
Chapter 16
Partitioning Approaches for Large-scale Water
Transport Networks

Abstract Large-scale systems (LSS), such as WTNs, present control theory with
new challenges due to the large size of the plant and of its model. In order to apply
decentralised or distributed control approaches to LSS, there is a prior problem to
be solved: the system decomposition into subsystems. The importance of this is-
sue has already been reported in the general literature of decentralised control of
LSS. The decomposition of the system in subsystems could be carried out during
the modelling of the process by identifying subsystems as parts of the system on the
basis of physical insight, intuition or experience. But, when a large-scale complex
system with many states, inputs and outputs is considered, it may be difficult, even
impossible, to obtain partitions by physical reasoning. A more appealing alternative
is to develop systematic methods, which can be used to decompose a given system
by extracting information from its structure and representing it as a graph. Then,
this structural information can be analysed by using methods coming from graph
theory. This chapter discusses partitioning approaches towards the development of
subsystem decomposition methods for LSS by reviewing automatic decomposition
algorithms and techniques based on graph partitioning. The general aim of the dis-
cussed methods is to provide decompositions consisting of sets of non-overlapping
subgraphs whose number of vertices is as similar as possible and the number of
interconnecting edges between them is minimal. The real case study based on the
Barcelona WTN in Chapter 2 is used to exemplify the discussed decomposition
methodologies.

16.1 Introduction

Large-scale systems (LSS) present control theory with new challenges due to the
large size of the plant and of its model [13, 21]. The goal to be achieved with control
methods for this kind of systems is to obtain a reasonable solution with a reasonable
effort in modelling, designing and implementing the controller.

333

334

As discussed in previous chapters, MPC has been proved to be suitably applied
for the control of LSS as drinking water networks [3], sewer networks [14], open-
flow channel networks [17] or electrical networks [15]. Nevertheless, the main hur-
dle for MPC control (as any other control technique) when applied to LSS in a
centralised way, is the non-scalability. The reason is that a huge control model is
needed, being difficult to maintain/update and which needs to be rebuilt on every
change of the system configuration, e.g., when some part of the system should be
stopped because of maintenance actions or malfunctions. Subsequently, a model
change would require re-tuning the centralised controller. It is obvious that the cost
of setting up and maintaining the monolithic solution of the control problem is pro-
hibitive. A way of circumventing these issues might be by looking into decentralised
MPC (DMPC) or distributed MPC techniques, where networked local MPC con-
trollers are in charge of controlling part of the entire system. The main difference
between distributed and decentralized MPC is that the former uses negotiations and
re-computations of local control actions within the sampling period to increase the
level of cooperation, whereas the latter does not (at the benefit of computation time,
but at the cost of optimality).

The industrial success of the traditional centralised MPC (CMPC) drives now a
new interest in this old area of distributed control, and distributed MPC has become
one of the hottest topics in process control in the early 21st century, worldwide.
Thus, two research projects (HDMPC [10] and WIDE [23]) are currently being
carried out in Europe, both focused on the development of decentralised and dis-
tributed MPC techniques. Few works have been recently published in this area; see,
e.g., [6, 11, 16, 18, 19, 22], among others.

However, in order to apply decentralised or distributed MPC approaches to LSS,
there is a prior problem to be solved: the system decomposition into subsystems. The
importance of this issue has already been noticed in classic control books address-
ing the decentralised control of LSS as [13, 21]. The decomposition of the system
in subsystems could be carried out during the modelling of the process by identify-
ing subsystems as parts of the system on the basis of physical insight, intuition or
experience. But, when a large-scale complex system with many states, inputs and
outputs is considered, it may be difficult, even impossible, to obtain partitions by
physical reasoning. A more appealing alternative is to develop systematic methods,
which can be used to decompose a given system by extracting information from
its structure and representing it as a graph. Then, this structural information can be
analysed by using methods coming from graph theory. Consequently, the problem
of system decomposition into subsystems leads to the problem of graph partitioning,
i.e., the decomposition of graph into subgraphs.

Graph partitioning is an important problem with extensive application in scien-
tific computing [12], optimisation, very-large-scale integration (VLSI) design [8],
task partitioning for parallel processing, control of cascading failures, among others.
However, the development of graph partitioning algorithms that allow the decom-
position of LSS into subsystems for being used in decentralised or distributed MPC
is still very incipient and available methods are quite limited. In [21], a hierarchical
LBT decomposition that leads to a input-reachable hierarchy for some particular

335

systems is presented. A more general approach is based on the ε-decomposition
method, which is based on decomposing the system in weakly coupled subsystems
(see also [21]). The algorithm proceeds sequentially disconnecting the edges of the
system graph that are smaller than a prescribed threshold ε and identifying the dis-
connected subgraph of the resulting graph. The obtained subsystems correspond to
the subsystems with mutual coupling smaller or equal than ε. However, the tuning
of this parameter is not a trivial issue and only a trial and error approach is currently
available.

16.2 Problem statement

A graph can be defined as an abstract representation of a set of objects from a certain
collection, where some pairs of objects are connected by links. The interconnected
elements are typically called vertices while the connection links are called edges.
These latter elements may be directed (asymmetric) or undirected (symmetric) ac-
cording to their connection features, what makes that the whole graph is directed
or undirected as well. It is also possible to distinguish graphs whether or not their
vertices and edges are weighted (weighted/unweighted graphs).

Consider a dynamical system represented in general form by the state-space
equations

x(k + 1) = g(x,u,d), (16.1a)
y = h(x,u,d), (16.1b)

where x ∈ Rnx and x(k + 1) ∈ Rnx are, respectively, the current and successor sys-
tem states in discrete time, u ∈ Rnu is the system input and d ∈ Rnd is a bounded
process disturbance. Moreover, g : Rnx ×Rnu ×Rnd → Rnx is the states mapping
function and h : Rnx ×Rnu ×Rnd → Rny corresponds with the output mapping func-
tion. Suppose now that it is desired to decompose (16.1) into subsystems. With this
aim, the graph representation of the system model (16.1) is determined (by using
the system topology) and incidence matrix Bi j is then stated, which describes the
connections (edges) between the graph vertices (system inputs, outputs and states).
Without loss of generality, Bi j and the directonality of the edges are derived from
the relation between system equations (rows of Bi j) and system variables (columns
of IM), as proposed by [21, 24, 25]. There are alternative matrix representations for
a (directed) graph such as the adjacency matrix and the Laplacian matrix (see [2]),
which are related to the matrix representation used in this paper. Once Bi j has been
obtained from the system directed graph (digraph), the problem of the decomposi-
tion into subsystems can be formulated in terms of partitioning the corresponding
graph into subgraphs. Since such partitioning is oriented to the application of a de-
centralised control strategy (in particular, DMPC), the resultant subgraphs should
have the following features (see [13, 21]):

- nearly the same number of vertices;

336

- few connections between the subgraphs.

