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Robust Spatio-Temporal Clustering and
Reconstruction of Multiple Deformable Bodies

Antonio Agudo and Francesc Moreno-Noguer

Abstract—In this paper we present an approach to reconstruct the 3D shape of multiple deforming objects from a collection of sparse,
noisy and possibly incomplete 2D point tracks acquired by a single monocular camera. Additionally, the proposed solution estimates the
camera motion and reasons about the spatial segmentation (i.e., identifies each of the deforming objects in every frame) and temporal
clustering (i.e., splits the sequence into motion primitive actions). This advances competing work, which mainly tackled the problem
for one single object and non-occluded tracks. In order to handle several objects at a time from partial observations, we model point
trajectories as a union of spatial and temporal subspaces, and optimize the parameters of both modalities, the non-observed point
tracks, the camera motion, and the time-varying 3D shape via augmented Lagrange multipliers. The algorithm is fully unsupervised
and does not require any training data at all. We thoroughly validate the method on challenging scenarios with several human subjects
performing different activities which involve complex motions and close interaction. We show our approach achieves state-of-the-art
3D reconstruction results, while it also provides spatial and temporal segmentation.

Index Terms—Non-Rigid Structure from Motion, Union of Subspaces, Spatio-Temporal Clustering, Augmented Lagrange Multipliers.
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1 INTRODUCTION

THe problem of Non-Rigid Structure from Motion
(NRSfM) involves simultaneously recovering 3D ge-

ometry and camera motion from 2D point tracks. When
considering deformable or articulated bodies as seen
from a monocular camera, many different shape configu-
rations may yield similar image projections. This makes
NRSfM a highly ambiguous problem, which requires
introducing prior knowledge in order to be solved. The
most standard priors include the use of low-rank sub-
spaces constraining the solution space of either the entire
shape [3], [40], [56], the 3D point trajectories [10], [50] or
the force patterns that induce the deformations [7].

All these previous approaches, consider one single
low-rank modality at a time (namely shape, trajectory
or force). There are situations, though, that may require
models with higher levels of expressiveness, e.g., to
represent deformations with complex point trajectories
or when dealing with multiple objects, each performing
different types of deformations and motions. We here
particularly address both these situations with the addi-
tional difficulty of partially occluded observations.

There exist previous works addressing in part these
scenarios. For the rigid case, for instance, the shape
of multiple moving objects can be retrieved by first
segmenting the objects from the input 2D tracks and then
applying a rigid SfM algorithm to each of them [47], [51],
[61]. However, this strategy depends on the accuracy
of the initial segmentation which, for the case of non-
rigid and overlapping objects is prone to fail. Note
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also that since the deformations occur in 3D space, in
practice it is more intuitive to recover both spatial and
temporal segmentations in 3D instead of inferring them
on 2D. Regarding the non-rigid case, there has been
recent attempts at reconstructing complex dynamics by
encoding the time-varying deformation as a sparse 3D
shape [38], or by modeling motion as a union of temporal
subspaces [62]. Interestingly, [62] also performs temporal
clustering. These approaches, however, have been only
applied to one single object, and rely on continuous and
fully observed 2D point tracks.

In order to reconstruct multiple non-rigid objects with
complex motions from partial 2D observations, this pa-
per introduces a novel optimization framework that
combines spatial and temporal clustering in a unified
manner. The two types of (soft) clustering are performed
through affinity matrices, which encode the temporal
similarity among the sequence frames and the spatial
similarity of the data points within each frame. These
matrices are jointly learned, in conjunction with the 3D
non-rigid shape, the camera motion and the missing en-
tries, using an efficient Augmented Lagrange Multiplier
(ALM) scheme. Hard clustering can be then trivially
estimated by applying spectral clustering over the affin-
ity matrices. The overall approach is fully unsupervised
and needs no initialization about the deformation and
segmentation. Moreover, no a priori knowledge about
the dimensionality of the subspaces or which data points
belong to which subspace is required.

We extensively evaluate the method on sequences
with up to four subjects performing complex actions
and interacting with each other. As shown in Fig. 1 the
outcome of our algorithm is the spatial segmentation of
each frame, which is likely to correspond to each of the
subjects, a temporal clustering corresponding to motion
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Fig. 1. Simultaneous 3D non-rigid reconstruction, camera motion, spatial segmentation and temporal clustering from
incomplete 2D point tracks. Top-left: Example of real images from the CMU MoCap dataset. We assume 2D point tracks
are provided, although the number of object and point membership is unknown. Point tracks also affected by partial occlusions
and strong object overlapping. Right: Retrieved spatial and temporal similarity matrices. Each entry in these matrices expresses
the spatial/temporal pairwise affinity between points or frames, respectively. Clusters are directly discovered by applying spectral
clustering on these matrices. Bottom-left: 3D shape reconstruction together with the temporal and spatial clustering results. In
this example, spatial segmentation yields two objects, represented by red and green points. Temporal clusters identify three motion
primitives which have a clear semantic meaning. In this case, they correspond to ‘two subjects sitting down’ (magenta), ‘one subject
standing up an threatening the second one’ (green), and ‘one subject attacks the other that falls down’ (orange). Camera motion is
not represented in this figure, but it is also an outcome of our algorithm.

primitives (three action primitives are retrieved for the
example shown in the figure), plus the 3D reconstruction
of each individual and the corresponding camera mo-
tion. We are not aware of any other approach solving the
four problems simultaneously solely from incomplete
2D point tracks in a monocular video. Furthermore, as
we will show in the results, the accuracy of the 3D
reconstructions we obtain, improves that of state-of-the-
art NRSfM methods (which do not provide any kind of
clustering) by a considerable margin.

A preliminary version of this work was presented
in [5], in which we showed our approach to be suitable
for jointly recovering time-varying 3D shape, and the
spatio-temporal clustering, all of them, from 2D point
trajectories in a monocular video. In this work, we
extend our contribution enforcing temporal consistency,
and to estimate in the same loop all model parameters
we consider, including the missing point tracks and the
camera motion parameters. Additionally, besides extend-
ing the battery of results to further emphasize the advan-
tages of our approach against artifacts such as noisy and
missing measurements, we also perform experiments on
real data where an unknown number of humans are
performing complex tasks, moving, deforming, and even
interacting between them (see again Fig. 1).

2 RELATED WORK
The most standard approach to address the inherent
ambiguity of the NRSfM problem is by enforcing the

underlying 3D shape to lie in a low-rank manifold. In or-
der to estimate such low-rank model, factorization-based
approaches have been typically used [6], [15], [26], [31],
[34], [48], [56]. Other approaches impose the low-rank
constraints by means of robust PCA-like formulations
which seek to minimize the rank of a matrix representing
the shape. These type of methods either assume the data
lies in a single low dimensional space [24], [30], [32], in
a union of temporal subspaces [62], or in a manifold
defined by a combination of distinct atoms [38]. Piece-
wise [29] and part-based [41] formulations were also
proposed in this context to retrieve strong deformations.
On top of these shape models, additional spatial [40] or
temporal [2], [12], [42] smoothness constraints have also
been considered. Low-rank models were also proposed
in the temporal domain, by fitting point trajectories
to a series of predefined DCT basis [10], [50], [57] or
to an over-complete dictionary learned from human
motion data [63], in shape-and-temporal composite do-
mains [35], [36], [54], and in the space of forces that
induce the deformations [7].

There exist also a series of works that, instead of rely-
ing on low-rank models, reduce the size of the solution
space through other types of constraints. One of the most
frequently used strategy consists in enforcing inextensi-
bility between every pair of neighboring points [22], [49],
[59]. This constrain, though, limits the applicability of
these approaches to only isometric deformations. More
general deformations (e.g., elastic warps or articulated
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bodies) can be recovered through physics-based mod-
els [4], [8].

