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∗∗ Institut de Robòtica i Informàtica Industrial (CSIC-UPC), c/
Llorens i Artigas 4-6, 08028 Barcelona, Spain

{joaquim.blesa@upc.edu}
∗∗∗ IMT Lille Douai, Univ. Lille, Unité de Recherche Informatique
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Abstract: Inland navigation networks are equipped with limnimeters to measure and record
water level data for the control of water levels and the management of water resources. When
faults occur on sensors, corrupted data can be considered as correct, leading to undesirable
management actions. Therefore, it is necessary to detect and localize these faults. In this paper,
the detection and localization of sensor faults is performed through the analysis of the parameters
of a grey-box model, which are obtained from available real data. The parameters are determined
with a sliding window, with the exception of the delays, which are considered known a priori.
A fault is detected and then localized when there is a change in the value of the parameters.
This approach is well suited for constant faults and particularly well adapted for intermittent
faults. Data of an inland navigation reach located in the north of France are used to highlight
the performance of the proposed approach.
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1. INTRODUCTION

Inland waterways are large-scale systems that run through
France with a total length of approximately 6000 km.
These networks are usually decomposed into reaches to
simplify their study. A reach is defined as a part of the
network between two locks, and is generally equipped with
controlled gates to regulate the water levels by dispatching
volumes of water. Indeed, in order to accommodate the
navigation of vessels, it is necessary that the level of
each reach be within a certain interval around a setpoint
known as the Normal Navigation Level (NNL). The design
and implementation of control algorithms such as those
proposed in Segovia et al. (2017); Rajaoarisoa et al. (2014);
Horváth et al. (2014c) require the measurement of levels,
which is achieved by means of limnimeters. However, the
level measurements can be corrupted by several types of
faults, which can lead to undesired control actions. Thus,
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fault detection and isolation (FDI) techniques must be
designed to detect and localize the faults.

Fault diagnosis in water systems has attracted consider-
able attention, which has fostered the proposal of many
approaches and techniques. Blesa et al. (2010) proposed
a fault detection method based on a linear parameter-
varying (LPV) model in order to detect faults that occur in
open-channel systems. Bedjaoui and Weyer (2011) carried
out a comparison of detection methods based on residual
generation, extended Kalman filters and finite memory
observers to detect and localize leaks in an irrigation
network. Nabais et al. (2012) proposed another sensor fault
detection approach for irrigation canals based on residual
generation. Le Pocher et al. (2012) derived another sensor
fault detection method for a real undershot/overshot gate
based on physical and black-box models. A finite memory
observer was presented by Akhenak et al. (2013) to detect
sensor and actuator faults in a dam-gallery system by using
a recursive subspace identification method. Horváth et al.
(2014a) developed an interval model based on physical
equations and a classification algorithm to detect faults
on sensors in an inland navigation reach. Hassanabadi
et al. (2016) proposed an unknown input observer design
for delayed LPV systems represented in the polytopic
framework, aiming at detecting and isolating sensor and
actuator faults in an open-flow canal. Sensor fault detec-



tion methods for inland waterways were designed using the
Integrator Delay Zero (IDZ) model (Segovia et al., to ap-
pear) and interval models (Blesa et al., 2014), respectively.
By using an interval model, it was possible to deal with the
uncertainties of the nominal model. The grey-box model of
navigation reaches detailed in Horváth et al. (2014b) was
coupled with a classification algorithm to detect abrupt
and incipient sensor faults in Duviella et al. (2013). These
approaches were well-suited to detect abrupt and incipient
faults, but are not dedicated to intermittent faults.

In this work, a grey-box model is used to estimate the
water levels of navigation reaches by considering a sliding
window. The quality of the model is checked by means of
fitting indicators. Then, validity intervals are determined
for each parameter of the grey-box model. When a sen-
sor fault occurs, the value of the identified parameters is
modified. If the value of one parameter crosses the prede-
fined boundaries of its validity interval, a fault is detected
and isolated. This FDI approach is designed to consider
constant and intermittent faults, and is then tested by
considering the Cuinchy-Fontinettes reach (CFr) located
in the north of France.

The paper is organized as follows: Section 2 presents the
grey-box model. The description of the FDI approach is
given in Section 3. Section 4 presents the case study and
the data used to illustrate the fault detection approach.
Section 5 draws conclusions and outlines future steps.