These features guarantee that the obtained subgraphs have a similar size, fact
that balances computations between subsystem controllers and allows minimising
communications between them. Hence, the problem of graph partitioning can be
more formally established as follows:

Problem 16.1 (Standard Graph Partitioning). Given a graph G(V,E), where V
denotes the set of vertices, E is the set of edges, and M ∈ Z≥1, find M subsets V1,
V2, . . . , VM of V such that

1.
M⋃
i=1
Vi = V ,

2. Vi∩V j = ∅, for i ∈ {1,2, . . . ,M}, j ∈ {1,2, . . . ,M}, i 6= j,
3. |V1| ≈ |V2| ≈ · · · ≈ |VM|,
4. the cut size, i.e., the number of edges with endpoints in different subsets Vi, is

minimised.

Remark 16.1. Defining the vertex-based weight of a subset Vi as

Ωi ,
|Vi|∑
j=1

ω j
i , (16.2)

where ω j
i corresponds to the weight of the j-th vertex of the subset Vi, the following

condition should be added to Problem 16.1 in the case of weighted graph partition-
ing:

- Ωi ≈ Ω/M, with i ∈ {1,2, . . . ,M}, where

Ω,
M∑
i=1

Ωi. (16.3)

Remark 16.2. Conditions 3 and 4 of Problem 16.1 are of high interest from the de-
centralised control point of view since they are related to the degree of interconnec-
tion between resultant subsystems and their size balance, respectively.

Graph partitioning is considered as a NP-complete problem [21]. However, it
can be solved in polynomial time for |Vi| = 2 (Kernighan-Lin algorithm) [4, 7]. Since
this condition is quite restrictive for large-scale graphs, alternatives for graph parti-
tioning based on fundamental heuristics are properly accepted. Two main classes of
successful heuristics have evolved over the years, trying to achieve the proper trade
off between partitioning speed and quality. They are the minimum-degree-based
ordering algorithms (MDB), and the graph-partitioning-based ordering algorithms
(GPB) [9].

337

16.3 Proposed approaches

16.3.1 Using graph theory

This approach consists in proposing a partitioning algorithm, as much automatised
as possible, through which a partition of a dynamical system can be found, which
allows its decomposition in subsystems. This algorithm requires to represent the
dynamical system as a graph, which can obtained from the system structure [21].

Main algorithm

The partitioning algorithm proposed in this chapter follows some ideas developed in
[9] for graph partitioning purposes. However, some refining steps have been added
as well as some of the original procedures have been drastically changed in order
to find partitions oriented to split dynamical networked systems. Hence, the differ-
ent parts/routines of the main proposed algorithm are presented and explained in
sections below. The current version of the algorithm is though to be used off-line,
i.e., the partitioning of the system is not carried out on-line. A further improvement
could be to adapt the proposed algorithm such that the partitioning could be done
on-line when some structural change of the network occurs. In this way, the poten-
tial benefit of using a DMPC approach described in the Introduction could be fully
exploited.

Start up: This procedure requires the definition of the graph, i.e., the incidence
matrix13 Bi j, which describes the connections between the graph vertices, their
directionality and, in some cases, the weight of each edge.

Preliminary partitioning: This procedure performs a preliminary automatic par-
titioning of the graph as follows. The vertex v j ∈ V , for j ∈ {1,2, . . . , |V|}, with
maximum weight ω is found and defined as the centre of the first subgraph G1.
Then, all vertices connected to this vertex of maximum weight are assigned to
G1. At this point, the set of non-selected vertices is defined as

Vr , {v j ∈ V : v j /∈ V1}.

13 The incidence matrix of a directed graph G(V,E), denoted as Bi j , is defined such that

Bi j =

−1 if the edge z j leaves vertex vi,

1 if the edge z j enters vertex vi,

0 otherwise.

This matrix has dimensions ϕ×ηe, where ϕ corresponds with the total number of vertices and ηe
denotes de total number of edges [2]. Additionally, the weight of the j-th vertex, denoted as ω j ,
for j = 1,2, . . . ,ϕ, where ϕ , |V|, is computed. The weight ω j represents the number of edges
connected to this vertex. Moreover, ω j is also known as the vertex degree [5].

338

This procedure is now repeated for all vertices v j ∈Vr (now for j = {1,2, . . . , |Vr|})
until Vr is empty, after the corresponding updating. This routine highlights the
subgraphs of higher connectivity. The resultant subgraphs with just one ver-
tex are merged to the closest subgraph. Once a set of subgraphs Gi(Vi,Vi), for
i = 1,2, . . . ,M, is obtained, it is possible to determine some useful indexes for the
entire graph and each one of the resu subgraphs. These indexes are:

- ϕi , |Vi| (from now on called subgraph internal weight of Gi);
- εi, denoted as the cut size14 of the subgraph Gi (from now on called subgraph

external weight of Gi);
- ϕmax ,max

i
ϕi, for i = 1,2, . . . ,M;

- ϕ̄, 1
M

M∑
i=1
ϕi (arithmetic mean).

Notice that at this stage, the number M of subgraphs is obtained in an automatic
way so it is not imposed.

Remark 16.3. Notice that introducing the set Ẽa ⊂ E , defined as the set of edges
with endpoints in other subgraphs different to Ga, the representation of subgraphs
Gi such that

M⋃
i=1

Gi = G,

can be slightly modified to Gi(Vi,Ei, Ẽi) for completeness purposes. Also notice that
εi , |Ẽi|.