In any event, all previous approaches, have been
focused on retrieving the shape of single objects. Most
of them, indeed, are not directly applicable to the multi-
object scenario we contemplate in this paper, because
they rely on a single linear subspace assumption that
is not rich enough to model the variability occurring
on scenarios with multiple objects performing different
actions. Trajectory-based methods [10], [50], [57], can
potentially tackle this type of scenarios because the low-
rank is applied per point coordinate on the temporal
domain. However, as we will show in the results section,
a high sensitivity on to the dimension of the low-rank pe-
nalizes the accuracy of the reconstructions they provide.
Furthermore, none of the previous methods is intended
to provide full temporal and spatial segmentation from
incomplete 2D point tracks.

Most existing works in multi-object reconstruction
from 2D point tracks are applied to rigid objects, and
follow a two-step pipeline. First the 2D motion tracks
are segmented into several objects using a subspace
clustering approach [27], [43]; and then rigid SfM tech-
niques [55] are separately applied to each of the ob-
jects [23], [51], [61]. The technique in [47] is able to per-
form simultaneous segmentation and reconstruction, but
it is still only applicable to rigid cases. One interesting
exception is the work [53] which assumes the object to
be represented as overlapping rigid parts, and simul-
taneously segments and reconstructs these parts using
piecewise rigid models. However, while this approach
provides dense (spatial) segmentation and 3D recon-
struction, it suffers from the relative low expressiveness
of the piecewise models, which limits the applicability to
scenes with mild deformations. More recently, the sparse
subspace clustering algorithm [28] was extended to solve
segmentation and reconstruction by means of a union
of spatio-temporal subspaces [39]. Yet, this approach
can not handle scenarios with partial object occlusions,
limiting its applicability in real cases.

The formulation we introduce in this paper goes a step
further from existing approaches in that it simultane-
ously retrieves 3D non-rigid shape, spatial and temporal
clustering, camera motion, and the estimation of miss-
ing tracks. To the best of our knowledge, no previous
approach has jointly addressed all these problems in a
unified framework, and from incomplete 2D trajectories
acquired with a monocular camera. Additionally, the
spatio-temporal model we propose, allows dealing with
objects undergoing complex motions and point track pat-
terns with a high degree of overlapping, in a completely
unsupervised manner.

Table 1 summarizes a qualitative comparison of our
approach and the aforementioned NRSfM techniques.

3 REVISITING NRSFM
We next revisit the basics on NRSfM which will be used
later to build our model to represent non-rigid shape as

XXXXXXXXMeth.
Qua. Rank Occlusion Multiple Temporal Shape

required handing objects clustering clustering
[7], [56], [26] − X − − −
[35], [36] − X X − −
[24], [32], [38] X − − − −
[30], [40], [41] X X − − −
[63] X X X − −
[62] X − X X −
[39] X − X X X
Ours X X X X X

TABLE 1
Qualitative comparison of our approach against competing
NRSfM techniques. The method described in this paper is the

only that can jointly provide 3D non-rigid reconstruction,
camera motion, temporal clustering, shape segmentation and
missing entries estimation. Interestingly, it can naturally handle

complex scenarios with multiple interacting objects, without
requiring to manually adjust the rank of the basis. Note that

when the rank of the basis is required, it usually turns to be a
very sensitive parameter for accuracy of the method. Note also

that [30] performs shape clustering directly from 2D (rather
than 3D), as an independent and separate task previous to the
shape reconstruction. Additionally, [63] requires large amounts

of 3D human motion data to build a trajectory basis.

a union of spatial and temporal subspaces.
Let us consider a time-varying set of N 3D points ob-

served along F frames. We denote by xfn = [xfn, y
f
n, z

f
n]>

the 3D locations of the n-th point at frame f , and by
p̃fn = [ufn, v

f
n]> its 2D orthographic projection in the

image plane. To simplify subsequent formulation, the
camera translation tf =

∑
n p̃fn/N is subtracted from the

2D projections, i.e., we consider pfn = p̃fn − tf .
We can then write the projection of the 3D points

{1, . . . , N} onto the sequence of images {1, . . . , F}
through the following linear system:p1

1 . . . p1
N

...
. . .

...
pF1 . . . pFN


︸ ︷︷ ︸

P̂

=

R1

. . .
RF


︸ ︷︷ ︸

G

x1
1 . . . x1

N
...

. . .
...

xF1 . . . xFN


︸ ︷︷ ︸

X̂

, (1)

where P̂ is a 2F × N matrix storing the 2D point
measurements arranged column-wise, G is a 2F × 3F
block diagonal matrix, made of the F truncated 2 × 3
camera rotations Rf , and X̂ is a 3F ×N matrix with the
3D positions of the points along the whole sequence, also
arranged column-wise. The NRSfM problem can then be
formulated as that of recovering the non-rigid structure
X̂ and camera motion G from 2D point trajectories P̂.

Early NRSfM solutions [10], [25], [35], [60] based on
the factorization method [15], constrained the matrix X̂
to be low rank. These methods solved the factorization
by through distinct types of basis elements, such as
shape basis [25], [60], pre-defined trajectory basis [10],
shape-trajectory formulations [35] and force-induced ba-
sis [7]. For a given number K of bases, it was shown
that rank(X̂) was ≤ 3K. The time-varying shape could
then be estimated applying a rank-3K factorization over
P̂, in combination with constraints enforcing rotation
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Fig. 2. Dual Union of Spatio-Temporal Subspaces. Schematic representation of a scenario with four subjects that are non-
rigidly moving and interacting. Recall that the spatial segmentation and number of subjects is initially unknown. The 4D information
can be encoded using two different interpretations given by matrices X and X̂ (see section 4). Post-multiplying these matrices by
affinities T and S, respectively, allows introducing temporal and spatial constraints, and obtaining the corresponding spatio-temporal
clustering by means of spectral analysis. Additionally, these matrices are enforced to be low rank, being the rank of every subspace
also unknown. This means that each temporal and spatial cluster (depicted by color ellipsoids and vectors), is in turn represented
by a union of subspaces (indicated by black vectors θi and ϕi). The proposed Dual Union of Spatio-Temporal Subspaces (DUST)
model, combines the two types of subspaces, and it can encode a wider solution space in both temporal and spatial domains, as
shown by the yellow line.

orthonormality [9]. However, despite their popularity,
these methods are very sensitive to the value of the rank,
which needs to be carefully chosen to obtain accurate
results.

More recently, several approaches have enforced the
low-rank constraint of the time-varying shape by apply-
ing nuclear norm minimization directly over the matrix
encoding the 3D point positions [24], [30], [32]. Follow-
ing [24], [37], the elements of X̂ in Eq. (1) can be re-
arranged into a new 3N ×F matrix X encoding the x, y
and z coordinates in different rows:

X =

x
1
1 . . . x1N y11 . . . y1N z11 . . . z1N
...

. . .
...

...
. . .

...
...

. . .
...

xF1 . . . xFN yF1 . . . yFN zF1 . . . zFN


>

.

Observe that the components of X and X̂ are exactly
the same, but in a different manner. The interest of
using matrix X arrangement is that under a low-rank
representation with K shape bases, it retains the rank K
(in contrast to X̂, which was 3K). Therefore, X naturally
captures the fact that it is represented by a K-order linear
model and avoids spurious degrees of freedom while
allowing to learn redundancies between frames.

In the following sections, both X and X̂ matrices will
be used. In order to map one matrix to the other we
define a function q such that X̂ = q(X) = (I3⊗X>)A3D,
where A3D is a 9N ×N binary matrix, I3 is an identity
matrix of rank 3, and ⊗ represents the Kronecker product
operator. Similarly, we define the inverse mapping by
means of X = q−1(X̂) = (X̂> ⊗ I3)B3D, where B3D is a
9F × F binary matrix.

