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Llorens i Artigas 4-6, 08028 Barcelona, Spain

Tel.: +34-93-4015751, Fax: +34-93-4015750

Abstract

This article presents a new method for actively exploring a 3D workspace with

the aim of localizing relevant regions for a given task. Our method encodes

the exploration route in a multi-layer occupancy grid map. This map, together

with a multiple-view estimator and a maximum-information-gain gathering ap-

proach, incrementally provide a better understanding of the scene until reaching

the task termination criterion. This approach is designed to be applicable to

any task entailing 3D object exploration where some previous knowledge of its

approximate shape is available. Its suitability is demonstrated here for a leaf

probing task using an eye-in-hand arm configuration in the context of a pheno-

typing application (leaf probing).

Keywords: Active Perception, Next Best View, Information Gain, Search

Space Reduction

1. Introduction

The goal of task-driven exploration is to iteratively change the point of view

so as to maximise the acquisition of information for solving a given task. We

propose an algorithm that uses an information-gain criterion to compute the

expected benefit of a set of candidate views, and combines it with other aspects,5
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such as the proximity to the current view, to obtain the best next possible view

at each iteration. Observe that this is a local approach, and that it cannot

be globally optimal since each new position of the sensor only depends on the

available information at each iteration. An optimal solution would require a

complete and accurate model beforehand.10

This article emphasises the following four main ideas:

1. A multi-layer occupancy map approach can naturally encode all the knowl-

edge: each layer codifies relevant information that is semantically differ-

ent (Section 3.3). Particularly for leaf probing tasks, the space occupied

by the leaf and its surrounding clearance for allowing the tool to reach the15

leaf.

2. The importance of the termination criterion. Our representation, that

explicitly represents the termination conditions in a specific occupancy

layer, facilitates its definition and evaluation (Section 3.3).

3. Given a set of candidate viewpoints (Section 3.4), they can be evaluated20

using Information Gain (IG), which can be easily defined and computed

from the multi-layer representation (Section 3.5). A novelty in our pro-

posal is that free space is also used for the IG computation.

4. The accurate characterization of the sensor used, in our case a time-of-

flight camera (ToF) (Section 3.6), plays an important role in the definition25

and the computation of the IG.

This article is an extended version of work published in [1]. We general-

ize our previous work by showing how the exploration models can be created

depending on the characteristics of different tasks. Moreover, we demonstrate

through validation experiments the robustness of our multi-layer IG criterion30

in conjunction with our frustum-based inverse sensor model, adding deeper ex-

planations about the way to estimate the initial leaf pose.
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2. Antecedents

Plant phenotyping studies the influence of environmental factors on the ob-

servable traits of plants. The success of such studies depends on the data ex-35

tracted from a series of long-term monitoring experiments over a large number

of plants under multiple environmental conditions. Measures can be obtained

in two different scenarios. The first one includes regular fields and mobile sen-

sors, either mounted on aerial vehicles using remote sensing techniques [2], or

on ground robots [3]. Obviously, climate conditions cannot be controlled here.40

The second one uses greenhouses, where variables like temperature, humidity,

and light, can be controlled. The common setup includes large greenhouses with

several isolated zones, and conveyor belts that carry each plant from its sitting

position to a measure chamber where a rich set of sensors takes measurements

before returning them [4] (see Fig. 1). The throughput obtained in such in-45

stallations is considerably high. However, sensors are located in a predefined

position, mainly a top-view, that limits the possible photogrammetry tasks to

be carried out, such as measuring the leaf length and rosette area [5], and ex-

tracting the plant 3D structure, either by using a depth camera [6], a stereo

configuration [7], or a single RGB camera moving in a fixed direction [8]. Note50

that these systems can not deal with hard occlusions. Another main limitation

is the difficulty to measure or perform actions that require contact with the

plant, such as chlorophyll measurement or the extraction of disk samples for

DNA analysis [9].