Uncoarsening - Internal balance: This procedure aims at the reduction of the
number of subgraphs, trying to achieve similar internal weights for all of them.
This process starts determining the set

L = {Gi, i = 1,2, . . . ,m : ϕi ≤ ϕ̄}, (16.4)

with m ∈
mathbbZ+ and m<M. For each Gi ∈L, the set of neighbour15 subgraphs, denoted
as Ni, is determined and expressed as

Ni = {G j, j = 1,2, . . . ,hi : G j is neighbour of Gi}, (16.5)

with hi = |Li|. If the condition

ϕi +ϕ j ≤ ϕ̄, i ∈ {1,2, . . . ,m}, j ∈ {1,2, . . . ,hi} (16.6)

holds for Gi ∈ L and G j ∈ Ni, then these two subgraphs are merged. If there are
two or more subgraphs G j ∈ Ni such that (16.6) holds, the subgraph G j ∈ Ni

14 See Problem 16.1.
15 Two subgraphs are called neighbours if they are contiguous and share edges (see, e.g., [1] among
many others).

339

with minimum internal weight is selected. Once two subgraphs are merged, ϕ̄ is
updated.
This procedure is iterated until no additional merging was possible. It is consid-
ered that the internal balance has been achieved when either

- ϕ̄≤ ϕi ≤ ϕmax, for i = 1,2, . . . ,M, or
- Gi with ϕi ≤ ϕ̄ cannot be merged with any of its neighbours since the ϕ asso-

ciated to the resultant subgraph might be greater than ϕmax.

Refining - External balance: This procedure aims at the reduction of the cut size
of the resultant subgraphs. To achieve this goal, define ω j

i as the degree of the j-
th vertex of the i-th subgraph, with j ∈ {1,2, . . . ,ϕi} and i ∈ {1,2, . . . ,M}. From
this definition, two indexes can be stated:

- the vertex internal degree, denoted as ω̂ j
i , which represents the number of

connections of the vertex v j ∈ Vi, for j ∈ {1,2, . . . ,ϕi}, i ∈ {1,2, . . . ,M},
with other vertices vp ∈ Vi, p ∈ {1,2, . . . ,ϕi}, p 6= j;

- the vertex external degree, denoted as ω̆ j
i , which represents the number of

connections of the vertex v j ∈ Vi, for j ∈ {1,2, . . . ,ϕi}, i ∈ {1,2, . . . ,M},
with other vertices vp ∈ Vq, p ∈ {1,2, . . . ,ϕq}, q ∈ {1,2, . . . ,M}, q 6= i.

Hence, for a given vertex v j ∈ Vi, if ω̂ j
i < ω̆ j

i , then vertex v j is moved from
subgraph Gi(Vi,Ei, Ẽi) to the subgraph in which most of its edges have their end-
point (like in the AVL tree algorithm [5]). All indexes should be updated for the
M subgraphs and the next vertex is analysed. This procedure will last until each
subgraph vertex fulfils ω̂ j

i ≥ ω̆ j
i .

The Complete Algorithm: Algorithm 13 collects all the procedures/routines men-
tioned and explained before. Hence, applying this algorithm to the graph asso-
ciated to a given dynamical system, the expected result consists of a set of sub-
graphs which determines a particular system decomposition. This set P is then
defined as

P =

{
Gi, i = 1,2, . . . ,M :

M⋃
i=1

Gi = G

}
. (16.7)

340

Algorithm 13 Graph partitioning algorithm
1: Bi j ← System topology
2: G(V,E)← Bi j
3: for j = 1 to ϕ do
4: Compute ω j

5: end for
6: Vr ←V , i = 1
7: repeat
8: Find v ∈ Vr with maximum ω
9: Vi← v and all its neighbour vertices

10: Vr , V −

{
i⋃

h=1
Vh

}
11: i = i + 1
12: until Vr = ∅
13: for i = 1 to M do {Compute some indexes}
14: ϕi , |Vi| {internal weight}
15: εi , |Ẽi| {external weight}
16: end for
17: ϕmax , max

i
ϕi

18: ϕ̄, 1
M

M∑
i=1
ϕi {arithmetic mean}

19: Compute L {see (16.4)}
20: bint = false {Internal balance}
21: while bint = false do
22: for i = 1 to m do
23: ComputeNi {see (16.5)}
24: for j = 1 to h do
25: if ϕi +ϕ j ≤ ϕ̄ then {see (16.6)}
26: G∗ = Gi∪G j
27: Gnew← G∗ with minimum ϕ∗
28: Update ϕ̄
29: end if
30: end for
31: end for
32: Update ϕi
33: bext = false {External balance}
34: while bext = false do
35: for i = 1 to M do
36: for j = 1 to ϕi do
37: Compute ω̂ j

i and ω̆ j
i

38: if ω̂ j
i < ω̆

j
i then

39: Move v j from Gi to its neighbour
40: end if
41: Update ϕi, ϕ̄, ϕmax

42: end for
43: end for
44: Update all indexes
45: Check external balance (nodes)
46: end while
47: Check internal balance (subgraphs)
48: end while
49: return P {see (16.7)}

341

Auxiliary routines

Despite Algorithm 13 yields an automatic partitioning of a given graph, it does
not imply that the resultant set P follows the pre-established requirements stated in
Problem 16.1. In this sense, complementary routines can be useful for improving
the partitioning process according to the considered application. Additional auxil-
iary routines could be added such that the generated partitioning takes into account
the control performance that would be achieved when used in decentralised or dis-
tributed MPC control.

Pre-filtering: In general, the resultant solution given by the Algorithm 14 is
nearly appropriate in terms of ω̂ and ω̆, but it highly depends on the topology
and complexity of the graph. For this reason, in order to obtain a better graph
partitioning, sometimes it can be useful to make a Pre-filtering routine, where all
the vertexes with ω = 1 are virtually merged to this vertex that shares its unique
edge. This procedure creates supranodes, which should be properly recognised
at the moment of determining the partitioning of the dynamical system from the
decomposition of its associated graph. Moreover, doing the manual merging of
those vertices reduces the work done by subsequent routines.

Post-filtering: On the other hand, suppose that after partitioning a given graph
G(V,E) by using Algorithm 13, all the M resultant subgraphs fulfil

ϕ̄ ≤ ϕi ≤ ϕmax, for i ∈ {1,2, . . . ,M}. (16.8)

However, the following situation could occur. Suppose a subgraph Ga with
ϕa � ϕ̄, which is placed next to a subgraph Gb and fulfils (16.8). The merg-
ing of subgraphs Ga and Gb, expressed as Gc , Ga ∪ Gb, is not allowed
since ϕc ≥ ϕmax. The Post-filtering routine implements an approximation and a
parametrisation, i.e., by adding a small tolerance δ, the existence of the resultant
subgraph Gc is now allowed since ϕc ≤ ϕmax

+ δ. This relaxation allows to have
less subgraphs but with higher complexity and internal weight.