In a similar way, we will find useful to define a
function d to relate the 2D measurement matrix P̂ in

Eq. (1), with a new arrangement P ∈ 2N × F , such
that P̂ = d(P) = (I2 ⊗ P>)A2D, where A2D is a
4N ×N binary matrix. The inverse mapping is defined
as P = d−1(P̂) = (P̂> ⊗ I2)B2D, where B2D is a 4F × F
binary matrix.

4 DUAL UNION OF SPATIO-TEMPORAL SUB-
SPACES

As we have just described, a time-varying shape can be
either represented by the matrices X or X̂. Even though
the two matrices are made by exactly the same elements,
they permit two different types of interpretations. From
one side, following [45], [62], when considering the X-
arrangement, we can define a temporal clustering over
the shapes through a temporal affinity F × F matrix T:

X = XT + Et , (2)

where the affinity matrix T measures the similarity
between image frames. As we shall see later, once this
matrix is learned from data, spectral clustering algo-
rithms [20] can be applied on it to discover and match
different motion primitives within the video sequence.
Et is a residual noise, which is essential to avoid the
trivial solution T ≡ IF .

On the other hand, we can also consider performing
spatial segmentation by means of a so-called spatial
affinity N × N matrix S, which in this case, is applied
on the matrix X̂:

X̂ = X̂S + Es , (3)

where Es is a residual noise. In this case, the affinity
matrix encodes point similarity, and again, once it its
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learned, we can use spectral clustering on it to spatially
segment the data and split it into different objects.

Equations (2) and (3) can be interpreted as a repre-
sentation of the time-varying 3D points using a union
of temporal and spatial subspaces, respectively. In the
following section we will simultaneously apply the two
types of representations, i.e., we will jointly merge two
unions of subspaces, and hence the name of Dual Union
of Spatio-Temporal subspaces (DUST) we give to our ap-
proach. A schematic representation of our model is
illustrated in Fig. 2.

5 ENFORCING TEMPORAL SMOOTHNESS

As we shall see in the following section, the formulation
we propose allows easily introducing smoothness con-
straints to the reconstructed shapes. For this purpose,
we consider the hard constraint XQ = 0, where Q is
a F × F matrix encoding temporal smoothness priors.
Specifically, we use second-order central differences, i.e.,
we enforce 2xfn−xf−1n −xf+1

n ≈ 0, which in matrix form
can be written as:

Qkj =


2 if j = k, k = {2, . . . , F − 1}
1 if j = k, k = {1, F}
−1 if j|k = k|j + 1, k|j = {1, . . . , F − 1}
0 if otherwise

(4)

In the results section, we will see this constraint yields
remarkable benefits, with almost no additional cost.

6 3D SHAPE AND SPATIO-TEMPORAL CLUS-
TERING FROM 2D TRACKS

In this section we combine the geometric projection
constraint described in Section 3, together with Eqs. (2)
and (3) enforcing temporal and spatial clustering, respec-
tively, in order to simultaneously segment the 2D trajec-
tories into different objects, estimate their time-varying
3D shape and camera motion, and cluster their motion
into a series of primitives. It is worth pointing that [62]
already presented an approach to perform reconstruc-
tion and temporal grouping of one single object. Here,
we introduce the multi-object capability, a strategy to
recover the camera motion, and the possibility to handle
occluded 2D tracks. As it will be shown, this involves
having to deal with a considerably more complex loss
function and a more elaborate optimization strategy than
that considered in [62].

6.1 Problem Formulation
Let P̄ be a possibly incomplete 2D measurement matrix,
and O its corresponding F ×N observation matrix with
{1, 0} entries indicating whether the coordinates of a
point in a specific frame are observed or not.

We can specifically formulate our problem as follows:
given the incomplete 2D tracks P̄ and the observation
matrix O, we seek to retrieve the temporal 3D location

of all points X̂, the affinity matrices associated to soft
temporal T and spatial S clustering for spatio-temporal
segmentation, the matrix P̂ of complete 2D tracks, and
the matrix G of camera rotations. Let us denote by Θ ≡
{P̂,G,T,S,X,Et,Es} the set of all model parameters.

For estimating these parameters we introduce a cost
function that incorporates the spatio-temporal model
described previously and enforces the model matrices
to lie in low-rank subspaces 1. Since rank minimization
is a non-convex NP-hard problem [52], the nuclear norm
is used as a convex relaxation [19], [21]. In order to be
able to deal with data corrupted by noise and outliers,
we use l1-norm regularization as the convex relaxation
of the l∞-norm [46]. Finally, our problem can therefore
be written as follows:

arg min
Θ

‖ (O⊗ 12)�
(
P̂− P̄

)
‖2F + β‖P̂‖∗ + φ‖T‖∗

+ φ‖S‖∗ + γ‖X‖∗ + λt‖Et‖1 + λs‖Es‖1 (5)

subject to P̂ = GX̂
I2F = GG>

X = XT + Et

X̂ = X̂S + Es

XQ = 0

where � represents the Hadamard product and 1 is a
vector of ones. ‖ · ‖∗ is the nuclear norm, ‖ · ‖1 is the
convex approximation to sparse error and ‖·‖F indicates
the Frobenius norm. {β, φ, γ, λt, λs} are penalty term
parameters.

In this paper we will introduce two algorithms to
minimize the cost function in Eq. (5). First, following
most state-of-the-art factorization techniques [10], [26],
[35], [24], [40], we will propose an approximated three-
step strategy in which: 1) the partially observed mea-
surement matrix P̂ is completed, 2) the camera rotations
matrix G is estimated and, 3) the shape X and clustering
parameters T and S are simultaneously recovered. This
algorithm is a temporally-smoothed version of our early
approach DUST [5], hence denoted DUST-TS, and will
be described in section 6.2. The second approach we
propose is also an iterative formulation, but in this case
all model parameters are jointly estimated in the same
loop, instead of having to perform three different steps.
This algorithm (denoted “DUST2-TS”) will be described
in section 6.3.

6.2 DUST-TS: A Three-Step Factorization Strategy

We next describe the three main steps of the DUST-TS
algorithm.

1. The low rank constraint needs to be enforced to both the affinity
matrices T and S and to the shape matrix X. Enforcing low rank only
to the affinity matrices does not guarantee the shape matrices will be
low rank. For instance, in the temporal case we have that rank(X) ≡
rank(XT+Et) ≤ rank(XT)+ rank(Et) = min{rank(X), rank(T)}+
rank(Et). That is, even if T is low rank, X may not be due to the
presence of the noise term Et, and we need also so explicitly enforce
the low rank on X.
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input : Possibly incomplete 2D trajectories P̄ and
parameters {λt, λs, γ}

output: 3D reconstruction X̂ or X, camera rotation G,
spatial S and temporal T clustering, and full
2D trajectories P̂

/* Complete 2D Trajectories, Eq. (7) */
1 if P̂ 6= P̄ then

P̂ = min ‖ (O⊗ 12)�
(
P̂− P̄

)
‖2F + β‖P̂‖∗

2 else P̂ ≡ P̄

/* Camera Rotation G, Eq. (8) */

/* ALM Optimization of Eq. (10) */
3 while not converged do

/* Update Model Parameters */
4 J = min 1

α
‖J‖∗ + 1

2
‖J− (T + L6

α
)‖2F

5 T = (X>X+IF )−1(X>(X−Et)+J+ X>L1−L6
α

)
6 K = min 1

α
‖K‖∗ + 1

2
‖K− (S + L7

α
)‖2F

7 S = (X̂>X̂+IN )−1(X̂>(X̂−Es)+K+ X̂>L3−L7
α

)
8 X = min γ

α
‖X‖∗ + 1

2
‖X−

(
(Et − L1

α
)N> +

q−1(X̂− L4
α

)− (L5
α

)Q>
)
(NN>+ IF +QQ>)−1‖2F

9 C = G>(P̂+ L2
α

)+(Es−L3
α

)(IN −S>) + L4
α

+ q(X)