Therefore, a major step forward is to provide the system with the ability55

to move its perceptual unit, so that it can naturally adapt to the characteris-

tics of each plant [10, 11]. In the context of the European project GARNICS3,

an active perception system was proposed to overcome this weakness that in-

volves ToF camera and a probing tool mounted on the end-effector of a robot

1Image extracted from http://www.phenome-fppn.fr/
2Image extracted from http://www.lemnatec.com/
3http://www.garnics.eu/
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(a) Typical greenhouse.1 (b) Monitoring chambers.2

Figure 1: Example of a modern plant phenotyping greenhouse. (a) Plants are kept into labelled

pots over conveyor belts to easily monitor them when being transported from the greenhouse

to the watering, nutrient delivery or monitoring chambers. (b) Plants get measured one by

one in the different monitoring chambers.

manipulator [12].60

Classically, the task (usually implicit) in sensor path planning has been pre-

cise 3D object’s surface reconstruction [13, 14] and also object recognition [15].

Less commonly, sensor path planning has also been used to optimally segment

particular object characteristics [16, 17] and to exploit sensor features for sim-

plifying occlusions detection, formerly using a laser [18] and more recently using65

a ToF sensor [19].

Information gain has widely been used as viewpoint selection criterion in

classical 3D modelling [20, 21]. Newer approaches compute the expected infor-

mation gain using a discrete approximation of the sensor’s field of view based

on pixel’s ray-tracing techniques. They can be single-resolution [22] or multi-70

resolution [23]. In contrast, our proposal uses the complete pixel’s frustum for a

more accurate computation. Although a little bit slower, our approach assures

to not miss any space between rays independently of the resolution of the octree.

This may be negligible in large indoor/outdoor mapping [24], but it is crucial

in our short range application.75

An important peculiarity of our approach is that, since ToF sensors uncer-

tainty is not uniform, a precise calibration of the sensor is required to adequately
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model the image acquisition process and thus improve the IG computation. In

previous approaches, the sensor’s uncertainty is considered uniform for all the

acquired points. Up to our knowledge, the different uncertainty present in each80

pixel has not been used before for the precise computation of the IG. Our model

assures a good approximation of the sensor’s uncertainty distribution based on

both pixel’s location and measured distance.

The most common way for representing the 3D space is by using occupancy

grid maps [24, 25]. An interesting idea for 2D robot navigation was proposed85

by Lu et al. [26], where a multilayer costmap approach was used to separate

different semantic information on different layers. In this article, we extend this

idea to 3D and proposed a new multi-layered occupancy map to separate the

state map, the obstacle avoidance map and the termination criterion.

Finally, it is crucial to define a termination criterion that is relevant to90

the task. The most used ones have been the ratio of visible and occluded

information in the scene [27], and different measures of the completeness of

the model [14, 28]. However, completeness is usually non-intuitive to define.

Vasquez et al. [25] proposed also to take into account if a mobile robot could

not find a path for any of the remaining candidate views. In contrast, in this95

work we link the task’s goal and the termination criterion by explicitly defining

specific regions of interest (ROIs), one or more, in a unique 3D layer map.

3. Leaf probing

The main idea behind our method is that, based on the previous knowledge

of an exploration task, we can pre-establish a 3D occupancy map and a set of100

candidate views that, all together, indirectly serve as a guide to a Next-Best-

View (NBV) planner for solving the task (Fig. 3). On the one hand, the 3D

occupancy map is used for locating a set of possible regions of interest for the

given task. On the other hand, the set of candidate views is used for reducing

the dimensionality of the gaze space while ensuring a complete coverage of the105

regions of interest.
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The approach includes three main steps (see Fig.4):

1. selection of the target leaf from a plant

2. exploration of this leaf to gather enough relevant information for the task

at hand110

3. effective execution of the task

The first step is usually specified by a botanical expert that defines a criterion

to choose the leaf, for example the biggest one, or the i -th leaf from the stem.

The last step, the measuring action, is been carried out as proposed in Alenyà et

al.[9]. This article focuses on a method for solving the second step.115

In the following sections we will explain every module of our approach in

detail. Due to its high complexity, the task of leaf probing is the one used for

illustration purposes and real experimental evaluation. Observe how this task

does not require to have a complete leaf’s model to accomplish its goal. Instead,

only specific regions in the leaf’s contour are needed (Fig. 3f). To specify the120

task, we consider two types of information: the prior knowledge of the task and

the on-line data; both codified using probabilistic occupancy maps (Section 3.3).

