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Abstract. Inland waterways are large, complex systems composed of interconnected navigation reaches 

dedicated mainly to navigation. These reaches are generally characterized by negligible bottom slopes and 

large time delays. The latter requires ensuring the coordination of the current control actions and their 

delayed effects in the network. Centralized control strategies are often impractical to implement due to the 

size of the system. To overcome this issue, a distributed Model Predictive Control (MPC) approach is 

proposed. The system partitioning is based on a reordering of the optimality conditions matrix, and the 

control actions are coordinated by means of the Optimality Condition Decomposition (OCD) methodology. 

The case study is inspired by a real inland waterways system and shows the performance of the approach. 
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1 Introduction 

Inland navigation networks are large-scale systems, often regarded as the interconnection of several 

reaches. The management of these systems aims at keeping the water levels close to the setpoints, a 

condition that must be met to ensure the accommodation of navigation. Since the water levels are 

controlled by means of gates located at the junctions of the reaches, the control laws must take into 

account the configuration of the networks. Otherwise, the local control objective for one reach 

might be achieved at the expense of the control objectives of other reaches. Centralized control 

approaches for large-scale systems are often impractical and can lead to implementation problems 

due to the spatial distribution and multi-time scales [1]. To overcome these issues, decentralized 

control approaches were conceived: the system is partitioned into subsystems, and a local controller 

is in charge of meeting the control objective for each subsystem. Such strategies usually solve these 

sub-problems by considering other subsystems’ inputs as external disturbances, which might lead to 

a poor overall performance [2]. However, the exchange of information among local controllers is 

possible nowadays thanks to the developments in information and communications technology, 

which allows these controllers to cooperate and negotiate with each other, aiming at achieving the 

best global performance [3]. Architectures in which these communication protocols between 

subsystems are implemented are referred to as distributed control techniques. 

Certain aspects of the management of modern water systems require advanced control methods [4]. 

For this reason, Model Predictive Control (MPC) is applied in the present work. This methodology 

is very well suited in those cases where the future references are known. Roughly speaking, 

reference values are the desired water levels in the reaches, while lock operations that allow boats to 

cross from one reach to the next one are regarded as disturbances. Gates are used to dispatch water 

along the system so that the control objectives are satisfied and the disturbances are rejected. 
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The framework of decentralized and distributed predictive control of water systems has attracted 

considerable interest in the past years.  A decentralized adaptive predictive controller for irrigation 

canals was designed in [5], aiming at controlling the downstream water levels of a set of reaches. 

An optimal decentralized control architecture was presented in [6] to ensure the efficient 

management of an inland navigation network in a global change context. Another decentralized 

controller was designed in [7] for a part of a real inland navigation network with a distributary. The 

application of non-centralized approaches to drinking water networks to improve the performance 

with respect to the centralized counterpart was discussed in [8]. A comparison of decentralized and 

distributed control strategies for irrigation systems was performed in [9], where the benefits of 

cooperative distributed control were validated. A hierarchical distributed MPC approach applied to 

irrigation canal planning was presented in [10], addressing a risk management strategy. 

Summary of the paper and contribution 

The centralized MPC scheme presented in [11] might not be practical to implement in the case of 

large-scale systems due to the spatial distribution of the network. To overcome this limitation, this 

work proposes a distributed MPC approach based on the initial centralized design. The formulation 

and manipulation of the Karush-Kuhn-Tucker (KKT) centralized matrix yields separable KKT 

subsystems, which define the structure of the decomposed control sub-problems [12]. Once this 

decomposed structure is attained, the Optimality Condition Decomposition (OCD) technique [13] is 

used to obtain the consensus strategy that leads to the best global performance. 

The rest of the paper is organized as follows: Section 2 summarizes the centralized MPC 

formulation presented in the aforementioned work. In Section 3, the centralized KKT system is 

formulated, and it is shown how to manipulate it to obtain the distributed KKT system. 

Furthermore, the OCD technique is presented, and the final distributed MPC formulation is given. 

An illustrative case study, inspired by part of a real inland waterways network, is presented in 

Section 4, which illustrates the proposed approach and highlights the performance of the control 

strategy. Section 5 draws conclusions and outlines future steps. 

Notation 

Throughout this paper, let    denote the set of column real vectors of length n. Scalars are denoted 

with either lowercase or uppercase letters (α, a, A, etc.); vectors, with bold lowercase letters (a, b, 

etc.); and matrices, with bold uppercase letters (A, B, etc.). Furthermore, all vectors are column 

vectors unless otherwise stated, and 0 denotes a zero column vector of suitable dimensions. 