10 vec(X̂) =
(
IN ⊗ (G>G + IH)+H>⊗ IH

)−1vec(C)

11 X̂ = mat(vec(X̂))
12 Et = min λt

α
‖Et‖1 + 1

2
‖Et − (X−XT + L1

α
)‖2F

13 Es = min λs
α
‖Es‖1 + 1

2
‖Es − (X̂− X̂S + L3

α
)‖2F

/* Update Lagrange Multipliers */
14 L1 = L1 + α(X−XT−Et)

15 L2 = L2 + α(P̂−GX̂)

16 L3 = L3 + α(X̂− X̂S−Es)

17 L4 = L4 + α(q(X)− X̂)
18 L5 = L5 + α(XQ− 0)
19 L6 = L6 + α(T− J)
20 L7 = L7 + α(S−K)

/* Update Penalty Weights */
21 α = min(ρα, 1012)

/* Check Convergence */
22 ‖X−XT−Et‖∞ < ε

23 ‖P̂−GX̂‖∞ < ε

24 ‖X̂− X̂S−Es‖∞ < ε

25 ‖q(X)− X̂‖∞ < ε
26 ‖XQ− 0‖∞ < ε
27 ‖T− J‖∞ < ε
28 ‖S−K‖∞ < ε
29 end

30 Not.: H = (IN − S)(IN − S>), H = 3T , N = IF −T.
Hyper-parameters: ρ = 1.1, ε = 10−7, α = 10−2.
Matrices Lc, c = {1, . . . , 7}, are initially set to zero.

Algorithm 1: DUST-TS algorithm for optimizing
Eq. (5). vec(·) and mat(·) are vectorization and
matrization operators.

6.2.1 Completing Missing Entries
To complete the unobserved tracks identified as zeros
within the observation matrix O, we separately optimize
P̂ taking the first two terms of Eq. (5) and enforcing a
low-rank constraint about the measurement matrix:

min
P̂
‖ (O⊗ 12)�

(
P̂− P̄

)
‖2F + β‖P̂‖∗ . (6)

As it was shown in [11], [16], [17], this type of low-
rank minimizations with the nuclear norm acting as a
regularizer can be optimized with a bilinear factorization
P̂ = UV> and applying Augmented Lagrange Multipli-
ers (ALM) [14]. By doing this, we obtain the following
augmented Lagrangian function:

arg min
P̂,U,V

‖ (O⊗ 12)�
(
P̂− P̄

)
‖2F +

β

2

(
‖U‖2F + ‖V‖2F

)
+ 〈L, P̂−UV>〉+

α

2
‖P̂−UV>‖2F , (7)

where L is the 2F ×N Lagrange multiplier and α > 0 a
penalty parameter. The Euclidean inner product between
two matrices is defined as 〈X,Z〉 = tr(X>Z), where
tr(·) is the trace of a matrix. We solve this optimization
following the algorithm described in [17] (see Algorithm
#1 in [17]).

6.2.2 Estimating Camera Rotation
Given the full matrix of point tracks P̂ estimated in
subsection 6.2.1, the camera rotation matrices R, i.e.,
the matrix G, can be estimated independently from
the rest of model parameters by factorization. For this
purpose we write the following non-convex optimization
problem which accounts for both 3D-to-2D projection
consistency plus orthonormality constraints on the es-
timated rotation matrices:

arg min
Rf

1

2
‖P̂−GX̂‖2F +

F∑
f=1

‖I2 −RfRf>‖2F . (8)

There exist several approximations to solve Eq. (8), e.g.,
strategies that enforce smooth trajectories [10], [35], [36],
methods based on trace-norm minimization that assume
the rank of the subspace a priori [24], [54] or techniques
based on Procrustes analysis [40]. Alternatively, when
the non-rigid objects do not undergo a rigid motion, the
camera motion matrix G could also be recovered using
a few background rigid points [50], and then applying
rigid factorization [55]. In this paper, following [35],
Eq. (8) is solved by applying an initial SVD factorization
over P̂, and then enforcing metric constraints by non-
linear optimization.

6.2.3 Joint Clustering and 3D Reconstruction
In order to jointly recover 3D shape and the spatio-
temporal clustering, we again resort to the ALM method.
Assuming P̂ and G are already known, the minimization
we need to perform is:

arg min
T,S,X,Et,Es

φ‖T‖∗+φ‖S‖∗+γ‖X‖∗+λt‖Et‖1+λs‖Es‖1

subject to P̂ = GX̂
X = XT + Et

X̂ = X̂S + Es

XQ = 0

Since the parameters {φ, γ, λt, λs} can be scaled with
respect to one of them, in the following, without loss of



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

generality, we fix φ = 1. Finally, the Lagrangian function
can be written as:

arg min
ΘDUST-TS

{CostDUST-TS} (9)

where:

CostDUST-TS =‖J‖∗+‖K‖∗+γ‖X‖∗+λt‖Et‖1+λs‖Es‖1
+〈L1,X−XT−Et〉+

α

2
‖X−XT−Et‖2F

+〈L2, P̂−GX̂〉+
α

2
‖P̂−GX̂‖2F

+〈L3, X̂−X̂S−Es〉+
α

2
‖X̂−X̂S−Es‖2F

+〈L4, q(X)−X̂〉+ α

2
‖q(X)−X̂‖2F

+〈L5,XQ〉+ α

2
‖XQ‖2F

+〈L6,T−J〉+ α

2
‖T−J‖2F

+〈L7,S−K〉+ α

2
‖S−K‖2F , (10)

and ΘDUST-TS ≡ {J,T,K,S,X, X̂,Es,Et} are the spatio-
temporal clustering and shape parameters, including
three support matrices we have introduced correspond-
ing to q(X) ≡ X̂, T ≡ J and S ≡ K. Additionally,
{L1,L5} ∈ R3N×F , L2 ∈ R2F×N , {L3,L4} ∈ R3F×N ,
L6 ∈ RF×F and L7 ∈ RN×N are the Lagrange multipli-
ers; and α > 0 is a penalty coefficient so as to improve
convergence.

The previous minimization problem is carried out
efficiently by solving each subproblem separately and in
closed form, while keeping fixed the rest of variables.
Algorithm 1 explains the details. The expressions for
estimating T, S and X̂ (steps 5, 7 and 10) are obtained
by computing the derivatives of Eq. (10) in T, S and X̂
and equating to zero. For J, K and X matrices (steps
4, 6 and 8), we apply a Singular Value Thresholding
minimization [18] with a ‘shrinkage operator’ S ∗α (x) =
max(0, x − ∗

α ) where ∗ = {1, γ}. The optimization of
matrices Et and Es (steps 12 and 13) can be done
in closed form by the element-wise shrinkage operator
S ∗α (x) = max(0, x − ∗

α ) where ∗ = {λs, λt} [44]. After
each iteration, the Lagrange multipliers are updated
according to standard rules as shown in lines 14-19. The
affinity matrices and the rest of model parameters are
initialized to null matrices.