Anti-oscillation: This procedure leads to solve a possible issue when the refining
(external balance) routine is run. When a vertex is moved from one subgraph to
another according to its internal and external degrees, there exists the possibility
of doing this movement during an infinite time if there is no specification of
routine ending. Therefore, the refining routine is then run within a for loop and
the parameter ρ is set as the maximum number of iterations that this procedure
is executed. Afterwards, since the resulting set of subgraphs is stored at each
iteration t′ ∈ Z+, t′ = {1,2, . . . ,ρ}, the configuration of M subgraphs with
minor εi, for i = 1,2, . . . ,M, can be chosen.

Some practical issues

Given that the partitioning algorithm proposed in this chapter is mainly thought
for performing decentralised control of LSS, several features could be taken into

342

account to achieve a convenient system partitioning and less complex controller
designs. For instance, an additional routine that would restrict the connection of
subgraphs with unidirectional edges would be very useful since a pure hierarchical
control scheme can be straightforwardly implemented, decreasing the inherent loss
of performance of a decentralised control scheme.

16.3.2 Using masks

The application of DMPC to WTN depends crucially on how the network is de-
composed into subsystems. Identifying subsystems is not an easy task in a large-
scale network as it involves to find automatically sufficiently small sections of the
networked plant that are not too coupled among them. The partitioning algorithm,
proposed in this chapter, aims to obtain this decomposition automatically by iden-
tifying clusters of elements that are strongly connected with each other but weakly
interconnected with the other clusters, in order to represent the whole network as
a set of loosely coupled subsystems [20]. The current version of the algorithm is
though to be used off-line, that is, the partitioning of the system is static and is not
carried out on-line. A further improvement could be to adapt the proposed algorithm
such that the partitioning could be done on-line when, for instance, some structural
change of the network appears.

As a starting point, the partitioning algorithm requires the following information
of the WTN:

1. The interconnection structure characterised by the matrix

Ic =
[

Asp Bsp
]
, (16.9a)

where

Asp =
[

A 0
0 0

]
, Bsp =

[
B
E

]
, (16.9b)

where A and B are the system matrices in (12.8), the subscript sp identifies
the matrices used for system decomposition, and E , [Eu Ed] is the matrix
related to the equality constraints (16.10b). In order to take into account input
bounds, new normalised inputs are introduced ū , u/umax so that ū ∈ [0,1].
Thus, new matrices B̄ and Ē are introduced in (16.9b) to take into account the
rescaling. From matrix Ic, the adjacency matrix Ψ of the network graph can be
obtained by replacing the non-zero elements by ones, leaving the null elements
unchanged.

2. A threshold value ε is used for determining whether a term, which takes into ac-
count the actuator capacity (maximum allowable flow) and its usage frequency,
has a negligible effect on the entire plant. In this way the less important actu-
ators are filtered out, in order to reduce the coupling degree of the system and
identify independent subnetworks.

343

The partitioning algorithm proceeds by decomposing the matrix Ic into a set
of submatrices, named as partitions and denoted by Pε = {Ic1, · · · ,IcM}. Then,
Pε correspond to a set of subgraphs (subsystems) obtaining by deleting the edges
corresponding to elements of Ic with magnitude no larger than ε. That is, the idea
behind the partitioning approach is to neglect less important elements (i.e., links)
in matrix Ic such that the resulting Ĩc is less coupled. Ideally, Ĩc should lead to a
permutation matrix P such that P′M̃P is block-diagonal. This procedure is repeated
iteratively by reducing ε until an enough number of partitions is obtained. Algorithm
14 summarises the steps of the proposed partitioning algorithm.

Partitions can be tuned by means of parameter ε of the proposed approach, which
makes the user able to attempt matching the desired number and size of subsystems.

Typically, in the first iteration, Algorithm 14 neglects a high number of elements
of Ic, highly reducing the matrix connectivity degree and obtaining a subsystem
decomposition. Then, once the sets of states/inputs relative to each partition are
computed, the task of finding a suitable P that block-diagonalises the matrix P′M̃P
is a matter of linear algebra implementation. Every subsystem is composed by sets
of state and input variables that are linked, meaning that are in the same block in the
P′M̃P diagonal. Let X i and U i be respectively the sets of state and input variables
assigned to subsystem i, while |X i| and |U i| determine the number of variables for
each set. A subsystem is created if both numbers are different than zero. All state
and input variables that are not assigned to any of the currently created subsystems,
i.e., that does not belong toX i or U i, respectively, are available for the next iteration.
Otherwise, variables already assigned to a subsystem in the current or in a previous
iteration, are masked16 to prevent their reassignment to other subsystem.

Then, a new iteration of the algorithm starts by decreasing ε (e.g., halving ε).
Algorithm 14 iterates until all state variables are assigned to a subsystem. Note that
the algorithm may terminate even if some inputs are not be assigned to any subsys-
tem, which is due to automatic threshold based neglecting process. Such issue can
be managed by manually include unassigned inputs to proper subsystem following
engineering insight.

The importance of the mask arises from the structure of the algorithm. In fact,
if not excluded, all previously assigned states and inputs would be part of the next
iteration partition, introducing couplings and hence increasing the size of the result-
ing submodels. The aforementioned inclusion easily follows from the decreasing of
ε among sequential iterations.

Few remarks on the above algorithm:

1. At any iteration of Algorithm 14, the numerical value of ε is a crucial tuning
knob of the approach. A guideline is that the larger is the decreasing step, the
larger is the size of the obtained subsystems. Ways for automatically determin-
ing the step size are a subject of current research.

2. Matrix E in (16.9b) defines a constraint among actuators that can be easily
taken into account if all the actuators belong to the same subsystem. Otherwise,

16 Consider a variable to be masked when it does not belong to any set since it has already been
classified in a previous iteration.