2. GREY-BOX MODEL

The grey-box modeling approach proposed in Horváth
et al. (2014b) is summarized herein by considering an
additional assumption: each actuator is equipped with one
limnimeter. The structure of the model is a first order plus
time delay for every input/output pair:

ŷk+1 = Ayk|τ +Buk|τ (1)

with matrices A ∈ Rn×n2

and B ∈ Rn×n2

. The input

variables uk|τ ∈ Rn2×1 correspond to a combination of

the components of the input vector uk=[u1k . . . u
n
k ]T with

convenient delays, where ulk = Qlk ∀l = 1, ..., n are the
different discharges along the canal. Similarly, the output

variables yk|τ ∈ Rn2×1 correspond to a combination of

the components of the output vector yk=[y1k . . . y
n
k ]T with

convenient delays, where yik = Lik ∀i = 1, ..., n are the
different level measurements along the canal (see Fig.
1). The matrix τ ∈ Nn×n given in Eq. (2) gathers the
time delays between the measurement points Li and Lj ,
and also between the discharge Qi and the measurement
point Lj , respectively. For instance, the runtime from i
to j is given by τi,j ∈ N. It is worth noting that τ is
not symmetric, as the upstream and downstream wave
velocities are different.

τ =


0 τ1,2 · · · τ1,n

τ2,1 0
. . .

...
...

. . . 0 τn−1,n
τn,1 · · · τn,n−1 0

 (2)

The time delays are determined according to the well-
known relations given in Litrico and Fromion (2004).
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Fig. 1. Time delays τi,j between each pair of measurement
points.

The vector yk|τ is expressed as

yk|τ =
[
y1
k|τ y

2
k|τ · · · y

n
k|τ

]T
, (3)

with yik|τ =
[
L1
k−τi,1 L

2
k−τi,2 · · · L

n
k−τi,n

]
.

Likewise, uk|τ reads as

uk|τ =
[
u1
k|τ u

2
k|τ · · · u

n
k|τ

]T
, (4)

with uik|τ =
[
Q1
k−τi,1 Q

2
k−τi,2 · · · Q

n
k−τi,n

]
.

Matrix A is defined as the direct sum of the 1 − by − n
vectors Ai, i.e. A=

⊕n
i=1A

i (B is expressed similarly):

A =


A1 0n · · · 0n

0n A2
. . .

...
..
.

. . .
. . . 0n

0n · · · 0n An

 (5)

withAi =
[
ai,1 · · · ai,n

]
and 0n the 1−by−n zero vector.

Note that ai,i is the parameter that links ŷik+1 to yik with
no delay.

Equation (1) is rewritten as follows:

ŷk+1 =M Φk (6)

Considering the block-diagonal structure of matrices A
and B, the i-th level ŷik+1 can be estimated as

ŷik+1 =M i Φi
k , (7)

with M i =
[
Ai Bi

]
and Φi

k =
[
yik|τ u

i
k|τ

]T
.

Then, M i is the solution of the linear least squares
problem. N samples of the measured discharges Qik and
levels Lik are considered in its computation:

M i =Y i
(
Φ
i
)T (

Φ
i
(
Φ
i
)T)−1

, (8)

with Y i =
[
yiχ+1 · · · yiN

]
, Φ

i
=
[
Φi
χ · · · Φi

N−1
]
, and

χ = max(τ ) + 1, where max(τ ) is the maximum entry
of matrix τ given in (2).

The following fit coefficients are used to determine the
accuracy of the model with respect to the measurements:

• Pearson product-moment correlation coefficient mea-
sures the linear dependence between two variables:



Ri =

N∑
k=1

(
yik − λyi

) (
ŷik − λŷi

)
√

N∑
k=1

(
yik − λyi

)2√ N∑
k=1

(
ŷik − λŷi

)2 (9)

with λyi and λŷi the mean value of measured and
estimated water levels, respectively. This coefficient
is bounded between +1 (total positive linear correla-
tion) and -1 (total negative linear correlation), and 0
means that there is no linear correlation.

• Nash-Sutcliffe model efficiency coefficient is used to
assess the predictive power of hydrological models
(Nash and Sutcliffe, 1970):

Ei = 1−

N∑
k=1

(
yik − ŷik

)2
N∑
k=1

(
yik − λyi

)2 (10)

Ei can range from 1 to −∞, where 1 indicates a
perfect match of modeled and observed values, 0 cor-
responds to the case in which the model predictions
are as accurate as the mean of observed data and
Ei < 0 means that the model predictions are less
accurate than the mean of observed data. It can also
be expressed in percent when its value is positive.

Once the proposed model is validated, the grey-box model
and the coefficients of matrices A and B can be used to
design the FDI strategy.

