),…, α2 (k+N-1|k)]T 
 

with W and Z matrices of proper dimensions and N the 
prediction horizon. With this parameterization (affine 
dependence between control inputs and uncertain variables) 
the non-linear non-convex problem is transformed into a 
convex problem. 
 
It might be important to mention that two other strategies: 
(II. Transformation of the problem into a simpler and 
equivalent one; III. Control inputs do not dependent affinely 
on energy prices) could also be used. These strategies will be 
discussed in our future works. 
 

5. PROPOSED APPROACHES 
 
All the problems are formulated using the worst-case robust 
optimization approach, namely the minmax format of the 
Wald's maximum model [Loefberg (2003)]. The problems are 
solved using the robust convex optimization methods 
proposed in [Loefberg (2012)].  
The goal is to minimize the costs of energy production in the 
presence of uncertain load demands and energy prices.   
5.1. Economic MPC 
 
The MPC objective function is given by using (1), (2) and (3) 
 JEMPC= λ1 (α1 + α2(k))Tu(k)∆t 
             + λ2 ε(k)Tε(k)  + λ3 [u(k) - u(k-1)]T[u(k) - u(k-1)]  (14) 
where  λ1, λ2, and λ3 are weighting coefficients for prioritizing 
the objectives. 
The EMPC optimization problem is formulated as follows:  
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5.2. Two-layer approach: EMPC and MPC tracking 
 
The main idea behind the use of a two-layer approach is to 
overcome the problem of non-reachable reference trajectories 
(feasibility). The standard Economic MPC (EMPC) is used as 
the supervisory controller (upper layer), which computes the 
reference trajectory (set-points) for the lower layer 
comprising standard MPC tracking controllers responsible for 
driving the subsystems to desired set-points accordingly. 
 
a) Upper layer: Economic MPC 
This layer comprises the EMPC described in Section 5.1. The 
problem to be solved is expressed in (15). 
b) Lower layer: MPC tracking 
The lower layer consists of a standard MPC tracking. Instead 
of using manually selected reference trajectories, the 
computed states and control inputs by the upper layer are 
used.  
The following objective function  is used: 

( ) ( ) ( )
 

                                                      16                                                                                
( ) ( ) ( ( )

 
)

   

r T

r

r r T r
MP

r
Np Np Np Np

C
T

J = − − + − −
+ − −xx x x x

x x Q x x u u R u u
S

Npx   is the vector of terminal state and r
Npx  its reference 

trajectory;  
Q, R and Sx are weights on the states, control inputs, and 
terminal state respectively. 

b b h h g g d hy w pv c
1 0 ; diag(c ,c ,c ,c ,c ,c ,c ,c ,c ,c ); .0 1

 = = =   xQ R S W Q

cb, ch, cg, cd cd, cpv, cw, chy , are positive weight coefficients 
(≤1) for the lead-acid battery, hydrogen battery, grid 
connection, diesel, solar, wind, and hydroelectric generators 
respectively, and Wc is a positive scalar. 
 
The optimization problem is formulated as follows: 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
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5.3. Single-layer approach: EMPC and MPC tracking 
 
Contrary to the two-layer approach as defined above, the  
economic optimization (EMPC) and the tracking formulation 
(MPC tracking) are integrated in a single layer. 
The problem to be solved is given as follows:  

( ) ( ) ( ) ( )
( ) ( )( )

( ) ( ) ( ) ( )
( ) ( )

2

1

 
0

2 2

min max

s.t. 5 , 6 , 7 , 8 ,(9),(10)
( ) ( ),,

N

EMPC MPCk k k k k

d

J k J

k k

k

k k ka

−

=

+

∀∈ ∈

∑u x α d

α Θ d Θ

                (18) 

 
6. CASE STUDY 

 
6.1. Description 
 
In this subsection, we present a smart micro-grid that consists 
of: two storage elements (batteries), three sinks (loads) and 
one virtual sink (external grid connection), one node (DC 
Bus), four sources (PV, Wind, Hydroelectric, and Diesel 
generators), and one virtual source (external grid connection).  
Since all the components (excluding sinks) are connected to a 
single node (DC Bus) through flow handling elements, they 
are all considered as manipulated inputs. The states of the 
smart grid are defined to be the state of charge of the storage 
elements. The block diagram of the smart micro-grid is 
shown in Fig 1. 