344

Algorithm 14 Automatic partitioning algorithm
1: Initialise masks to a neutral value
2: Initialise the sets of unassigned variables X and U with all state and input variables, respec-

tively
3: Determine the number of unassigned states: Nx = |X |;
4: Init ε
5: while Nx > 1 do
6: Apply masks to Asp and Bsp
7: Ic = [Asp Bspū]
8: For all elements of Ic
9: if Ic i, j < ε then

10: Ĩc i, j = 0;
11: else
12: Ĩc i, j = 1;
13: end if
14: Find P such that P′M̃P is block diagonal
15: Identify parts satisfying Nxi = |X i| > 0 and Nui = L(U i) > 0 and add to previous ones
16: Update Nx
17: Update masks with updated states and inputs
18: Update ε
19: end while

since each controller manipulates every partition independently from the others,
negotiations between controllers would be required to guarantee the fulfilment
of node constraints.

3. The use of masks to prevent state reassignment avoids that submodels have
overlapping states and inputs: if a state variable is used in a model by a con-
troller, no other controller can use it. The main benefit of this choice is the
very low level of coupling between partitions, but the price to pay is a potential
decrease of closed-loop performance.

4. The current structure of the algorithm is unsuitable to handle state overlaps
because it relies on links between elements that present different degree of cou-
pling. Hence, once the stronger couplings are eliminated (using masking), the
weaker ones gain relative importance. State overlaps may be introduced a pos-
teriori based on engineering insight, in order to increase the adherence with
respect the original centralised model. Handling overlapping in an automatic
way is also a current research topic.

5. In some cases even relatively small connections, i.e., capable of carrying a mi-
nor amount of water, are very important for demand satisfaction. A way of
accounting for such an issue is to perform a simulation using, for instance, a
CMPC controller, and compute the average percentage of use for each actuator.
Thus, this information could be used to weight ū component-wise. The main
drawback of this approach is the need of (and dependence on) simulation.

6. Note that the proposed algorithm can be customised by setting different impor-
tance levels of states vs. inputs, by weighting the related components in Ic from
its statement at (16.9a).

345

7. The structure of the proposed algorithm suggests that termination is achieved
if the ε value is decreased at each iteration. However, at the current status of
development, the algorithm cannot guarantee any property for the resulting par-
titioning but the assignment of all system-state variables to a subsystem.

The decomposition process of matrix Ic reported here is similar to the one pro-
posed by the ε-decomposition method in [20]. The underlying idea in both cases is to
disconnect those actuators corresponding to interconnections with strength smaller
than the prescribed ε, identifying the disconnected subsystems. According to [20],
there are s different ε-decompositions Pε that can be obtained for different values
of ε satisfying

max
i 6= j

∣∣mi j

∣∣ = ε1 < ε2 < · · ·< εK = 0,

with K≤ s, where s = dim(Ic). Moreover, such decompositions are nested, that is, the
partitions obtained satisfy: Pε1

⊂ Pε2
· · ·PεK

with Pε1
being the finest and Pεk

the
coarsest. The main novelty of the algorithm presented in this chapter is the matrix
normalisation taking into account actuator physical/operative limits, and the itera-
tive threshold updating that allows one to take into account weaker coupling without
being influenced by the stronger ones.

16.4 Simulations and results

16.4.1 Results using masks-based approach

Using the partitioning algorithm presented in this section, the aggregate model of the
Barcelona WTN is decomposed in three subsystems, as depicted in Figure 16.1 in
different colours. The resultant decomposition follows the scheme shown in Figure
16.2, where µi denotes the i-th vector of shared variables among the subsystems S j,
for j = 1, . . . ,M. The subsystems are defined by the following elements:

- Subsystem 1: Composed by tanks xi, i ∈ {1,2}, inputs u j, j ∈ {1 : 5}, demands
dl , l ∈ {1,2,3}, and nodes nq, q∈ {1,2}. It is represented in Figure 16.1 with red
colour and corresponds to Subsystem S1 in Figure 16.2.

- Subsystem 2: Composed by tanks xi, i ∈ {3,4,5,12,17}, inputs u j, j ∈ {7 :
16,18,19,25,26,32,34,40,41,47,48,56,60}, demands dl , l ∈{4 : 7,15,18,22},
and nodes nq, q ∈ {3,4,7}. It is represented in Figure 16.1 with green colour and
corresponds to Subsystem S2 in Figure 16.2.

- Subsystem 3: Composed by tanks xi, i ∈ {6 : 11,13 : 16}, the inputs u j, j ∈
{6,17,20 : 24,27 : 31,33,35 : 39,42 : 46,49 : 55,57,58,59,61}, demands dl ,
l ∈ {8 : 14,16,17,19,20,21,23,24,25}, and nodes nq, q ∈ {5,6,8 : 11}. It is
represented in Figure 16.1 with blue colour and corresponds to Subsystem S3 in
Figure 16.2.

346

F��3$/

F���3$/

&3,9

G���3$3 F���3$3

&3,,

G��5(/B�

G���)&(F���)&(
96-'B��

F���//2

G��*$9L��&$6
��&52

F��*$9L��&$6

F��//2

9&$

&5(

&*,9

&&$G���&$67

F���&$67

9&5

&%

G3/17

$SRW//�

&3/17��
&3/17��

G��&25

F��&25

3/17��

&&��
&&��

F��)//

9=)

9&7

97

F���%//VXG

950

9&2 &&2

96

&(

9(

F���%$5

&)���

&)���

G���%//F���%//

9)

G���%$5VXGF���%$5VXG

F���%$5V�F

9%

93

90&

G���$/7

F���$/7

9%6//

G���%$5QRUG

F���%$5QRUG
G���0,5

F���0,5

&$

F���%//FHQWUH

936-

G���%//QRUG

F���%//QRUG

9&2$

G��%%(VXG

F��%%(VXG

&&���
&&���

&52

D06 E06

D3RXV%

D3RXV(

D3RX&DVW

E3RXV%

E3RXV(

E3RX&DVW

G���%$5

F���//2

G���3$/

Q$SRUW$� 1��SDO

Q���//2

Q��//2

Q���//2

Q���%//VXG

Q��)//

Q���%$5VF

Q���%//FHQWUH

9$/9$��

9$/9$

9$/9$��

9$/9$��

9$/9$��

9$/9$��

9$/9$��

9$/9$��

9$/9$��

Q$SRUW7

$SRW//�

F���%$5FHQWUH

Q���%$5FHQWUH

SRW

9$/9$��

9$/9$��

9%0&

9$/9$��

9$/9$��

9$/9$���

9$/9$���

9$/9$���

$&DVW�

E&DVW

&35

&02

G���320

F���320

9&21

Q���6&* F���6&*

X���

X���

X���

X���

X���

X���

X���

X���

X����

X���

X����

X����

X����

X����

X���� X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

X���� X����

X����

X����

X����

X����

X����

X����

X����

X����

X����

Q3/17

[���

[���

[���

[���

[���

[���

[���

[���

[���

[����

[����

[����

[����

[����

[����

[����

[����

G���

G���

G���

G���

G���

G���G���

G���

G���

G����

G���� G����

G����

G����

G����

G����

G����

G����

G����

G����

G����

G����

G����

G����

1RGH���
1RGH���

1RGH���

1RGH���

1RGH���

1RGH���

1RGH���

1RGH���

1RGH����

1RGH���

1RGH����

1RGH����

Fig. 16.1 Partition of the Barcelona WTN, aggregate model

Table 16.1 Dimension comparison between the subsystems and the whole network.