3. FAULT DIAGNOSIS

The fault diagnosis is focused on sensor level faults:

Lik = Li,0k + ∆i
k, ∀i = 1, ..., n (11)

where Li,0k denotes the level i and ∆i
k the fault at time k.

As model (1) provides the level estimations ŷk+1, the most
straightforward fault detection method consists in evaluat-
ing the difference between the level sensor measurements
and the estimations:

rik = yik − ŷik, ∀i = 1, ..., n (12)

where rik is the temporal residual of the i-th level sensor.
The fault detection test can be formulated as follows:

φr
i

k =

{
0 if rik ∈ [σi, σi]⇒ No Fault

1 otherwise
(13)

where bounds σi and σi are the maximum positive and
negative deviations of the residual rik in a fault-free sce-
nario, respectively.

Another possibility consists in considering the evolution
of the grey-box parameters. To do so, the determination
of M i given in Eq. (8) is performed by considering a
time window of size Nw. Hence, a temporal matrix M i

k
is computed at every instant k:

M i
k =Y i

k

(
Φ
i

k

)T (
Φ
i

k

(
Φ
i

k

)T)−1
, (14)

with Y i
k = [yik+χ+1−Nw

· · · yik], Φ
i

k = [Φi
k+χ−Nw

· · ·Φi
k−1].

The parameters aj,ik and bj,ik ∀i, j = 1...n are obtained

from M i
k = [Ai

k B
i
k]. The next step consists in comparing

these parameters with their bounds [aj,i, aj,i] and [bj,i, bj,i]
obtained in a fault-free scenario which is representative
enough and validated by means of fitting indicators (9)–

(10). Finally, the parameter fault signals φa
j,i

k and φb
j,i

k can
be generated in a similar way as φri

k
in (13):

φa
j,i

k =

{
0 if aj,ik ∈ [aj,i, aj,i]⇒ no fault

1 otherwise
(15)

φb
j,i

k is computed as φa
j,i

k but considering the parameter

estimations bj,ik and the bounds [bj,i, bj,i] in (15). The
main drawback of the fault detection test defined in (15)
is that a non-persistent excitation in the inputs when
applying (14) can lead to false alarms due to parameter
estimation errors. To overcome this issue, the parameter

fault signals φa
j,i

k and φb
j,i

k should be computed only when
the input persistent exciting order is enough to guarantee
an accurate parameter estimation (Ljung, 1999).

A fault is detected when at least one fault signal φr
i

k , φa
j,i

k

or φb
j,i

k is activated (its value equals 1). Once the fault is
detected, it should be isolated with the information of the
different fault signals. The main problem of isolating level
faults defined in (11) considering model (3) is that, since
every level is present in all level estimations, every level
fault potentially affects all the fault signals (residual fault
signals and parameter fault signals). This means that it
is not possible to isolate faults by means of the standard
Boolean fault signature matrix (Gertler, 1998). However,
as the effect of a level fault in the limnimeter Li (∆i

k) in the

estimation of the level in the limnimeter Lj (ŷjk) is delayed
by τi,j , τ can be used to isolate faults considering the fault
signature occurrence and delay as proposed in Puig and
Blesa (2013). For instance, when a fault ∆i

k occurs, the

temporal residual fault signal φr
i

k and the parametric fault

signals φa
j,i

k and φb
j,i

k ∀i = 1, · · · , n should be activated in
the first place. In the case of parametric fault signals, the
effect of the fault ∆i

k is more direct in the estimation of

parameter ai,ik . Due to the use of a time window of length
Nw, an extra delay between the fault appearance and the
effect in the fault signals can be present. Next, the effect of
the fault will be propagated to the nearest measurement
point j, which will affect the estimation of the level and the
parameters. As the effect of the fault ∆i

k is attenuated in
the propagation, it might be observed only in the nearest
measurement points.

4. CASE STUDY

4.1 Description of the system

The Cuinchy-Fontinettes reach (CFr) has been particu-
larly studied in the last years due to its importance in
the inland waterway management in the north of France.
It is equipped with two main locks (the Cuinchy lock
upstream and the Fontinettes lock downstream), two con-
trolled gates (the Cuinchy gate beside the Cuinchy lock
and the gate Porte de Garde at Aire-sur-la -Lys (see Fig.
2) and three limnimeters that allow measuring the level at
Cuinchy (LC), Aire-sur-la-Lys (LA) and Fontinettes (LF )
with a sampling time Ts = 1 min. The controlled dis-
charges are applied by means of the Cuinchy lock and gate



(QC), the Porte de Garde gate (QA) and the Fontinettes
lock (QF ). These magnitudes are measured each 15 min
and then oversampled every minute.