 
Fig 1. block diagram of the smart micro-grid 

 
6.2. Control-oriented Model   
 
State variables: 
xb and xh are the state of charge of the batteries (lead-acid and 
hydrogen respectively). x(k) ≜ [xb(k), xh(k)]T 

Control input variables: 
Pb1 and Pb2 are charged power and discharged power of the 
lead-acid battery; 
Ph1 and Ph2 are the charged and discharged power of the 
hydrogen battery; 
Pg1 and Pg2 are the exported and imported power into/from 
the external grid; Pd, Phy, Ppv, and Pw stand for the power 
supplied to the DC Bus by the diesel, hydroelectric, wind, 
and photovoltaic generators respectively; 
u(k) ≜ [Pb1(k), Pb2(k), Ph1(k), Ph2(k), Pg1(k), Pg2(k), Pd(k),   
             Phy(k), Pw(k), Ppv(k)]T 
Disturbance variables: 
d1 is the industrial load, d2 is the residential load, and d3 is the  
DC-load. The disturbance vector d consists of the three loads. 
d(k) ≜ [d1(k), d2(k), d3(k)]T 
The matrices and vectors that define the system and its 
constraints are given as follows: 
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Table 1 presents system and control parameters as well as 
energy prices. 
Initial values of the subsystems, as well as the state of charge 
of the batteries are set to zero. The simulations were made for 
96 hours (4 days). The batteries were used during the first 
two hours of the day. They delivered 2 kWh in the first hour 
and 1 kWh in the second hour. 1 kWh was bought from the 
external grid during the second hour of the day. Each additive 
uncertain load demand (as explained in Section 4.2) is 
bounded as follows 

2,1α ( ) 1kδ ≤  kW. On the other hand, the 

prices forecast error (as explained in Section 4.1) is bounded 
d ( ) 3

i
kδ ≤   e.u (economic unit).  

Figure 2 shows the profiles of the load demand. The additive 
uncertain demand is represented with the shadowed area. 

 
Figure 2. Load demands’ profiles 

Figure 3 shows the profile of the energy prices. The forecast 
error is the shadowed area. 

 
             Figure 3. Profile of the energy prices 
 
System parameters  Control parameters       Energy prices (e.u) 
Parameters  Values  

(kW) 
 Parameters  Values Lead-acid battery 

charging 
2.2 

Pmax
pv 15 Np 24 Lead-acid battery 

discharging 
2.2 

Pmax
w 15 Nc 24 Hydrogen battery 

charging 
2.2 

Pmax
hy 15 cpv 0.2 Hydrogen battery 

discharging 
2.2 

Pmax
d 15 cw 0.3 External grid selling 3 

Pmax
b1 35 chy 0.4 External grid buying 3 

Pmax
b2 15 cb 0.75 Diesel 3.3 

Pmax
h1 35 ch 0.75 Hydroelectric 2.1 

Pmax
h2 15 cd 1 Wind 2.1 

Pmax
g1 15 cg 0.75 Solar 2 

Pmax
g2 15 Q as defined 

previously 
  

ηbc 0.95 R as defined 
previously 

  

ηbd 1 λ1 2500   
ηhc 0.85 λ2 12   
ηhd 1.0 λ3 0.1   
Δ [35 35]T     

Table 1. System and control parameters; and energy prices 
 
6.3. Simulation Results 
 
The MPC controller implementations have been made using 
YALMIP (CPLEX and QuadProg solvers) [Löfberg, J. 
(2012)] within the Matlab environment. In order to get a 
reasonable computational time, demands and prices in (13) 
have been considered unknown but constant during the 
prediction horizon N. One of the goals of this study is to 
minimize the energy production as much as possible in the 
presence of uncertainties (load demands and energy prices 
uncertainties).  
Figures 4a and 4b show a sample comparison of the energy 
production of the diesel and wind generators.  
Figure 4 displays a sample plot of the batteries’ state of 
charge trajectories. 

 
Figure 4a. Plots of the energy generation in summer 

 
Figure 4b. Plots of the energy generation in winter 

 



     

 
Figure 5. Plots of the batteries’ state of charge trajectories 

 
Figures 4 and 5 show that, the EMPC strategy offers a better 
result, since it yields the lowest energy production, and a 
higher energy saving in the batteries.  
It can be stated that, one-layer approach is economically 
superior to a two-layer hierarchical scheme. This study 
confirms the results found in [Nassourou et al. 2016]. Similar 
result was obtained in [Grosso et al. (2012a)].  
Finally, it can be seen (Table 2) that, the EMPC produces the 
lowest overall economic costs, thereby proving its superiority 
to the other strategies. 
Table 2 presents a comparison of the three EMPC strategies' 
economic costs (measured in economic unit (e.u)). 
 