Elements Subsystem 1 Subsystem 2 Subsystem 3 Whole Model

Tanks 2 5 10 17
Actuators 5 22 34 61
Demands 3 7 15 25

Nodes 2 3 6 11

Table 16.1 collects the resultant dimensions for each subsystem and the corre-
sponding comparison with the dimensions of the vectors of variables for the entire
aggregate network.

16.4.2 Results using graph-theory-based approach

This section presents the results of the application of Algorithm 14 for the parti-
tioning of the Barcelona WTN into compositional subsystems. Algorithm 13 and
auxiliary routines presented in Section 16.3.1 have been designed for any system.
However, some particular features should be introduced depending on the consid-
ered case study and control law in order to obtain an suitable decomposition. More

347

Fig. 16.2 Conceptual scheme of the partitioned Barcelona WTN

precisely, the graph of the Barcelona WTN has been derived from its mathematical
model expressed in the way introduced in Chapter 12, i.e.,

x(k + 1) = Ax(k) + Bu u(k) + Bd d(k), (16.10a)
0 = Eu u(k) + Ed d(k), (16.10b)

under the following considerations:

- every tank, sector of consume, water source and node is considered as a vertex
of the graph;

- every pump, valve and link with a sector of consume is considered as a graph
edge.

In order to evaluate the partitioning results obtained from the application of Al-
gorithm 13 and auxiliary routines to the Barcelona WTN, the following indexes are
taken into account additionally to those previously introduced:

- ε,
M∑
i=1
εi,

- ε̄, ε
M (arithmetic mean),

- σ2
ϕ ,

1
M

M∑
i=1

(ϕi − ϕ̄)2,

- σ2
ε ,

1
M

M∑
i=1

(εi − ε̄)2.

Remark 16.4. Notice that although ε is not directly related with the number of
shared edges between subgraphs obtained by using Algorithm 14, this index gives an
indirect idea about their level of interconnection. Recall that the objective of the par-
titioning algorithm is the minimisation of indexes σ2

ϕ, ε, and εi (for i = 1,2, . . . ,M)
to obtain a graph decomposition as less interconnected as possible and with similar
number of vertices for each subgraph (internal weight).

348

Table 16.2 Results for different partitioning approaches

ROUTINE M ϕ̄ ε̄ σ2
ϕ σ2

ε εCOMBINATION

1 17 10.59 3.76 53.88 25.32 64
2 13 6.30 4.15 21.39 27.80 54
3 10 8.20 5.10 31.73 32.76 52
4 6 13.67 6.33 14.88 25.22 38