3.1. Set-up

The experimental set-up consists of a Barrett WAM arm (robot manipulator)

and three sensors: a PMD Camboard (ToF camera), a SPAD meter (chlorophyll125

measuring tool), and a Kinect camera (see Fig. 2a). The ToF camera is, in

conjunction with the SPADmeter, rigidly attached to the robot’s end-effector, in

such a way that permits controlling the robot for both capturing detailed views

from informative regions of interest, and taking chlorophyll measurements from

selected target leaves (see Fig. 2b). The RGB-D camera is deliberately situated130

on the ceiling, in a zenithal configuration, to allow a complete overall view of

the scene. Its main purpose is to feed the obstacle avoidance map so that safe

trajectories can be successfully planned.
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(a) Experimental setup (b) Leaf probing

Figure 2: Snapshots of the leaf probing task: (a) Overall view of the complete setup, with

the robot carrying the ToF camera and the tool, and the external Kinect camera. (b) Detail

of the action of probing. Observe that the leaf probing task requires clearance (above and

below) of a sector of the leaf.

3.2. Leaf pose estimation

The first demand within the system is to accurately localize a leaf in the135

scene (Fig. 4). As it will be seen in Section 3.6, correct depth measurements are

only possible within the camera’s calibrated depth range. Thanks to a simple

mean squared error (MSE) reduction approach we can guarantee a good leaf

pose estimation (see Alg. 1). The camera is continuously repositioned to the

same measure-based estimated pose, 35 cm. orthonormal to the target leaf, until140

the MSE between the camera’s current and desired locations reaches a minimum

threshold.4 Leaf pose is acquired by computing the principal components of the

depth measurements using the automatic leaf-extraction approach [9].

Once a leaf has been selected and its pose correctly estimated, an initial

task-driven exploration model is defined. Its aim is to encode a set of multiple145

possible paths that allow the NBV planner to effectively fulfill the task (i.e.

leaf probing). The exploration model is composed of a multi-layer occupancy

grid map (Fig. 3f) and a set of candidate viewpoints (Fig. 3i). We recall that,

4As a practical note, the threshold must be chosen wisely to allow completion: just a little

bit higher than the leaf’s pose estimation error, 1 mm. in our case.
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(a) Area of a leaf. (b) Mg deficiency detection. (c) Leaf probing.

(d) Expected occupancy

map.

(e) Expected occupancy

map.

(f) Expected occupancy

map.

(g) Candidate viewpoints. (h) Candidate viewpoints. (i) Candidate viewpoints.

Figure 3: Example of plant monitoring tasks. This figure illustrates three clear examples of

plant monitoring tasks (a-b-c), their corresponding expected occupancy grid maps (d-e-f) and

their set of candidate views (g-h-i). Notice the strong correlation between task, occupancy

maps and candidate views. Observe how, depending on the task, the expected occupancy

map can be represented, with greater or less precision, by global (d) or by partial models (e,

f). Also, pay attention to the variation in the number and location of the candidate views

according to the task and its expected occupancy model. Notice how the leaf probing task

needs bottom-up views to ensure a good coverage of the expected clearance under the leaf.

8



Figure 4: Overall block diagram of the leaf probing sensor planning framework.

although we concentrate on spatial restrictions like clearance, it is also shown

that other task constraints, like veins and yellow spots that have to be avoided,150

can be represented in additional occupancy grid maps following the same idea.

Additionally, it is important to observe how our approach can be easily adapted

to any kind of targeted object, no matter its size or shape. This is possible

thanks to both, our highly reconfigurable multi-layer occupancy grid map and

the unrestricted distribution of candidate views, as it will be seen in the following155

sections.

3.3. Multi-layer occupancy grid map

We have extended the idea to 3D occupancy maps, and propose to subdivide

the occupancy representation of the exploration model into three semantically-

separated layers {mtask,mstate,mobs}. By doing this, the method obtains a160

wide versatility that facilitates four key aspects: the specification of the task

termination criterion, the precise adjustment of particular exploratory attrac-

tors, the correct treatment of the possible occluded regions of interest and the

computation of obstacle avoidance trajectories.