Transposition is denoted with the superscript 
T
, and the operators < , ≤ , = , ≥ and > denote element-

wise relations of vectors. 

2 Centralized MPC formulation 

Due to lack of space, only the main features of the centralized MPC formulation presented in [11] 

are summarized in this section. More details about its development can be found therein.  

2.1 IDZ model and equivalent state-space formulation 

In order to develop an MPC for inland waterways, a model that describes the dynamic behavior of 

the system is needed. The Saint-Venant (SV) differential equations can accurately describe the real 

dynamics of the system [14]. However, these equations are not well suited for control purposes as 

they have no known analytical solution and are very sensitive to errors in the parameters. Many 

simplified models have been proposed to deal with these issues; among all of them, the Integral 

Delay Zero (IDZ) model [15] is used in this work. The general IDZ input-output expression that 

links the discharges and the water depths at the boundaries of a reach is given by:  
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where 0 and   are the abscissas for the initial and final ends of the canal; y(0,s) and y(L,s), the 

upstream and downstream water levels; q(0,s) and q(L,s), the upstream inflow and downstream 

outflow; and 
1

ˆ ( ) ,ijsij

ij

ij

s
s e

A s
p

 
 the different terms of the IDZ model ( ijA is the integrator gain, ij

is the time delay and ij is the inverse of the zero). The parameters of the first equation of (1) are 

linked to the upstream water level, while those in the second equation are linked to the downstream 

water level. Based on this, the notation of the parameters is modified in [15] and is adopted in the 

present work:           ,           ,        and                   ). 

An equivalent discrete state-space formulation is obtained to ensure the correct coordination 

between actual control values and their delayed effect in the system (a sampling period    is used): 
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with k the discrete-time instant and      the input vector delayed n samples (  ⌈   ⁄ ⌉, with ⌈ ⌉ 
the ceiling function). In practice, the numerical values of    and    are almost the same, which 

leads to a single value of n. Equation (2) describes a reach with two inputs and two outputs. The 

formulation of a system with    states,    inputs and    outputs, and with demands    (acting as 

additive disturbances), is: 

1k k u k u n k n d k d n k n        x Ax B u B u B d B d  (3.1) 

k k u k u n k n d k d n k n       y Cx D u D u D d D d  (3.2) 

2.2 Control design 

The main principle of MPC techniques resides in computing a control sequence that makes the 

predicted response move to the setpoint in an optimal manner without violating the constraints. 

Thus, it is necessary to define the constraints and the operational goals to be fulfilled. 

The system functioning is constrained by the physical nature of the variables as well as some 

elements in the waterways. Each of the constraints is described and formulated below: 

 Mass balance relations must be imposed at the nodes: u k d k 0 E u E d  

 The lower and upper bounds of the m-th actuator must be respected: 

, 1,...,
mm m

k mm N  u u u , with mN the total number of actuators in the system. 

 The water levels ky  must be kept within the predefined navigation interval [
r

y , r
y ] to 

ensure the navigability: 
k k krr

   y α y y α (with kα  relaxation parameter, and k α 0 ). 

Furthermore, the several operational goals that are to be fulfilled are the following: 
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 Maintain the water levels close to the setpoints ry : 1 ( ) ( )T

k k r k rJ   y y y y . 

 Reduce the economic cost derived from the operation of the available controlled equipment: 
2 T

k k kJ  γ u u  ( γ is the vector of known costs associated to the equipment operation). 

 Guarantee a smooth control action: 3 T

k k kJ   u u (with 1k k k  u u u ). 

 Penalize the relaxation of the navigability condition to be as little as possible outside the 

navigation interval: 4 T

k k kJ α α . 

The objectives are gathered to build the objective function 
4

1

j j

k k

j

J J


 , with j  the j-th objective 

weight, selected as shown in [11]. The solution of the centralized control problem is then given by: 

|

1

pH

k i k

i

min J 



   (4) 

subject to:         
1| | | | | |k i k k i k u k i k u n k i n k d k i k d n k i n k              x Ax B u B u B d B d  

                            
| | | | | |k i k k i k u k i k u n k i n k d k i k d n k i n k             y Cx D u D u D d D d   

                            | | ; ; ;
mm m

u k i k d k i k k k k k krr         0 E u E d u u u y α y y α α 0   

with 
pH the prediction horizon, i the time instant along the prediction horizon, k the current time 

instant and k+i|k the time instant k+i given k. 