c70P AL

c125P AL

iPalleja4

d110P AP

c 110 PAP

iPapiol2AGBAR

d54R EL

d100C FE

c100C F E
vSJD

c100 LLO

d80GAVi80CAS
85CRO

c80GAVi80
CAS85CRO

c70L LO

vC anyars

iR elleu

iGava4
iC astelldefels

d115CAST

c115 CAST

vC an R oca

iB ellamar

dPLANTAA po rtLL1

iSJD70

iSJD50

cRECARREGA

iSJD10

iC ornella50

iC ornella70

c70FLL

vZ onaFranca

v C erda Traja

vTorrassa

v R ossichMaq

vC ollblanc

iC ollblanc

iE splugues

v Esplugues

c130BAR

iFinestrelles200

iFinestrell
es176

d200BLL

c200BLL

vF inestrelles

d176BARsud

c176BARsud

c200BARsc

vBonanova

vP ortola

v M inaCiutat

d200A LT

c200ALT

vB aroStLluis

c200BARnord

d101MIRc101MIR

iA ltures

v PsgStJoan

c100BLL
nord

d70BBE

c70BBE

iC ornella100

iC ornella130

iR oquetes

aMS

iM ina Seix

aPou sCAST

iPou sCAST

aPousB

aPousE

iEtapBesos

iEstrella 12

d130BAR

c140L LO

d 125 P AL

nAportA2

AportT

vPalleja70

vA brera

v FontSanta

vGava100_80

vTrinitat70

vTrinitat10
0

vTerMontcadavTerCarmel

vTrinitat130

Apo rtLL2

c176BARcentre

n176BARcentre

Apo rtA

vTrinitat200

vSifoTer
v BesosMontc

Cerd

v70LLO70FLL

v70FLL70LLO

vTer

iSJDSpf

iSJDSub

d205FON d320FON
iPalleja1 iPalleja2

c205FON c320FON

c356 FON

d175P AP

c 175 i135 PAP

vP apiol ATLL

c82P AL

d130 LSE
iL aSentiu

c 130 LSE

a CAST8
iC astelldefels 8

d
145M MA

iM as Jove

c145M MA

c175 BVI

iS tBoi

iV iladecans 1

iS tCliment 1

iBegues 1

d150S BO

d175 LOR

iOrioles

d184 BEG

d255B EG

iB egues 2

d114S CL

d190S CL

iS tCliment2

d135V IL

d185V IL

iViladecans2

d369B EG

iB egues 3

d450B EG
iB egues4

C175 LOR C185V IL c190S CL

c255 BEG

c150 SBO C135 VIL c114S CL C184ESP

c 369 BEGc450B EG4

iC anRoig

c195T or

d147 SCC

iS taClmCervello
c147S CC

d205C ES

iC escaplina 1

c205 CES

d263C ES

iC escaplina 2

c26 3CES

d252C GL

d313C GL

iC anGuell 2 d3

d246C GYd200C GY

d268 CGY

c200C GY c246C GY c252C GL

iC anGuey 1 d2 iC anGuey 1 d 5 iC anGuell 1

iC anGuey 2

c268C GY

d361C GY

c36 1CGY

iC anGuey 3

d374C GL

iC anGuell 2d 5

c374C GL c313 CGL

d200B SO

iB ellsoleig

c200B SO

d437V VI

c300BAR

iFinestrelles300

d320M GB

iPapiol1

c320M GB C437 VVI

iM asGuimbau1
iT ibidabo

d400M GB

iM asGuimbau2

c400M GB

c475M GB

c541 TIB

d255C AR

iC armel

c255 CAR d260 SGE

d328S GE

c260S GE

c328S GE

iStGenis1

iS tGenis2

d250T BA

c250T BA

iTorreBaro2

iC erd UAB iC erdMontflorit

d197BET

d215V ALL

d184S MM

iStaMaMontcada

d132C MF

d200F DM

iF lorMaig

c238UAB

c200F DM

c184SMM

c197BET

c132C MF C215 VALL

c250VASAB

iV allensana1

c260V ALL c275BEV

d169CME
iTorreBaro1

c169 CME

c55BAR

d120POMiM orera

iMntjcStaAmalia

iMntjcTresPins

d171S AM

d144T PI

d190T CA

c144T PI

C171
SAM c190TC A

c120POM

d117M TG

c117MTG

c135SCG

d151B ON

d197G UI

c151B ON

c197G UI

d225G UI

c225GUI

iB onavista

iG uinardera1

iGuinardera2

c70CFE

v BesosStaColoma

c100B ES

vFo ntAlzina

iTorreoCastell

iS taClmMarin
a

v F inestrllEsplg

c150ALT

c176BARn

d202C RU c202C RO

iC anRuti

d1 d2

d3 d4 d5

d6

d7 d8 d9 d10

d11

d12

d13

d14 d15

d16

d17 d18

d19 d20 d21

d22

d23 d24 d25

d26

d27

d28
d29

d30

d31

d32

d33

d34

d35

d36

d37

d38

d39

d40

d41

d42

d43

d44

d45 d46

d47 d48

d49

d50

d51

d52 d53

d54d55

d56 d57

d58 d59

d60

d61

d62

d63

d64

d65

d66d67

d68
d69

d70

d71

d72

d73

d76

d77

d7 8

d79 d80

d81

d82

d83

d84
d86

d85

d87

d8 8

x1 x2

x3 x4 x5 x6

x7 x8 x9 x10

x11

x12

x13

x14

x16 x17 x18

x19

x20 x21

x22

x23 x24 x25

x26

x27

x28 x29 x30

x31

x32x33

x34

x35

x36

x37

x38

x40

x41

x39

x42

x43

x44 x45

x46

x47 x48

x49

x50

x51

x52

x53

x54x55

x56

x57x58

x62

x60

x59

x61

x63

x64

x65

x66

x67

u1

u2

u3 u4 u5 u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u16

u17
u18

u19 u20 u21

u22

u23

u24 u25

u26
u27

u28

u29 u30

u31
u32

u33

u34

u35

u36u37

u38

u39

u40

u41

u42

u43

u44 u45

u46

u47

u48

u49

u50

u51
u78

u52

u53

u54u55

u56

u57
u58

u59
u79

u60

u83

u61

u62u63

u64

u65

u66

u67

u69

u68

u71

u70

u72

u73

u74

u75

u76

u77

u80

u81

u84

u120

u86

u87 u88

u89

u90

u91

u92

u93

u94

u95

u96

u97

u98

u99

u100
u101

u102

u104

u105

u106

u107

u108

u110

u109

u111

u112

u113

u115

Node 1
Node 2

Node 3

Node 4

Node 5

Node 6Node 7

Node 8

Node 11

Node 10

u116

vConflent

vMontigala

iV allvidrera

d300BAR

d10C OR

d195TOR

n70PAL

n200BARs-c

n140LLO

n100LLO

n70FLL

n70LLO

n100BES

nAportT

u117

n135SCG
Node 13

u118

vC ncpcioArenal
u82

c100BLL
centre

d7 4

c100BLL
sud

d7 5

vSarriaCS

vS arriaSC

u114

U119

Node 10
n100BLLcentre

Node 9
n100BLLsud

Node 14

aPousE iEstrella 3456

u121

u85
Node 15

vPallejaATLL

vTerStaColoma

vSJDTot

vPousEstrella

u103
iPR

d82Palleja

x15

d200BARnord

d100BLLnord

Fig. 16.3 Definitive partition of the Barcelona WTN. The key elements are properly featured

Table 16.2 summarises the partitioning results obtained applying Algorithm 13
(A1) combined with the auxiliary routine/filters presented in Section 16.3.1 per-
forming the following combinations:

1. No auxiliary routines are considered.
2. A1 and Pre-filtering (Pre-F) routine only.
3. A1 in addition to Pre-F and Post-filtering (Post-F) routines.
4. A1 in addition to Pre-F, Post-F and Anti-Oscillation (AO) routines.

This distinction has been done in order to understand how the proposed routines
affect the partitioning results.

Using only the Algorithm 13, the resultant partitioning P is comprised by 17
subgraphs. Many of them are small and cannot be merged since their neighbour
subgraphs have internal weights with values quite close to ϕ̄ (see Section 16.3.1).
Moreover, there are several vertices with ω = 1, which correspond to network wa-
ter sources and demands, leading to unnecessarily difficult algorithm computations
due to sizes of the resultant subgraphs (in terms of internal weight). By employing
the Pre-F routine, the previous problems are fixed and Algorithm 13 produces 13

349

Table 16.3 Dimension comparison of the WTN subsystems

SUBSYSTEM Tanks Actuators Demands Nodes

1 13 36 20 5
2 11 11 11 0
3 13 22 20 3
4 9 16 12 2
5 6 10 8 2
6 15 26 17 3

Total 67 121 88 15

Table 16.4 Dimensions of shared links µi j

SET µ12 µ13 µ14 µ16 µ31 µ34 µ51 µ61

NUMBER OF u’S 2 2 2 2 4 3 1 3

subgraphs (see Table 16.2). Additionally, if the refining routine embedded within
Algorithm 13 is complemented with the Post-F routine, setting δ = 2, a partitioning
with ten subgraphs is reached17. Finally, if the AO routine is also considered, set-
ting the refining limit to ρ = 250, a partitioning with six subgraphs is now reached.
According to Table 16.2, this last partitioning (Combination 4) satisfies the minimi-
sation of the average of the internal weights for all resultant subgraphs as well as
the interconnection degree between subgraph measured through ε. It is important to
highlight that the proposed partitioning approach automatically determines the final
number of partitions M (six for this case) when the conditions 3 and 4 of Problem
16.1 are fulfilled (see Remark 16.2). The tuning parameters δ and ρ also influence
in the obtained value of M.