The aim of the task termination layer mtask is twofold: first, to indicate165

whether the exploration can already be halted; and second, to act as a prior

for the NBV planner. This layer is composed of what we call regions of interest

(ROIs). Each ROI is defined as a region of expected occupancy in the model,

and acts, by itself, as a global termination criterion. That means that if the

expected occupancies within a certain ROI are fulfilled after a measurement,170
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Algorithm 1 Approximation Loop

ApproximationLoop(x0, thr)

Inputs:

x0: Initial sensor pose in global coordinates

thr: Error threshold

1: i = 0

2: while ( MSE >= thr) do

3: Di ← DataAcquisition(xi)

4: yi ← LeafPoseComputation(Di)

5: xi+1 ← OrthonormalView(yi)

6: MSE ← MeanSquareError(xi,xi+1)

7: MoveRobot(xi+1)

8: i = i+ 1

9: end while

the exploration task has finished and a probing trajectory can be carried out.

Our leaf probing model is composed of 9 separated ROIs wisely located at the

edges of the estimated shape of the leaf (Fig. 5b). Each ROI is composed of

three bounding boxes or here called bricks, two of them labelled as free, one

at the top and one at the bottom, and another one labelled as occupied in the175

middle (Fig. 5c). It is very intuitive to see how these ROIs represent the desired

open and occupied spaces at the leaf edges that can allow the probing tool to

take a measurement. Notice that we do not need to characterize the complete

occupancy model of a leaf but only those parts (ROIs) that help to solve the

probing task.180

The state layer mstate is the one keeping the complete update of all mea-

surements taken during an experiment. As a result, and in conjunction with

the mtask layer, the NBV planner can thereafter predict a more realistic esti-

mation of the information gain. Such prediction is accomplished by simulation,

i.e., every candidate viewpoint is ray-traced over mstate. Once simulated, each185

new virtual measurement is updated into a copy m̂task

i of the global mtask layer
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(Fig. 5a), for posterior computation of its expected IG (Section 3.5). Observe

that, although the cost of ray-tracing is very high, each view simulation is a

completely independent process and, consequently, all possible candidate views

can be computed in parallel at the same time.190

The obstacle avoidance layer mobs, on the other hand, is dedicated to repre-

sent the clearance working space of the robot. This allows the NBV planner to

return safe and collision-free trajectories. As has been introduced before, other

task-relevant components can be also included in a new map following the same

approach. For example, the veins and the yellow spots on the leaves must be195

avoided when probing.

3.4. Candidate viewpoints

A predefined set of vantage points C, such as:

C = { cvi | i = 1, . . . , k} , (1)

must be chosen in order to guarantee a good coverage for all ROIs within

the mtask layer (Fig. 3, last row). Candidate viewpoints can be classified as re-

dundant, if they point to regions where some other viewpoints already do, or200

as non-redundant, if they are the only ones. Depending on the task, one type

or another will be more or less propitious. For instance, if the task is to ex-

plore a big continuous area where occlusions can easily arise, then redundant

viewpoints will be mandatory in order to guarantee the correct fulfillment of

the task. On the other hand, tasks where the solution can be found on many205

different ROIs, such as the leaf probing, multiple non-redundant views are pre-

ferred.5 The final subset of viewpoints that will be chosen will depend on each

scenario. Albeit locally predefined offline, both the multi-layer occupancy grid

map and the set of candidate viewpoints are updated online. In our application,

we assume complete confidence on the robot’s pose, and therefore all candidate210

5Although the process of viewpoint simulation is parallelized, it is always recommended to

have as less views as possible to reduce the computational load.
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viewpoints are updated just once, based on the leaf pose estimation (initial state

of the system). Note that it will be straightforward to take into account the

uncertainty of the robot within the system by simply incorporating the leaf’s

pose estimation module into the main loop and adapt the views accordingly.