The CFr is 42 km long, with the gate Porte de Garde
located 28 km downstream of Cuinchy. In addition, this
reach is characterized by a negligible slope along its course.
Therefore, its dynamics are impacted by strong resonance
phenomena and large time delays. Lock operations create
waves that travel back and forth along the reach during
several hours until their attenuation. The large distances
that the waves travel along the reach result in delays.

The navigation is allowed from 6:30 am to 8:30 pm
(Monday-Saturday), and from 9 am to 6 pm on Sundays,
with a lower navigation demand. Waves are created during
these periods of time, and their attenuation takes place
during the night, outside the navigation schedule.

Cuinchy gate and lock

Fontinettes lock
Porte de Garde

LA

LC

LF
QF

QA

QC

Fig. 2. Schematics of the CFr.

The occurrence of faults in limnimeters can have a strong
impact on the inland waterways management. At the
lower management scale, the navigation might be required
to stop since the control of the water levels is done by
considering wrong data. At the higher management scale,
the water resources might not be adequately dispatched.
These issues constitute the main motivations of FDI in
inland navigation reaches. The faults may not only be
a consequence of an artificial measurement offset during
several hours (constant faults) but also due to transmission
problems (intermittent faults).

The grey-box modeling and FDI approach are used to
detect and isolate sensor faults by considering real data
from the CFr, namely from October 30, 2013 (Thursday)
to November 17, 2013 (Sunday). Part of these data are
used to compute the parameters of the grey-box model and
determine the validity intervals of its main parameters.
The remaining data are used to test the approach by
introducing artificial faults.

4.2 Grey-box model

Real data from the limnimeters and discharges are re-
synchronized by considering a sampling time of one
minute. Then, the delays between each part of the CFr
are estimated according to the characteristics of the sys-
tem and considering Qmax = 0.6 m3/s as the average
discharge. These values are stored in a matrix of delays
as follows (the values are in minutes):
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Fig. 3. Water levels in: (a) Cuinchy. (b) Aire-sur-la-
Lys. (c) Fontinettes. Measured levels: blue solid line;
estimated levels: red solid line.

τ =

[
0 78 115
79 0 37
116 37 0

]
(16)

According to these delays, the input and output vectors
uk|τ ∈ R9×1 and yk|τ ∈ R9×1 are built by considering

the following inputs and outputs: u1k = QCk , y1k = LCk
for Cuinchy; u2k = QAk , y2k = LAk for Aire-sur-la-Lys; and
u3k = QFk , y3k = LFk for Fontinettes.

The vectors uk|τ and yk|τ are used in the parameter
identification of the model by considering a sliding window
of size Nw = 1440 min (1 day). This allows taking into
account the CFr dynamics during night and day, thus
guaranteeing the input persistent exciting order condition.

By considering five consecutive days from the first day,
October 30, 2013 (Thursday), a model for each window

is identified. This model is used to estimate the levels L̂ik
as outputs of the grey-box model. The real measurements
Lik and the estimated L̂ik are depicted in Fig. 3 in blue
and dashed red lines, respectively, for each of the three
limnimeters. Note that these values are relative to the NNL
(equal to 3.8m for the CFr), and therefore the values Lik=0

correspond to the NNL in Figs. 3 and 5 (same for L̂ik).

The grey-box parameters change for each window. Fig. 4
depicts this evolution for the ai,ik terms. The Nash-Sutcliffe
(Ei) and correlation (Ri) coefficients are also computed
to verify the quality of the model. These coefficients are
depicted in Fig. 4(d) for the limnimeter LC and are in
the interval [80, 100] %, which means that the model
predictions are accurate with regard to the real data.
The average values of these coefficients for the three
limnimeters are given in Table 1.

Table 1. Average values of Nash-Sutcliffe (Ei)
and correlation (Ri) coefficients

Limnimeter Ei [%] Ri [%]

LC 90 95
LA 87 93
LF 76 87



Based on these data, the intervals for the ai,ik parameters
are determined. They are depicted as black dashed lines
in Fig. 4(a), 4(b) and 4(c). These intervals will be used to
detect and isolate faults.