3 Distributed MPC formulation 

As it has been stated before, centralized control approaches for large-scale systems are often 

difficult to implement, mainly due to the spatial distribution of the elements in the network. To 

overcome this limitation, the large-scale system is partitioned into sub-systems. In this work, this 

decomposition step is carried out by manipulating the centralized Karush-Kuhn-Tucker (KKT) 

matrix of the large-scale problem, which yields separable KKT subsystems that define the structure 

of the decomposed sub-problems. Once such a decomposed problem structure is obtained, the 

Optimality Condition Decomposition (OCD) technique is used to coordinate the local controllers to 

guarantee the best global performance. 

3.1 Centralized and distributed KKT systems 

To formulate the centralized KKT system, it is necessary first to define the Lagrangian function 

 (1) (1) (3)

1 2 3 1 2 3

1

( , , ) ( , ) (, , , ) ( , ) ( , )
pH

j j j

j

L f     


   u y u y h u y h u y h u y , (5) 

where ( , )f u y is the objective function given in (4),          are the Lagrange multipliers and 

  
   

   
   

   
   

 are the three first constraints of the optimization problem (4), respectively. Indeed, 

the bounds on the variables do not affect the decomposition, and hence they are not considered in 

this step. Note that the temporal dependence of u and y is not explicitly indicated for readability.  

The KKT matrix for the overall system is built using (5), which can be obtained by applying the 

primal dual interior point method or the gradient-based method [16]. This matrix represents the 
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optimality conditions and is denoted with        . The next step consists in manipulating this 

matrix such that a block-diagonal structure is attained.  A number of methods can be employed to 

transform a symmetric matrix such as         into the block-diagonal form. However, some of 

them are not well suited for the large         matrices that result from the MPC problem, while 

others compromise the coupling information due to the elimination of some matrix coefficients. The 

Cuthill-McKee ordering algorithm [17] performs row/column permutation operations in symmetric 

matrices to obtain a block-diagonal matrix with minimal couplings. This reordering provides as a 

solution l KKT block matrices on the diagonal, which can be regarded as l subsystems into which 

the overall system can be decomposed. The final block-diagonal matrix is denoted with        . 

3.2 Optimality Condition Decomposition 

Once the system partitioning has been performed, the local controllers must be designed, and their 

actions coordinated. The OCD technique decomposes the centralized problem in l sub-problems, 

and the constraints are decomposed into l groups of constraints, each of them describing the 

dynamics of a subsystem and the interactions with the rest of subsystems. At each iteration, the 

method fixes, for the i-th sub-problem, all variables to their last computed values (denoted in (7) 

with a tilde), except for the i-th group of variables. The l parallel sub-problems are given by: 

   1 1 1 1
,

1

min , ,..., , ,..., , , ,..., , ,..., ,
i i

l

i i l l j j i i l l

j
j i

f h



 
 

 
 
 


u y

u y u y u y u y u y u y  (7) 

subject to:     1 1, ,..., , ,..., , 0   ;  ; ;
m m m

ii i i l l i ii i ir rih       u y u y u y u u u y α y y α α 0  

Once the solution has been computed for each sub-problem, the Lagrangian multipliers are updated, 

following, for instance, a sub-gradient technique: ( 1) ( )

i i ih      , with ν the current iteration and 

χ(0,1) a suitable constant. The coordination of the global problem is achieved through the 

Lagrange multipliers. On the other hand, the convergence speed is characterized by the accepted 

variation of the values of the multipliers between consecutive iterations. 

4 Case study 

The result of applying the distributed MPC given by the solution of (7) is presented in this section. 

The system is first described, then the experimental design is presented, and finally the results are 

shown and the controller performance is discussed. 

4.1 System description 

A system based on the inland navigation network in the north of France is used to illustrate the 

modeling and control techniques. It is schematized in Fig. 1. 

 

Figure 1 Scheme of the case study system 
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N1, N2, N3 and N4 are equipped with controlled gates that allow dispatching water to fulfill the 

control objectives, as well as locks used by boats to cross from one reach to the adjacent one. Bif 

stands for bifurcation, where a gate is used to regulate the flow supplied to reaches 2 and 3. Four 

identical reaches with the following magnitudes make up the system:         m (length of the 

reach),       m (bottom width),       (side slope of the reach,      for a rectangular cross 

section),      (bottom slope,      for a flat reach),                 (Manning roughness 

coefficient) and              (operating point considered in the SV equations linearization). 

The navigability condition is ensured if the water levels are kept in the interval 3.8 ± 0.1 m. 