Prior to the selection of the NBV and after the last measurement update, the215

system checks within themtask layer for active probing termination ROIs. If any

of them is active, meaning that their expected free-occupied-free preconditions

are fulfilled, the probing trajectory to its corresponding grasping point will be

executed. On the contrary, if none of the ROIs satisfies the termination criterion,

the planner will compute the next-best-view cv∗ based on the IG cost function.220

3.5. NBV planner - Information gain

Our approach is based on the multi-objective performance criterion described

by Mihaylova et al. in [29], where the final candidate view cv∗ is selected not

only by choosing the view with the highest IG, but also by taking into account

the travel distance to the rest of views:

cv∗ = argmin
J

‖J ‖ , (2)

where ‖ ‖ is the euclidean distance from the current view and J is the set of

views with expected information gains around the maximum, such as:

J =
{

cvj | IG(cvj) ≥ max(IG(C))−

δ ·max(IG(C)), j = 1, . . . , k
}

, (3)

where δ ∈ [0, 1] is the factor controlling the minimum IG threshold. In our

experiments we set it at 0.15. This way, closer views are preferred, even if they do

not yield the highest IG. As a consequence, we take advantage of intermediate

views while also avoiding big jumps within the exploration trajectory. Figure 9225

shows the behavior of the NBV planner when changing the value of δ. Although

a more robot-specific travel cost distance could have been taken into account, e.

g. the sum of the absolute difference in each pose’s joint angle [30], we decided

to be as agnostic as possible to the type of robot.
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(a) Schematic view of the multi-layer occupancy grid

map.

(b) ROIs into mtask

(c) Bricks into the ROI.

Figure 5: Multi-layer occupancy grid map, ROIs and Bricks. (a) Each layer is a 3D occupancy

map that semantically separates the different types of information. The potential information-

gain obtained when visiting each candidate view cvi is estimated from this multi-layer grid

map. Each estimation m̂task

i
is accomplished by frustum ray-tracing over the current map

state mstate. (b) Graphical representation of the 9 ROIs within the task termination layer

mtask. (c) Inner composition of bricks into a single ROI.
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The expected information gain of each candidate viewpoint is computed as

follows:

IG =
∑

o

∆H(m̂task

i,o ) + β
∑

f

∆H(m̂task

i,f ), (4)

where ∆H(m̂task

i,o ) and ∆H(m̂task

i,f ) are, respectively, the expected information230

gains of occupied and free bricks when going from the current mtask to the

simulated m̂task

i layer; and β allows to balance their relative contributions.

While β is very relevant in tasks where a type of brick is more critical than

the other, given the equal influence of both types in the probing task, this

parameter is set to 1. Note that Eq. 4 can be also interpreted as a weighted235

change of entropy between prior and posterior probability density functions.

3.6. ToF camera model and map update

It is important to highlight the relevance of having a good characterization

of the sensor’s depth model, like the one presented in Foix et al. [31]. As it

has been seen in the previous sections, the sensor model is not just used for240

updating the occupancy grid maps but also for computing the information gain

estimation when simulating the candidate views. Note that in ToF cameras,

the uncertainty associated to each pixel is different. Due to their technology,

ToF camera’s depth measurements have attached a set of associated errors.

After calibration and filtering, the uncertainty of the remaining errors can be245

approximated by Gaussian noise with zero mean and uniform standard devi-

ation and considered independent of any other measurement. Therefore, our

model provides the uncertainty depending on the pixel location and the depth

measurement received. The calibration process is long, tedious, and has to be

performed for multiple distances. The common approach we follow is to define250

a 10 cm. safety range distance and perform the calibration within that range.

In our experiments, based on the ToF camera’s field of view and the mean leaf

size, we have selected a preferred distance of 35± 5 cm.

After a given depth measurement zt at pose xt, the expected occupancy, of

every grid map cell ci within the calibrated range is computed as a combined255
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(a) Initial state of the sys-

tem.

(b) Set of candidate view-

points.

(c) Zenithal measurement

update.

(d) Selection of the NBV. (e) Update after new measurement.

Figure 6: Step-by-step graphical interpretation of the task-driven active sensing framework

approach. (a) The system assumes having a leaf in the field-of-view of the camera. Once

the leaf is detected, the exploration model is introduced into the system (b), together with

the first measurement (c). Views are iteratively selected depending on their expected IG,

proximity and reachability (d). Green spheres represent candidate viewpoints that have not

been selected yet as a Next-Best-View, blue spheres indicate already selected but not reachable

viewpoints and the red sphere shows the one that has been selected and is being evaluated.