Figure 3-left shows the evolution of the cumulative
error of the seven constraints in Eq. (10), for one specific
dataset (see Violence experiment in the Results section).
The 3D reconstruction error ex is plotted in the same
figure. Note that after around 60 iterations all constraints
are almost perfectly satisfied. Indeed, a few extra it-
erations guarantee the exact satisfaction. As expected,
there still remains a residual 3D reconstruction error,
as the constraints are just an approximate model of the
true physical behavior of the deformable bodies. In any
event, as it will be shown in the results section, the
reconstruction error we obtain improves state of the art.

6.3 DUST2-TS: Joint 3D Shape, Clustering, Camera
Motion and Missing Tracks
We next present DUST2-TS, which in contrast to DUST-
TS, iteratively estimates all model parameters in one sin-
gle iterative loop, including the full measurement matrix
P̂ (recall that in DUST-TS this matrix was estimated as
an independent step). To this end, we leverage on the
dual union of spatio-temporal subspaces to span also
the measurement matrix.

Theoretically, we could define the relations P̂ =
P̂S + Hs and P = PT + Ht, where S and T are
the same spatial and temporal affinity matrices defined
in Eqs. (2) and (3), respectively. Hs and Ht represent
2D spatial and temporal residual noise. However, since
P̂ = GX̂ = GX̂S+GEs we would have that Hs = GEs,
turning the relation P̂ = P̂S + Hs into redundant. A
similar conclusion could be reached for the constraint
P = PT + Ht. That is, both these constraints on the 2D
tracks, do not need to be explicitly formulated in order
to ensure that P̂ and P = d−1(P̂) lie in a dual union of
spatio-temporal subspaces.

Based on this observation, we now formulate a new
ALM optimization which besides camera motion, shape
and spatio-temporal clustering, it also estimates, the
missing point tracks. The corresponding Lagrangian be
built upon that in Eq. (10) as follows:

arg min
ΘDUST2-TS

{CostDUST2-TS} (11)

where:

CostDUST2-TS =CostDUST-TS

+‖
(
12 ⊗O>

)
� d−1

(
P̂− P̄

)
‖2F +‖M‖∗

+〈L8, d(P)−P̂〉+ α

2
‖d(P)−P̂‖2F

+〈L9,P−M〉+ α

2
‖P−M‖2F

+ζ
F−1∑
f=1

‖∇fR‖2F , (12)

and ΘDUST2-TS = ΘDUST-TS ∪ {P̂,M,P,G}. Two support
matrices have been introduced, namely d(P) ≡ P̂ and
P ≡M, and L8 ∈ R2F×N and L9 ∈ R2N×F are the extra
Lagrange multipliers. In this context, the function d(·)
is equivalent to the function q(·), but re-arranging 2D
observations rather than 3D coordinates. ∇f represents
the discrete temporal derivative operator, and ζ > 0 is a
weight coefficient.

The cost function of DUST2-TS algorithm in Eq. (12)
can be seen as an extended version of the original cost
for DUST-TS defined in Eq. (10), with additional update
rules for both camera parameters and missing tracks.
That is, the full energy defined in Eq. (5) is solved in a
unified manner. Since this problem is non-convex, proper
initialization is required for fast convergence. In this
paper, we uniquely initialize the missing tracks and the
camera parameters using Eq. (7) and Eq. (8), respectively.
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Fig. 3. Convergence analysis and number of iterations vs. computation time. Left: Evolution of the error for the seven
constraints (denoted as Cc, with c = {1, . . . , 7}) in Eq. (10) and the 3D reconstruction error eX as a function of the number of
iterations until convergence (corresponding to the Violence sequence described in the results section). Note that two different scales
(left and right vertical axes) are used to represent the errors of the constraints and the error eX Center: Zoom of the area within the
red dashed rectangle in the left plot. Right: Computation time vs. number of iterations until convergence on the Mocap sequences
described in the Results section, for two (red dots) and four (blue dots) subjects. Next to each dot are indicated the number of
frames of the sequence. In all cases, the number of iterations until convergence always remains within reasonable bounds. The
corresponding computation time depends on the number of frames and points.

Then, we iteratively apply the update rules detailed
in Algorithm 2 until convergence. Obtaining the cam-
era parameters requires solving a manifold-optimization
problem to enforce the Rf matrices to lie in SO(3). We
achieve this using the trust-region solver in the Manopt
toolbox [13].

6.4 Spatial and Temporal Clustering
Once the affinity matrices T and S are estimated, we
run the spectral clustering algorithm proposed in [20]
to discover the actual clusters. Figure 1 shows an exam-
ple of two matrices we obtain, where each entry (i, j)
indicates the degree of similarity between the i-th and
j-th frame (for the case of T), or between the i-th and
j-th data point (for the case of S). The bar right below
the affinity matrices represents the clusters discovered
after applying [20]. The granularity of the segmentation
can be controlled through a threshold on the eigenvalues
internally computed by [20].

6.5 Complexity Analysis
The most computationally demanding part of the al-
gorithms 1-2 corresponds to the step 10 in Algorithm
#1, which requires computing an inverse matrix of size
3FN × 3FN . It is worth pointing out that even though
our algorithm requires to compute several SVD opera-
tions (see steps 4, 6 and 8; and step 2 for Algorithm
#2), their complexities become negligible compared to
the previous inverse computation. On balance, our prob-
lem can be sorted out in a polynomial time with a
computational complexity of at most of O(N3F 3) [33].
The computation times (in Matlab) for Motion Capture
(Mocap) sequences for two and four people are reported
in Fig. 3-right. On average, the median computation time
in experiments with sequences between 214 − 707 and
214 − 500 image frames for two and four humans was
of 724 and 1365 seconds, respectively, on a laptop with
an Intel Core i7 processor at 2.4GHz.

input : Possibly incomplete 2D trajectories P̄ and
parameters {λt, λs, γ}

output: 3D reconstruction X̂ or X, camera rotation G,
spatial S and temporal T clustering, and full
2D trajectories P̂

/* Initialization: Eqs. (7)-(8) */

/* ALM Optimization of Eq. (12) */
1 while not converged do

/* Update Model Parameters */
2 M = min 1

α
‖M‖∗+ 1

2
‖M− (P + L9

α
)‖2F

3 P ≈ (12 ⊗O>)� d−1(P̄)+(12 ⊗ Õ>)� 1
2
(d−1(P̂−

L8
α

)+M− L9
α

)

4 P̂ = 1
2
(d(P)+GX̂+ L8−L2

α
)

/* Update Rules to solve Eq. (10) */

/* Update Lagrange Multipliers and
Penalty Weights */

/* Check Convergence */
5 if ‖P̂−GX̂‖∞ < ε2 then

arg min 1
2
‖P̂−GX̂‖2F + ζ

∑F−1
f=1 ‖∇

fR‖2F
6 else G ≡ G
7 end
8 Not.: The negative of a binary matrix O is denoted as
Õ. Hyper-parameters: ζ = 6.0 and ε2 = 0.5 · 10−1.

Algorithm 2: DUST2-TS algorithm for optimizing
Eq. (5).

7 EXPERIMENTAL EVALUATION

We now present our experimental evaluation for differ-
ent types of scenarios where several humans perform
different everyday activities (see videos in the supple-
mental material). We provide both qualitative and quan-
titative results, and compare our approach against state-
of-the-art techniques on several Mocap datasets with 3D
ground truth.