Notice that each subgraph of the final decomposition corresponds to a subsystem
of the Barcelona WTN with the number of elements presented in Table 16.3. Figure
16.3 shows, in different colours, the obtained subsystems of Barcelona WTN.

Moreover, Figure 16.4 schematically shows the disposition of the resultant sub-
systems Si, for i ∈ {1, . . . ,6}, and the sets µi j of shared links between the network
subsystems corresponding to the control inputs u (manipulated flows), whose direc-
tionality is defined from Si to S j for j ∈ {1, . . . ,6}, i 6= j. Table 16.4 collects the
number of control inputs of each set µi j.

17 Notice that increasing the parameter δ implies that σ2
εi

becomes bigger.

350

Fig. 16.4 Network subsystems Si and their sets of shared connections µi j

16.5 Conclusions

This chapter has proposed two approaches for the automatic partitioning of a WTN
into subsystems intended to be applied along with a non centralized model predic-
tive control strategy. The algorithm transforms the dynamical model of the given
system into a graph representation. Once the equivalent graph has been obtained,
the problem of graph partitioning is then solved. The resultant partitions are com-
posed of a set of non-overlapping subgraphs such that their sizes, in terms of num-
ber of vertices, are similar and the number of edges connecting them is minimal.
To achieve this goal the algorithm applied a set of procedures based on identifying
the highly connected subgraphs with balanced number of internal and external con-
nections. Some additional pre-filtering and post-filtering routines are also needed
to be included to reduce the number of obtained subsystems. The performance of
the proposed decomposition approach has been assessed in a real case study based
on the Barcelona WTN. An study of the effect of auxiliary routines on the basic
partitioning algorithm has also been included showing the benefits of their use.

References

[1] L. Addario-Berry, K. Dalal, and B. Reed. Degree-constrained subgraphs. Dis-
crete Applied Mathematics, 156(7):1168–1174, 2008.

[2] J.A. Bondy and U.S.R. Murty. Graph Theory, volume 244 of Graduate Series
in Mathematics. Springer, 2008.

351

[3] M. Brdys and B. Ulanicki. Operational Control of Water Systems: Structures,
algorithms and applications. Prentice Hall International, UK, 1994.

[4] T.N. Bui and B.R. Moon. Genetic algorithm and graph partitioning. IEEE
Transactions on Computers, 45(7):841–855, 1996.

[5] T.H. Cormen. Introduction to algorithms. The MIT press, 2001.
[6] W. B. Dunbar. Distributed receding horizon control of dynamically coupled

nonlinear systems. IEEE Transactions of Automaic Control, 52(7):1249–1263,
July 2007.

[7] S. Dutt. New faster kernighan-lin-type graph-partitioning algorithms. In Pro-
ceedings of the IEEE/ACM international conference on Computer-aided de-
sign, pages 370–377. IEEE Computer Society Press, 1993.

[8] P. Fjallstrom. Algorithms for graph partitioning: A survey. Linkoping Elec-
tronic Articles in Computer and Information Science, 3(10), 1998.

[9] A. Gupta. Fast and effective algorithms for graph partitioning and sparse-
matrix ordering. IBM Journal of Research and Development, 41(1):171–183,
1997.

[10] HD-MPC. Hierarchical and distributed model predictive control of large-scale
complex systems. Home page, 2008.

[11] T. Keviczky, F. Borrelli, and G.J. Balas. Decentralized receding horizon con-
trol for large scale dynamically decoupled systems. Automatica, 42(12):2105–
2115, December 2006.

[12] F. Li, W. Zhang, and Q. Zhang. Graphs partitioning strategy for the topology
design of industrial network. IET Communications, 1(6):1104–1110, 2007.

[13] J. Lunze. Feedback Control of Large-Scale Systems. Prentice Hall, Great
Britain, 1992.

[14] M. Marinaki and M. Papageorgiou. Optimal Real-time Control of Sewer Net-
works. Springer, Secaucus, NJ (USA), 2005.

[15] R.R. Negenborn. Multi-Agent Model Predictive Control with Applications
to Power Networks. PhD thesis, Delft University of Technology, Delft, The
Netherlands, September 2008.

[16] R.R. Negenborn, B. De Schutter, and J. Hellendoorn. Multi-agent model pre-
dictive control for transportation networks: Serial vs. parallel schemes. Engi-
neering Applications of Artificial Intelligence, 21(3):353–366, April 2008.

[17] P.J. Van Overloop. Model Predictive Control on Open Water Systems. Delft
University Press, Delft, The Netherlands, 2006.

[18] J. B. Rawlings and B. T. Stewart. Coordinating multiple optimization-based
controllers: New opportunities and challanges. Journal of Process Control,
18(9):839–845, October 2008.

[19] R. Scattolini. Architectures for distributed and hierarchical Model Predictive
Control: A review. Journal of Process Control, 19(5):723–731, May 2009.

[20] M. E. Sezer and D.D. Siljak. Nested ε-decomposition and clustering of com-
plex systems. Automatica, 22(3):321–331, 1986.

[21] D.D. Šiljak. Decentralized control of complex systems. Academic Press, 1991.
[22] A. N. Venkat, I. A. Hiskens, J. B. Rawlings, and S. J. Wright. Distributed

MPC strategies with application to power system automatic generation con-

352

trol. IEEE Tran on Control Systems Technology, 16(6):1192–1206, November
2008.

[23] WIDE. Decentralized and wireless control of large-scale systems. http://ist-
wide.dii.unisi.it/, 2008.

[24] A.I. Zecevic and D.D. Šiljak. Balanced decompositions of sparse systems for
multilevel parallel processing. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 41(3):220–233, 1994.

[25] Aleksandar Zecevic and Dragoslav D Siljak. Control of complex systems:
Structural constraints and uncertainty. Springer Science & Business Media,
2010.