The radius of the sphere represents the expected IG. Observe how, after a new measure is

integrated, candidate expected IGs get reduced (e).
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probability p(ci|zt, xt) by multiplying both pixel-based (u, v) and depth-based

|zt| independent probabilities such as:

p(ci|zt, xt) =

=























0 , if |zt| < min range

p(ci|u, v, xt) ∗ p(ci||zt|) , if frustum in range

0 , if |zt| > max range

. (5)

This combined probability is the one that determines the inverse sensor model.

As defined in [32], the expected occupancy, or belief, is kept in the classical log

odds form and fused with the following variation of the binary Bayes filter:260

lt,i = max(min(lt−1,i+

inverse sensor model(ci, xt, zt), lmax), lmin), (6)

where lt,i is the posterior expected occupancy cell state, lmin and lmax define

the boundaries of the belief cell state and

inverse sensor model(ci, xt, zt) =

= log

(

p(ci|zt, xt)

1− p(ci|zt, xt)

)

. (7)

Previous to any measurement, each expected occupancy cell is initialized

with the state of unknown:

p(ci) = 0.5 → l0,i = 0. (8)

3.7. Validation

Once the algorithm is running, it becomes quite complicated to see why the

algorithm considers certain candidate views and not others. As a consequence,265

it is difficult to check whether the approach is working as expected or not. With
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the aim of better understanding each NBV selection, we have incorporated

a special visual marker into our monitoring interface. This marker, that is

based on a sphere, reveals two things. On the one hand, its colour highlights

the current state of the candidate view: selected (red), not selected (green) or270

unreachable (blue). And, on the other hand, the length of its radius indicates

its expected IGs (Fig. 6).

One of the core parts of our approach is the proper estimation of each can-

didate view IG through simulation. As it has been already introduced in Sec-

tion 3.3, such simulation is carried out by means of complete6 frustum ray-275

tracing over the current map state mstate (Fig. 7a). As a ”proof of concept”,

we have performed a simple experiment in order to validate and demonstrate

the functionality of our approach. The experiment consists in evaluating, over

a simple planar multi-layer occupancy grid model, a wide range of views at

multiple orientations and distances, see Fig. 7b. Observe how views at the in-280

termediate semicircle, at 35 cm. far, produce greater IG estimations than views

that are closer or farther. A proof of how well integrated is the ToF camera

model. It can also be clearly seen how IG gets reduced around lateral views.

Now that the reader is more familiar with the computation of the candidate

views IG and its symbolic representation, it is time to observe how the algorithm285

behaves in a more realistic scenario; for instance, the exploration task required

for computing the area of a leaf, previously illustrated in Fig. 3. Two differ-

ent setups are considered for this evaluation, one with a clear view of the leaf

(Fig. 8a) and another one with an obstacle partially occluding the leaf(Fig. 8b).

A very special candidate view has been added into the system in order to show290

how important certain views can be for taking into account possible contingen-

cies, such as occlusions, in the scene. The set of candidate views consists of 25

fronto-parallel views and an extra one, intentionally located at the right side of

the scene with a 45◦ tilt, in such a way that it provides a clear observation of the

6Each pixel’s frustum is computed, instead of simple ray-tracing. This ensures a more

accurate simulation.
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target leaf when occluded. Observe how in the absence of obstacles (Fig. 8a),295

and after the initial view, none of the peripheral views, including the special

extra lateral view, provides any significant increment of IG. But if we deliber-

ately occlude the left part of the leaf, a very different expected IG distribution

is observed after the initial view (Fig. 8b). This time, as expected, that extra

lateral view is the one providing the maximum IG, and therefore it is correctly300

selected. Observe that, once the targeted leaf is correctly localized, the system

does not need to explicitly to detect the obstacles since it deals with them by

incorporating the measurements into the corresponding model layer. It is also

important to notice that, in both cases, the selected NBVs are those with the

maximum expected IG. Such behavior is the consequence of setting δ = 0.0.305

Figure 9 clarifies the behavior of the NBV planner when δ is differently tunned

(see Eq. 3). It can be seen that, as long as a rich set of candidate views is pro-

vided, smoother final trajectories can be obtained by increasing its value. We

remark that if δ gets too high the algorithm will consider all views as possible

candidates and may, therefore, fall into an infinite loop of refinements, similar310

to a local minimum. By banning already visited candidates, this situation is

easily avoided.