In the following, we will report the reconstruction
error in terms of the normalized mean 3D error eX used
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XXXXXXXXData
Method CSF [35] KSTA [36] BMM [24] EM-PND [40] TUS [62] GBNR [30] CNR [41] DUST [5] Ours (DUST-TS)

clean and complete data sparse/structured/noise
Metric: eX eX eX eX eX eX eX eX eX eS [%] eT [%] eX eX eX

Two subjects
Jump 0.053 0.071 0.078 0.065 0.054 0.070 0.074 0.045 0.035 0.0(2) 5.4(3) 0.040 0.058 0.060
Pull 0.123 0.128 0.146 0.113 0.116 0.138 0.183 0.118 0.093 0.0(2) 7.7(4) 0.103 0.106 0.115
Soldiers 0.104 0.106 0.080 0.342 0.073 0.076 0.091 0.049 0.049 1.2(2) 5.0(2) 0.049 0.052 0.069
Stares Down 0.036 0.022 0.050 0.013 0.032 0.048 0.038 0.016 0.012 0.0(2) 0.0(2) 0.014 0.022 0.043
Stumbles 0.094 0.102 0.124 0.099 0.112 0.119 0.119 0.096 0.086 0.0(2) 1.3(2) 0.091 0.105 0.103
Squats 0.047 0.041 0.040 0.055 0.016 0.036 0.023 0.015 0.012 4.8(2) 0.8(2) 0.015 0.019 0.047
Synchronized 0.141 0.145 0.152 0.145 0.091 0.147 0.112 0.083 0.062 0.0(2) 1.2(2) 0.069 0.072 0.086
Violence 0.072 0.073 0.090 0.150 0.081 0.085 0.135 0.060 0.053 0.0(2) 1.1(3) 0.056 0.068 0.073
Zombie 0.070 0.067 0.062 0.076 0.056 0.061 0.087 0.043 0.042 0.0(2) 9.3(3) 0.043 0.057 0.057
Average error: 0.082 0.084 0.091 0.117 0.070 0.087 0.096 0.058 0.049 0.6 3.5 0.053 0.062 0.073
Relative error: 1.66 1.70 1.84 2.37 1.42 1.76 1.94 1.17 1.00 - - 1.08 1.26 1.47

Four subjects
Blind4 0.047 0.040 0.079 0.079 0.059 0.074 0.137 0.045 0.038 0.0(4) 0.3(2) 0.041 0.044 0.048
Chicken4 0.030 0.034 0.027 0.022 0.017 0.021 0.022 0.015 0.015 0.0(4) 0.2(3) 0.018 0.021 0.023
Greet4 0.048 0.041 0.078 0.069 0.072 0.077 0.085 0.051 0.040 0.0(4) 2.0(3) 0.045 0.047 0.051
Shelters4 0.055 0.053 0.087 0.053 0.037 0.085 0.069 0.034 0.031 0.0(3) 3.2(2) 0.032 0.043 0.040
Soda4 0.011 0.011 0.009 0.010 0.009 0.011 0.016 0.007 0.007 0.0(4) 1.0(2) 0.007 0.010 0.019
Synchronized4 0.093 0.077 0.056 0.042 0.046 0.049 0.078 0.041 0.032 0.0(4) 1.2(2) 0.040 0.042 0.044
Zombie4 0.055 0.067 0.047 0.051 0.043 0.046 0.061 0.033 0.032 0.0(4) 8.9(3) 0.033 0.033 0.042
Average error: 0.048 0.046 0.055 0.046 0.040 0.052 0.067 0.032 0.027 0.0 2.4 0.031 0.034 0.038
Relative error: 1.72 1.65 1.97 1.65 1.44 1.87 2.40 1.15 1.00 - - 1.10 1.23 1.37

TABLE 2
Evaluation on CMU sequences with two and four subjects, assuming known the camera rotation. The table reports the 3D
reconstruction error eX for the following NRSfM baselines considering full and clean 2D tracks: CSF [35], KSTA [36], SPM [24],
EM-PND [40], TUS [62], GBNR [30], CNR [41] and DUST [5]; and ours (DUST-TS). Relative error is computed with respect to

DUST-TS reconstruction, using complete and clean data. For our approach, we also show the clustering errors eS and eT and the
number of spatial and temporal clusters in parentheses. The three right-most columns summarize the reconstruction accuracy

under: 40% of random missing data; 15% of structured patterns of missing data; and noisy measurements, respectively.

before in [10], [24], [35]:

eX =
1

σFN

F∑
f=1

N∑
n=1

efn, σ =
1

3F

F∑
f=1

(σfx + σfy + σfz ),

where efn is the 3D error for the n-th point at frame f .
Triple (σfx , σ

f
y , σ

f
z ) are the standard error deviations at f .

For the assessment of the subspace clustering accuracy,
we compare our results with a ground truth clustering
obtained as follows. First, the ‘ground truth’ similar-
ity matrices SGT and TGT are computed by applying
the low-rank representation proposed in [45] over the
matrices X̂ and X with the true 3D point positions.
We then perform spectral clustering [20] over SGT and
TGT to retrieve SGT and T GT , which are N - and F−
dimensional vectors, where each entry is an integer
representing the ground truth cluster index. Note that
when performing this clustering directly on clean 3D
data makes these algorithms very reliable. If we denote
by S and T the corresponding cluster indexes obtained
from the similarity matrices estimated by our approach,
we finally define the following clustering errors:

eS =
100

N

N∑
i=1

I(Si 6= SGTi ), eT =
100

F

F∑
f=1

I(Tf 6= T GTf ),

where I(a) is the indicator function, i.e., I(a) = 1 if a
is true, and 0 otherwise. In practice, for the results we
report later, we run [20] for different levels of granularity
and keep the result that minimizes eS and eT . This,
however, does not have any effect on the 3D reconstruc-
tion results since the spectral clustering is applied after
estimating the affinity matrices.

7.1 Motion Capture Data

We initially evaluate the proposed approaches on the
CMU MoCap dataset [1]. Specifically, we consider sev-
eral scenarios with two or more subjects interacting and
performing complex motions. Since 2D projections are
not directly available on this dataset, we generate them
by synthesizing point tracks acquired by an orthographic
camera that follows a circular trajectory around the
scene, at an angular speed of 0.66π/sec. On average,
the sequences we consider are around 600 frames long,
and the number of points per frame is either 82 (when
considering two subjects) or 164 (four subjects). For all
experiments, we provide two types of validations: the
3D reconstruction accuracy that we compare to other
NRSfM methods, and the results of the spatial and
temporal subspace clustering, which are compared to a
ground truth. For all experiments, we set the coefficients
in Eq. (10) to λt = λs = 0.03, and γ = 14.

We assess the reconstruction accuracy of our two
approaches, DUST-TS and DUST2-TS, and seven other
NRSfM baselines: the shape-trajectory methods CSF [35]
and KSTA [36]; the block matrix approach BMM [24], the
probabilistic-normal-distribution method EM-PND2 [40],
the temporal union of subspaces TUS [62], the grouping-
based NRSfM of GBNR [30] and the consensus NRSfM of
CNR [41]. We also include our early baseline DUST [5],
without assuming smoothness priors. For CSF [35] and
KSTA [36], we manually set the rank of the subspace
to the value yielding the best results. [39] is not con-

2. EM-PND [40] is not reflection-aware, and requires selecting either
the estimated shape or its reflected version. This choice is done based
on which of the two configurations mostly resembles the ground truth
shape.
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XXXXXXXXData
Method CSF [35] KSTA [36] BMM [24] EM-PND [40] TUS [62] GBNR [30] CNR [41] DUST [5] Ours (DUST-TS) Ours (DUST2-TS)

Metric: eX eX eX eX eX eX eX eX eX eS [%] eT [%] eX eS [%] eT [%]