0.85

0.9

0.95

1

(a)

a1,
1

0.75

0.8

0.85

0.9

(b)

a2,
2

0.6

0.65

0.7

0.75

(c)

a3,
3

0 1 2 3 4 5
80

90

100

(d)

E
C

, R
C

 [
%

]

Time [days]

Fig. 4. Values of the ai,ik parameters and determined
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Fig. 5. Water levels in: (a) Cuinchy. (b) Aire-sur-la-Lys.
(c) Fontinettes. Measured levels (impacted by faults):
blue solid line; estimated levels: red solid line.

4.3 FDI in limnimeters

The measurements corresponding to five consecutive days
starting from November 12, 2013 (Tuesday) have been
considered in order to create three faulty scenarios by
adding three faults to the real measurements. Fault f1
corresponds to a constant fault of -8 cm on the level LC .
Fault f2 consists in an intermittent fault with a magnitude
of 1.5 cm on the level LA. Fault f3 is also an intermittent
fault with a magnitude of 5 cm on the level LF . The
features of the three faults are summarized in Table 2.

The three measured levels and their estimations are de-
picted in Fig. 5 in blue and red dashed lines, respectively,
for the three limnimeters. The time occurrence and the
duration of the faults are indicated with black arrows.
Due to the dynamics of the CFr and the occurrence of
lock operations, the detection of the faults is not obvious.

The water level residuals have also been computed (see
Fig. 6). It is not possible to detect fault f1 (see Fig. 6(a)),
except for two peaks in rC that appear when the constant
fault occurs and disappears. Moreover, the magnitude of
these two peaks is not higher than other peaks in the
residual rC . By considering f2 and residual rA (see Fig.
6(b)), an increase in the frequency of peaks with a similar
magnitude can be observed during the occurrence of the
fault, but their magnitude is not big enough. A similar
behavior is obtained for f3 and residual rF (see Fig. 6(c)).

The proposed FDI approach is performed according to
the identified grey-box parameters by considering the ai,ik
terms and the predefined thresholds given in Fig. 6. These
terms change during the simulation, as it is shown in
Fig. 7. The parameter a1,1 crosses the upper threshold
after the occurrence of the fault f1, which allows detecting
the occurrence of one fault. The isolation is done by
considering which parameter is impacted. Here, the fault
f1 is isolated because the limnimeter LC is impacted. The
detection and isolation of faults f2 and f3 is achieved by
considering the parameters a2,2 and a3,3, respectively. The
faults are detected when these parameters cross one of
the predefined interval bounds. It can be observed that all
faults can be detected after 4 h in average, and only the

parameter residual fault signals φa
j,i

k are activated. The
detection delays, given in Table 3, are due to the size of the
sliding window. However, the magnitude of the considered
faults is very small: larger faults should be detected faster
and activate more fault signals.
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Fig. 6. Water level residuals (blue solid line) and thresholds
(black dashed lines) for: (a) Cuinchy. (b) Aire-sur-la-
Lys. (c) Fontinettes.

It is shown that the detection and isolation of constant and
intermittent faults can be performed by dealing with the
grey-box model parameters. The dynamics of the system
are modified in each scenario, but only one parameter
moves away from its nominal value. Thus, this approach
seems well suited to diagnose this kind of faults.

Table 2. Considered faults

Fault Mag. [cm] Occurrence (dd:hh:mm) Duration [min]

f1 -8 01:16:44 200
f2 1.5 03:07:04 540
f3 5 00:01:24 300



Table 3. Detection delay of each fault

Fault Detection delay [min]

f1 241
f2 261
f3 239
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Fig. 7. Value of the ai,ik parameters (blue solid line) and
determined thresholds (black dashed lines) in the
faulty case: (a) a1,1, (b) a2,2, (c) a3,3.

5. CONCLUSION

In this paper, a sensor fault diagnosis that aims at de-
tecting and isolating constant and intermittent faults is
proposed. It is based on a grey-box model designed for free-
surface water canals, i.e. their surface is in contact with
the air in the atmosphere. The coefficients of this model
are estimated according to real measurements, except for
the a priori known time delays. The supervision of the
model parameter values leads to the detection and isola-
tion of faults when these values cross one of the predefined
thresholds. The proposed approach is tested by means of
real measurements obtained from the sensors available at
the CFr. Three faulty scenarios have been used to highlight
the performance of the proposed approach.

Future steps derived from this work will look at the effect
of multiple sensor faults. In addition, a recursive identifi-
cation method of the grey-box coefficients will also be de-
veloped with the purpose of decreasing the fault detection
time. Finally, a fault-tolerant control scheme aiming at
satisfying the management objectives in presence of faults
will be developed.
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