4. Experiments

Experiments have been carried out under simulation and subsequently tested

on the real robot, in a very similar scenario using the very same algorithm and315

parametrization (Figs. 10 and 11, respectively).

4.1. Simulation of leaf probing

This experiment analyses the behavior of the system in an isolated leaf and

multiple-leaves scenes, Fig. 10a and 10b respectively. The goal is to first eval-

uate the suitability of the method on both tidy and cluttered scenes, and then320

compare the robot behavior between simulation and reality in the following sec-

tion. Figures 10c and 10d display the priorities on the selection of views while
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(a) Graphical interpretation of the frustums in a subset of simulated candidate views.

(b) Graphical interpretation of the IGs distribution at 25, 35 and 45 cm.

Figure 7: Experiments for validating the IG distribution over candidate views. The validation

of the approach consists in evaluating the IG distribution around a planar occupancy grid

model. Each candidate view is simulated by computing the complete frustum of the sensor (a).

Three sets of views, at different distances around a semicircle, are evaluated (b). Observe how,

the value of IG varies not only with the number of occupied and free cells observed within

the sensor’s field of view, but depending on the depth of the measurements, thanks to the

accurate characterization of the sensor after calibration.
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(a) Scene without occlusions (δ = 0.0). (b) Scene with a partial occlusion (δ = 0.0).

Figure 8: Simulated experiments for computing the area of a leaf. Two particular scenar-

ios: (a) an ideal one without any obstacle blocking the target leaf, and (b) in the presence of

a partial occlusion on one side of the leaf. In both experiments, after an initial fronto-parallel

measurement, at 35 cm. above the center of the leaf, a single NBV is required before consid-

ering the exploration task as concluded. Observe that in both cases the selected NBVs are

those with the maximum expected IG, as a consequence of setting δ = 0.0.

planning for each of the experiments. For clarity, the candidate viewpoints con-

sidered have been re-arranged in a 2D graph. Note that [0..8] correspond to the

top views and [9..16] correspond to the bottom views. It can be seen that, in325

both experiments, the planner tries to go to the most informative views first,

those that point behind the leaf. We have purposely defined these points to be

non-reachable by the robot, so we can see how the system reacts. Observe, for

instance, the behavior in the cluttered scenario: the planner chooses view 13 in

the first place, as the closest view among of those with the highest IG; since it330

is unreachable, this view is removed from the candidate views list and following

the same criterion a NBV is chosen again until a reachable view is selected. The

final solution for both experiments is a top lateral-left view (5 or 6). Comparing

both priority figures it can also be noticed how priorities change depending on

the scene and that some of the views, which were taken into account in the335

isolated leaf experiment, have been substituted by other ones in the cluttered

experiment due to the presence of obstacles; for instance view number 1 for view

number 8.

Table 1 shows how the presence of obstacles also affects the number of NBVs

required until achieving the termination task criterion. In the isolated leaf scene,340
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(a) Scene with a partial occlusion (δ = 0.15). Intermediate views, with very high IG, are now

taken into account as possible NBVs. The closest view to the current pose is the one selected.

(b) Scene with a partial occlusion (δ = 0.25). The higher the δ, the greater the number of

selected intermediate views.

Figure 9: Simulated experiments illustrating the behaviour of the NBV planner when δ factor

is being increased. The very same scenario from Fig. 8b is used.

most of the experiments (61%) fulfill the task termination conditions at the

second view7. This is good news for plant phenotyping where high throughput

is required. On the contrary, when obstacles are present, the task finishes with

a second view 33% of the times, and requires at least one more view 56% of the

times.345

4.2. Real

We carried out a set of 20 real experiments, using the same algorithm and

parametrization as in the simulation, and with very similar scenes, see Fig. 11.