Two subjects
Jump 0.067 0.104 1.228 0.311 0.072 1.236 0.172 0.070 0.059 0.0(2) 6.2(3) 0.068 0.0(2) 6.2(3)
Pull 0.168 0.129 0.985 0.246 0.103 1.034 0.169 0.099 0.089 0.0(2) 6.7(4) 0.089 0.0(2) 6.5(4)
Soldiers 0.649 0.754 0.704 0.175 0.095 0.566 0.256 0.072 0.072 0.0(2) 13.0(3) 0.055 0.0(2) 11.2(3)
Stares Down 0.046 0.034 0.144 0.033 0.044 0.219 0.047 0.032 0.023 0.0(2) 0.4(2) 0.038 0.0(2) 0.6(2)
Stumbles 0.213 0.164 0.189 0.096 0.098 0.238 0.105 0.086 0.078 0.0(2) 1.6(2) 0.089 0.0(2) 2.3(2)
Squats 0.022 0.095 1.298 0.119 0.442 1.193 0.039 0.028 0.026 4.8(2) 0.8(2) 0.026 4.8(2) 0.8(2)
Synchronized 0.175 0.539 1.188 0.512 0.097 1.178 0.297 0.081 0.067 0.0(2) 2.2(2) 0.099 0.0(2) 2.5(2)
Violence 0.147 0.169 0.288 0.141 0.297 0.339 0.154 0.267 0.263 0.0(2) 3.2(3) 0.263 0.0(2) 3.2(3)
Zombie 0.208 0.176 0.162 0.184 0.171 0.198 0.120 0.175 0.149 0.0(2) 9.3(3) 0.075 0.0(2) 5.0(3)
Average error: 0.188 0.240 0.687 0.202 0.157 0.689 0.151 0.101 0.092 0.6 4.8 0.089 0.6 4.2
Relative error: 2.05 2.61 7.48 2.20 1.71 7.51 1.64 1.10 1.00 - - 0.97 - -

Four subjects
Blind4 0.145 0.173 0.204 0.094 0.056 0.221 0.198 0.048 0.045 0.0(4) 0.3(2) 0.056 0.0(4) 0.3(2)
Chicken4 0.031 0.032 0.054 0.037 2.335 0.102 0.029 0.018 0.017 0.0(4) 0.2(3) 0.023 0.0(4) 0.2(3)
Greet4 0.331 0.336 0.163 0.067 0.175 0.159 0.121 0.188 0.172 0.0(4) 4.4(3) 0.171 0.0(4) 4.4(3)
Shelters4 0.234 0.309 0.237 0.263 0.199 0.200 0.114 0.205 0.190 0.0(3) 4.8(2) 0.112 0.0(3) 4.4(2)
Soda4 0.013 0.016 1.702 0.037 0.692 0.035 0.017 0.008 0.008 0.0(4) 1.0(2) 0.015 0.0(4) 1.3(2)
Synchronized4 0.164 0.107 0.103 0.059 0.486 0.139 0.153 0.045 0.042 0.0(4) 1.2(2) 0.056 0.0(4) 1.6(2)
Zombie4 0.154 0.257 0.136 0.108 0.138 0.131 0.113 0.131 0.122 0.0(4) 10.7(3) 0.122 0.0(4) 10.7(3)
Average error: 0.154 0.176 0.372 0.092 0.583 0.141 0.106 0.092 0.085 0.0 3.2 0.079 0.0 3.3
Relative error: 1.81 2.06 4.37 1.08 6.85 1.66 1.24 1.08 1.00 - - 0.93 - -

TABLE 3
Evaluation on CMU sequences with two and four subjects when jointly estimating 3D shape and camera motion. 3D

reconstruction error eX for the following NRSfM baselines: CSF [35], KSTA [36], SPM [24], EM-PND [40], TUS [62], GBNR [30],
CNR [41] and DUST [5]; and our DUST-TS and DUST2-TS algorithms. The relative error is computed with respect to the DUST-TS

reconstruction. Again, for our approaches, we also report the clustering errors eS and eT , indicating the number of estimated
spatial and temporal clusters in parentheses.

XXXXXXXXData
Method DUST-TS DUST2-TS

sparse/structured/noise sparse/structured/noise
Metric: eX eX eX eX eX eX

Two subjects
Jump 0.062 0.079 0.075 0.089 0.086 0.095
Pull 0.092 0.109 0.106 0.109 0.117 0.103
Soldiers 0.073 0.084 0.085 0.065 0.071 0.073
Stares Down 0.025 0.030 0.048 0.051 0.055 0.062
Stumbles 0.081 0.099 0.092 0.101 0.116 0.103
Squats 0.028 0.031 0.049 0.030 0.029 0.049
Synchronized 0.069 0.073 0.083 0.121 0.118 0.104
Violence 0.263 0.264 0.266 0.279 0.272 0.268
Zombie 0.149 0.159 0.165 0.146 0.155 0.165
Average error: 0.093 0.103 0.107 0.110 0.113 0.113
Relative error: 1.02 1.13 1.17 1.20 1.24 1.24

Four subjects
Blind4 0.045 0.049 0.052 0.080 0.078 0.082
Chicken4 0.021 0.024 0.025 0.041 0.059 0.042
Greet4 0.172 0.172 0.174 0.171 0.173 0.174
Shelters4 0.190 0.195 0.192 0.193 0.196 0.146
Soda4 0.008 0.015 0.049 0.020 0.019 0.025
Synchronized4 0.044 0.071 0.048 0.077 0.078 0.070
Zombie4 0.122 0.129 0.125 0.123 0.127 0.135
Average error: 0.086 0.094 0.095 0.100 0.104 0.096
Relative error: 1.02 1.10 1.12 1.18 1.23 1.13

TABLE 4
Evaluation under measurement artifacts. 3D reconstruction

error eX for DUST-TS and DUST2-TS, considering: 70% of
sparsely distributed missing data, 20% of structured missing

tracks, and noisy observations. The relative error is computed
with respect to the DUST-TS solution in Table 3.

sidered as its source code is not publicly available, and
for TUS [62] we use our own implementation for the
same motive. Our approaches do not require tuning
the subspace rank parameter for any domain, neither
assigning which data points belong to which subspace.

It is worth noting that all methods, except DUST2-TS,
decouple the problems of camera rotation estimation and
3D shape reconstruction. Therefore, in order to focus our
analysis solely on the 3D shape reconstruction capacity,

we will first provide the same ground truth matrix
G of camera rotations to all methods and then report
the 3D reconstruction errors. After that, we will report
the results when the camera rotations are estimated.
Additionally, we also report experimental results against
artifacts in measurements, in three situations: 1) ran-
domly removing 40/70% of the observed points, 2) re-
moving patterns of 15/20% of structured missing entries
where consecutive frames include patterns with 50%
of missing entries –intended to simulate self-occlusions
or structured lack of visibility–, and 3) corrupting the
measurements by adding Gaussian noise with standard
deviation σnoise = 0.02 maxi,j,k {|dijk|}, where dijk rep-
resents the maximum distance of an image point to the
centroid of all the points.

7.1.1 Sequences with Two Subjects
We select nine sequences of the CMU dataset with
two subjects performing different activities and motion
patterns, in order to show the ability of our approach on
a wide variety of configurations. Namely, we consider
23 16 (Synchronized): subjects alternating synchronized
jumping jacks; 19 05 (Pull): a subject pulls the other by
the elbow; 22 20 (Violence): a subject picks up high stool
and threatens to strike the other; 20 08 (Zombie): subjects
follow a zombie march; 20 06 (Soldiers): subjects follow
a soldiers march; 23 19 (Stares Down): a subject stares
down the other and leans with hands on high stool;
22 12 (Stumbles): a subject stumbles into the other; 23 15
(Jump): subjects alternating jumping jacks; and 23 14
(Squats): subjects alternating squats.