However, this objective is disturbed by lock operations with magnitudes: 18000    (N1), 18000 

   (N2), 9000    (N3) and 24000    (N4), with an average duration equal to 20 min in all cases. 

In each operation, the corresponding water volume is withdrawn from the upstream reach and 

released into the downstream reach. Thus, the sign of these uncontrolled discharges will depend on 

whether these nodes are upstream or downstream nodes, i.e. on the system partitioning. In addition, 

the lock operation time-series model is considered to be known in advance. Indeed, a common 

waterways management policy dictates that, when a boat passes through a lock, its manager informs 

the manager of the next lock so that the arrival time of the boat can be anticipated. 

4.2 Experimental design 

First, the centralized representation (4) is computed for the system depicted in Fig. 1. A sampling 

time    = 20 min is considered. The bounds on the gates are ±60 m
3
s

-1
. Next, the decomposition 

techniques presented in Section 3.1 are applied to the centralized model. As a result,         is 

formed by two blocks, which indicates that the overall system can be decomposed into two 

subsystems. The first subsystem (SS.1) comprises reaches 1, 2 and 3, while the second one (SS.2) is 

only formed by reach 4. The only existing coupling is the input at node N2 (all the water withdrawn 

from reach 2 is released in reach 4). There is no coupling in the state at N2 as the gate allows 

different upstream and downstream water depths. Due to lack of space, neither         nor 

        are presented. A 24-hour navigation period is simulated to show the performance of the 

approach. Two different periods are distinguished: navigation (from 6 a.m. to 8 p.m.) and stoppage 

(from 8 p.m. to 6 a.m.). During the stoppage period, the boats are not allowed to navigate along the 

waterways. Figure 2 depicts the simulated lock operation time-series profile. 

 
Figure 2 Lock operation profile (solid: disturbances in SS.1; dash-dot: disturbances in SS.2) 

4.3 Results 

The presented scenario is simulated, and the set of controlled actions and the predicted water levels 

are depicted in Fig. 3 and 4, respectively. Since there exists a proportionality between states and 

outputs (defined by matrix  ), the states are not depicted. Note also that there are three variables for 

Bif and two for N2: the distinction is made by adding the reach number after the variable name. 
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Figure 3 Controlled inputs computed by the distributed MPC 

 

 
Figure 4 Levels    (blue solid), navigation intervals (red dash-dot) and setpoints    (gray dashed) 

 

The simulation starts at 5 a.m., one hour before the navigation period starts. After this period ends 

(during which the system is disturbed), the water levels return to their equilibrium values. Fig. 4 

shows that the distributed MPC is able to keep the water levels inside the navigation interval in the 

presence of disturbances. Remark: note that in Fig. 3, the absolute values of the control signals are 

exactly the same for the two inputs at node N2, where an input coupling exists (different sign due to 

the sign criterion), a fact that can be verified in Fig. 3. Furthermore, the set of control actions is kept 

within the equipment design range. However, one of the operational goals consisted in guaranteeing 

a smooth control signal by minimizing ku . Although the control signals do not exhibit the 

smoothest behavior, the differences between two consecutive control actions are not so large 

compared to the operational range. This fact should result in a long lifespan of the equipment. 

To quantify the controller performance, consider the tracking indices (8) defined as the error 

between the predicted levels    and the setpoints   , with  1
2 r r

y y  the maximum deviation 

from   . The lowest TE index is 97.7%, showing that this approach provides satisfactory results 

and that the tracking performance is guaranteed (         corresponds to perfect tracking). 

 

2

1

1
[%] 100* 1

1

2
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k r

kp
r r
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H 

 
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 


 
 

  
 

 






y y

y y

   (8) 

5 Conclusions 

This work proposed a distributed MPC approach to keep the water levels of inland waterways 

within the allowed limits in the presence of disturbances created by lock operations. The original 

centralized problem was presented and divided in sub-problems by manipulating the KKT 

centralized matrix. As a result, separate sub-problems were obtained, and each of them was taken 
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care of by a local controller. The OCD technique was used to coordinate the controllers to obtain 

the best global performance. This distributed approach proved to perform well, as it was shown 

when it was tested in an illustrative case study. Thus, it can be stated that this methodology 

constitutes an efficient approach in the case of large-scale systems, for which the centralized 

counterparts are difficult to implement due to the spatial distribution of the elements in the network. 

In future works, the effect of possible sensor and actuator faults will be addressed. Therefore, fault-

tolerant control techniques using the presented distributed MPC approach will be considered. 
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