Half of the experiments are devoted to the isolated leaf scene, and half to the

cluttered scene. In both cases, the robot behaved in the same way as the350

simulations; it tried to go to the bottom and more informative views, and when

7The initial zenithal measurement is taken into account.
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(a) Simulated

isolated leaf scene.

(b) Simulated clut-

tered scene.
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(d) Cluttered

scene selection

priorities.

Figure 10: Isolated and cluttered scenes for the simulated experiments. Figures (c) and

(d) show the priority of views in scenes (a) and (b), respectively. Each number refers to a

candidate view, see Fig. 6b. Colors indicate priority, going from yellow, the highest, to red,

the lowest. Take into account that priorities are computed after a first zenithal measurement

of the leaf. That is the reason why highest priorities are observed at the bottom views. The

most selected view for the final leaf probing is marked with an extra-circle. These results have

have been extracted after 100 simulations per scene.

(a) Real isolated leaf scene. (b) Real cluttered scene.

Figure 11: Isolated and cluttered scenes for the real experiments.
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N. of views ¬obstacle obstacle

2 61% 33%

3 27% 56%

4 5% 2%

5 1% 0%

6 1% 0%

(–) 5% 9%

Notes: Some experiments resulted inconclusive (–) due to external er-

rors in the path planner.

Table 1: Percentage of experiments that finished with respect to the number of

views. 100 Experiments carried out in simulation.

not possible it chose the NBV until the fulfilment of the termination criterion,

and the subsequent leaf probing action. The main difference is that in a cluttered

situation the view number 6 is preferred 80% of the times instead of number 5,

which is the one preferred in simulation. However, both views are very close to355

each other and the difference in the obtained information gain is small. 8

5. Conclusions

This article presented a complete task-driven active sensing framework and

its particular suitability for complex plant phenotyping tasks such as autonomous

leaf probing. Our solution is composed of a manipulator robot carrying a ToF360

camera and a specialized probing tool. Although our experiments include either

a tool for chlorophyll measuring or a sampling tool for leaf probing, both tasks

involve the same framework: the robot autonomously changes the point of view

of the camera to take new images, and when enough information is gathered

8Additional material at:

http://www.iri.upc.edu/groups/perception/leafProbing.
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the leaf probing action is performed. None of the tasks requires the complete365

model of the leaf but just to view a small part of the leaf and a clearance zone.

We have proposed a novel 3D task representation based on a multi-layer

occupancy grid map, where each layer codifies different semantically relevant

information. It has been shown that this representation has four main advan-

tages. First, it allows to encode tasks based on prior knowledge using a com-370

bination of free and occupied space, and even possible constraints. Second, it

facilitates the fusion of measurement uncertainties, thanks to both a Bayes filter

and an accurate calibration of the ToF camera. Third, it has been shown that

IG can be effectively used to select the next-best-view; a formulation has been

introduced to compute the expected information gain from this representation.375

As the application may require to minimize the motion of the robot, a criterion

has also been introduced to prefer closer views even if they provide slightly less

information. And fourth, this representation allows the natural specification of

the task termination conditions, which are the minimum units of information

required to enable the execution of the task.380

While the current work has taken for granted the generation of the set of can-

didate views, future work will focus on exploring how to automatically generate

them such that the set will only contains the most task-significant views. Cur-

rently, we are working on doing it off-line through multiple simulations; in such

a way that the possible contingencies can be included within the simulations,385

allowing us to extract, in the form of an expert rule system, the most informa-

tive sequence of views depending on such events. These task-based expert rule

system will substitute the current proximity rule used for NBV selection when

information-gain ambiguity arises.

Results on both simulated and real experiments validate the proposed ap-390

proach for the leaf probing task and allow us to envision a good performance

on other 3D object exploration tasks, provided some previous knowledge of its

general shape is available. Experiments have also revealed that the relative po-

sition of the robot and the plant is important, as some of the views are not

reachable. A common approach in automated plant phenotyping is to con-395
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trol the orientation of the pot containing the plant. Although this adds a new

degree-of-freedom to the control of the robot, it can be easily integrated in the

proposed framework.
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