 EMPC EMPC + MPC 

tracking 
(single-layer) 

EMPC + MPC 
tracking 
(two layer approach) 

Summer economic cost 7722.4   8421.9  8433.5 

Winter economic cost 7891.7   8645.0  9312.4 

Table 2. Quantitative comparison of the economic costs  
 

7. CONCLUSION AND FUTURE WORK 
 
In this study, we have presented the application of three 
variations of robust optimization based EMPC strategies for 
controlling energy dispatch in a smart micro-grid. Load 
demands and energy prices uncertainties have been 
simultaneously considered, and modelled using the affine 
dependence method. Several EMPC strategies have been 
discussed and compared. The optimization problems were 
solved using minmax worst case approach. It has been found 
that, a single layer approach is superior to a hierarchical 
scheme. Moreover the standard Economic MPC yields a 
better economic result. The study confirms that, uncertainties 
degrade the performance of the micro-grid, because the cost 
of energy production increases. The next task for extending 
this work will be devoted to tackling uncertainty of 
renewable energy sources. 
 

ACKNOWLEDGMENTS 
 

This work was funded by the Ministerio de Economía, Indus-
tria y Competitividad (MEICOMP) of the Spanish Govern-
ment and FEDER through the project HARCRICS (ref. 
DPI2014-58104-R) and the grant IJCI-2014-20801.  
 

 
REFERENCES 

 
Abate, A., and Ghaoui, Laurent El., (2004) Robust model     

predictive control through adjustable variables: an     
application to path planning  43rd IEEE Conference on 
Decision and Control, (Atlantis, Paradise Island,  Bahamas) 

Bemporad, A., and Morari, M., (1999) Robust model     
predictive control: A survey hybrid systems Computation      
and Control, F.W. Vaandrager and J.H. van Schuppen,       
vol. 1569, pp. 31–45,1999, Lecture  in Computer Science 

Ben-Tal, A., and Nemirovski, A., (1998) A Robust convex 
optimization Mathematics of Operations Research, Vol. 23, 
No. 4, Nov. 1998, pp. 769–805 

Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski,     A., 
(2004) Adjustable solutions of uncertain linear programs 
Mathematical Programming, Vol. 99, 2004,  pp. 351–376 

Grosso, J.M., Ocampo-Martinez, C., and Puig, V., (2012a)    
Chance-constrained model predictive control for large-     
scale Networks, Transactions on Control Systems     
Technology, UPC (Barcelona, Spain) 

Grosso, J.M., (2014) On model predictive control for     
economic and robust operation of generalised flow-based     
networks, PhD thesis UPC (Barcelona, Spain) 

Limon, D., Pereira, M., Muñoz de la Peña, D., Alamo, T.,     
Grosso, J., (2014) Single-layer economic model predictive 
control for periodic operation Journal of     Process Control 
24, 1207–1224 

Loefberg, J., (2003) Minimax approaches to robust model     
predictive control Ph.D. dissertation, Univ. of Linkoping   

Löfberg, J. (2012) Automatic robust convex 
programming      Optimization methods and 

software,  27(1):115-129, 2012 
Nassourou, M., Puig. V., and Blesa, J., (2016) Robust     

Optimization based Energy Dispatch in Smart Grids     
Considering Demand Uncertainty, 13th European      
Workshop on Advanced Control and Diagnosis, 2016,      
Lille, Vol 783 of Journal of Physics: Conference Series,       
pp. 012033, 2017 

Ocampo-Martinez, C., Puig, V., Cembrano, G., Creus, R.,     
and Minoves, M. (2009) Improving water management      
efficiency by using optimization-based control strategies:     
The Barcelona case study Water Science &Technology: 
Water supply, vol. 9, no. 5, pp. 565–575 

Pereira, M., Limon, D., Alamo, T., Valverde, L., (2015)      
Application of periodic economic MPC to a Grid-      
connected micro-grid, conference poster, 5th IFAC      
Nonlinear Model Predictive Control Conference      
International Federation of Automatic control (Sevilla, 
Spain) 

Prodan, I., Enrico, Z., (2013) Predictive control for         
reliable microgrid energy management under          
uncertainties 22nd European Safety and Reliability        
(ESREL 2013) (Amsterdam, Netherlands)   <hal-
00912003> 

Vandenberghe, L., and Boyd, S., (1996) Semi-definite         
programming  SIAM Rev., Vol. 38(1), 49–95 