Table 2 summarizes the reconstruction errors for all
methods and the subspace clustering accuracy of ours,
provided the ground truth camera rotation. Note that
DUST-TS consistently outperforms state-of-the-art in
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Fig. 4. Spatial and temporal clustering on CMU sequences. We compare the spatial S and temporal T clustering matrices
obtained with our approach with the ground truth ones. Below each matrix we plot a bar with the results of the spectral clustering.
Top: Jump and Zombie sequences with two subjects and three temporal primitives. Bottom: Blind4 and Chicken4 sequences with
four subjects and three temporal primitives.

terms of 3D reconstruction, reducing the 3D error of
other methods by large margins between the 17% and
237%. Furthermore, DUST-TS also performs shape and
temporal clustering. The quality of these segmentations
is also very good. In particular, the number of spatial
clusters we retrieve in all experiments is two, and all
points are correctly assigned to one of the subjects. The
number of temporal clusters we estimate is between 2
and 4, and the exact temporal split (i.e., the moment
when one sub-action switches to another one) is very
close (if not equal) to that of the ground truth. Indeed,
most temporal clusters match real motion primitives (see
the example in Fig. 1). Note also that when input 2D
measurements are corrupted by artifacts (random and
structured occlusions, and noise), our method obtains
similar performance to other approaches that use com-
plete and clean data. The clustering results in these
situations are roughly the same.

Table 3-top summarizes the results when both 3D
shape and camera rotation are estimated. Again, our
approaches DUST-TS (and now also DUST2-TS) consis-
tently outperform state-of-the-art in terms of reconstruc-
tion accuracy, largely reducing the 3D error of other
methods (from 10% to 751%). Focusing on our two
approaches, we observe that DUST2-TS slightly outper-
forms DUST-TS for the artifact-free case. Finally, we also
evaluate the robustness of our two approaches under
artifacts in the measurement matrix P̄. These results
are reported in Table 4-top. In general, our approaches
provide accurate solutions with a similar performance
to state-of-the-art solutions when they use perfect 2D
data (see Table 3-top). The completion algorithms do
a pretty good job hypothesizing the missing observa-
tions, especially for the random scattered occlusions, and
the final reconstruction is nearly unaffected by these
artifacts. The accuracy of the spatio-temporal clustering
is almost identical to that for the artifacts-free case.

Regarding our approaches DUST-TS and DUST2-TS, we
observe DUST2-TS outperforms DUST-TS when the level
of artifacts is small. This is because DUST2-TS has to esti-
mate more parameters than DUST-TS and becomes more
sensitive to perturbations of the input 2D measurements.
Recall that in DUST-TS, both P̂ and G are kept fixed
during the optimization.

Figure 4 shows a qualitative comparison of the sim-
ilarity matrices we estimate and those of the ground
truth, which are directly computed from clean 3D data.
Despite the matrices provided by our approach are
noisier, we can clearly identify the same patterns as in
the ground truth. The spectral algorithm we use [20], can
easily handle this noise and yields the correct number
of clusters in almost all experiments. In Fig. 5, we show
several frames of the 3D reconstruction results for the
Violence and Pull sequences.

7.1.2 Sequences with Four Subjects
We also considered a more complex case with four
subjects. Since the CMU dataset only includes sequences
with one or two subjects, we combined several of them
to generate seven new sequences with four subjects,
namely: Synchronized4: subjects alternating synchronized
jumping jacks; Zombie4: subjects follow a zombie march;
Chicken4: subjects perform a non-synchronized chicken
dance; Greet4: subjects walking and shaking hands;
Blind4: four subjects playing ”blind man’s bluff”; Soda4:
two subjects pass a soda cup to the other two and all
of them drink; and Shelters4: two subjects individually
shelter the other two. Again an orthographic camera
moving slowly around the scene is considered. In these
examples, the degree of superposition in the image plane
is so extreme, that the task of performing the spatial seg-
mentation becomes very difficult (see the 2D projections
in Fig. 5-bottom). Indeed, in some of the sequences two
of the subjects are so intimately connected, that they can
be interpreted as one single object.
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Fig. 5. 3D reconstruction and spatio-temporal segmentation on multi-subject sequences. Results for the Violence (first
row), Pull (second row), Greet4 (third row) and Blind4 (fourth row) sequences. For each scene we display several image frames,
seen from two perpendicular viewpoints (z-x and y-x). Colored dots represent the 3D position and spatial cluster index estimated
by our approach (DUST-TS). Note that the two subjects (first and second row) and the four subjects (third and fourth row) are
clearly identified. No single point is assigned to a wrong subject. Empty circles indicate the ground truth 3D position. The color of
the contour of these circles encodes to which temporal prior does the frame belong. Observe that in every video we identify several
temporal groups. For instance, for the Violence sequence, the priors have a clear physical meaning: ‘two subjects sitting down’, ‘one
subject standing up an threatening the second one’, ‘one subject attacks the other that falls down’. The physical interpretation of the
temporal priors for the four-subject cases is not that straight-forward, although it seems to encode the types of subject interactions.

The experimental results are summarized in Ta-
bles 2, 3, 4-bottom. These results are based on the same
type of analysis we did for two subjects. Again, our
approaches improve other NRSfM approaches in terms
of 3D reconstruction by a large margin (from 15% to
240% when the camera rotation is known, and from 8%
to 685% when it is unknown). It is worth pointing out
the good performance of KSTA [36] for the sequences
in which the subjects perform larger trajectories (Blind4

and Greet4). We also observe our methods demonstrate
a great resilience against artifacts in the measurements.

Regarding the segmentation accuracy, note that for
the Shelters4 we obtain a better segmentation accuracy
by choosing a spatial granularity of 3 instead of 4 (in
this case, we could obtain a 89.63% of accuracy). This is
because for this specific sequence, two of the objects are
always together. We show some similarity matrices and
reconstruction examples in Figs. 4 and 5, respectively.
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Fig. 6. Meet sequence. Top: Sample frames of two interacting humans. Bottom: 3D reconstruction and spatio-temporal
segmentation. See caption in Fig. 5 for an interpretation of the color coding.

7.2 Video Data
Finally, we evaluate our approach on the p2 meet 1
sequence from the UMPM [58] dataset, where two sub-
jects are moving and interacting. For evaluation and
comparison purposes, we use the 3D ground truth
of 74 points, obtaining an eX of 0.208 and 0.203 for
our DUST-TS and DUST2-TS algorithms, respectively.
Both these results consistently outperform the competing
methods CSF [35], KSTA [36], BMM [24], EM-PND [40],
TUS [62] (we use our camera estimation for this method),
GBNR [30], CNR [41] and DUST [5], which produce
errors of 0.741, 0.466, 0.386, 0.275, 0.223, 1.156, 0.285,
and 0.224, respectively. In addition, our formulations
provide the spatial segmentation of the two humans, and
a temporal clustering into actions. Figure 6 shows a few
sample frames of the video, and the spatio-temporal 3D
reconstruction we obtain.

8 CONCLUSION

In this paper we have proposed a novel solution to the
NRSfM paradigm that allows exploring a problem which
had not been tackled before: given a possibly incomplete
monocular sequence of 2D tracks, estimating 3D time-
varying shape and camera motion while also provid-
ing temporal clustering of the data into deformation-
primitives, and spatial segmentation into multiple ob-
jects. For this purpose, we have presented two strategies
based on a low-rank constraint to represent the time-
varying shape as a dual combination of spatial and
temporal subspaces. In both cases, we solve the prob-
lem by means of augmented Lagrange machinery. We
have thoroughly evaluated the approach on challenging
sequences involving up to four interacting people per-
forming complex motion patterns. We show that besides
providing correct spatio-temporal segmentation, our ap-
proach does also reconstruct the 3D human poses more
accurately than current state-of-the-art NRSfM methods.
In the future, we aim at using this research as a first
step to perform complete reconstruction and recognition
of human activities.
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