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Abstract— Information sharing among local controllers is
the key feature of any Distributed Model Predictive Con-
trol (DMPC) strategy. This paper addresses the problem of
communication failures in DMPC strategies and proposes a
distributed solution to cope with them. The proposal consists
in an information-exchange protocol that is based on dis-
tributed projection dynamics. By applying this protocol as a
complementary plug-in to a DMPC strategy, the controllers
become resilient against communication failures and relax the
communication requirements. Furthermore, a discussion on the
selection criteria of the information-sharing network and a
reconfiguration algorithm, which is a contingency procedure
to maintain the connectivity of the network, are also presented.
In order to demonstrate the performance and advantages when
adopting the proposed approach, a case study of a power-
network control problem is considered.

Index Terms— Distributed MPC, information-exchange pro-
tocol, distributed projection dynamics

I. INTRODUCTION

Research in Model Predictive Control (MPC) has been
extensively done since the past decades (see e.g., [1]–[4] for
a review). Such studies include the application of MPC to
large-scale systems, i.e., systems that have a large number
of inputs, states, and/or outputs. Since an MPC controller
computes control inputs by solving an optimization problem,
the problem may become intractable when the system is
too large [3]. Therefore, many works in the literature have
proposed non-centralized MPC approaches, in which there
are multiple local controllers as opposed to the centralized
approach, which has a single central controller, in order
to cope with such problem [3], [4]. Furthermore, non-
centralized MPC approaches could also introduce additional
benefits such as better scalability, flexibility, and safety than
the centralized counterpart [4].

Non-centralized MPC approaches can be classified into
two broad categories: decentralized and distributed ap-
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Electrónica, Universidad de los Andes, Bogotá, Colombia (email:
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proaches. The main difference between these two schemes
is the existence of communication among local controllers,
which can be found in the latter category [3]. The avail-
ability of communication plays an important role for the
performance of distributed MPC (DMPC) approaches, which
is better than the decentralized ones when the couplings
between sub-systems are not weak [4]. In fact, in certain
cases, some DMPC approaches are also able to achieve
similar performance as the centralized counterpart [4].

Different DMPC approaches require different communica-
tion structure as well as different ways to exchange informa-
tion among local controllers [3]. Some DMPC approaches
require local controllers to share information iteratively
while others require that the information exchange is made
only once at each time instant. In terms of information-
sharing network, some approaches, such as [5]–[7], require
a neighbour-to-neighbour communication while other ap-
proaches, e.g., [8], [9], require all controllers to exchange
information with all the others. In any way, the information-
sharing network, through which the exchange of information
occurs, is important for systems that use a DMPC approach.

Some issues of an information-sharing network may arise
during the operation of the associated system. Those issues
include communication failures (total loss of communication
links), delays, and data packet drops [10]. This paper focuses
on the failures (loss of links) in the information-sharing
network, in which some local controllers are no longer
able to communicate with others. As mentioned in [10] and
later discussed, communication failures may lead to severe
problems such as the inability of the controllers to compute
control inputs or the sub-optimality of the solutions.

Some recent literature has addressed the problem of
communication failures in a distributed control strategy, in
particular DMPC. The authors of [11] analyse the perfor-
mance degradation of a DMPC strategy that is based on
Nash optimality during such failures while assuming that
the algorithm is convergent. The authors of [12] propose a
scheme where the sub-systems assume that their neighbours
take null control actions during communication failures. In
[13], the authors develop a methodology to extend the DMPC
strategy that is proposed in [14] such that it can cope with
communication failures. The methodology involves substitut-
ing the coupled constraints with tube-based constraints that
restrict the control inputs. Furthermore, [15] proposes to add
an observer for a robust DMPC strategy. Hence, during a
communication failure, the state bounds are estimated by the
observer and are posed as extra constraints into the DMPC



design. Additionally, a resilient information-sharing network
architecture for distributed frequency regulation is proposed
in [16]. Moreover, the controller in [16] adopts a zero-bias
control strategy and allows other sub-systems to stabilize
themselves.

The aforementioned contributions only improve some
DMPC strategies to tackle communication failures in a
way that they specifically add or modify the algorithms.
Therefore, they limit the application of the solution only to
the DMPC strategies that are discussed in those papers. In
this regard, different from the works previously discussed,
this paper proposes a communication protocol that can be
applied regardless DMPC strategy that is used to control the
system. The protocol is an iterative algorithm that requires
local controllers to communicate at each iteration until the
information that is received converges to the correct value. It
is based on the distributed projection dynamics (DPD) [17],
[18] and can also be perceived as a distributed consensus
protocol [19]. For an extensive treatment of the notion of
distributed population dynamics, the reader is referred to
[17], [18].

In this paper, an application of the proposed approach is
illustrated in a power-allocation problem of interconnected
microgrids. These kinds of systems are of large nature and
spread over large geographical areas. Furthermore, in the cur-
rent development of these systems, the power generation is
shifted toward distributed generation, particularly renewable
energy sources [20]. For these reasons, distributed controllers
have been viewed as suitable control approaches [20]–[23].
In this regard and highlighting the fact that power networks
are considered to be a critical infrastructure, it is important to
ensure the resiliency of the control approach against failures,
in particular communication failures.

In summary, the main contribution of this paper is the
information-exchange protocol that is based on DPD, as
presented in Section III. This protocol can be applied to any
DMPC strategy and improves the resilience of the DMPC
strategy against communication failures as well as relaxes
the communication requirements. Criteria to select a suitable
information-sharing network for the proposed protocol and
a network reconfiguration algorithm that supplements the
protocol are also proposed. Moreover, prior to proposing the
protocol, Section II provides an analysis of the impact of
communication failures in a DMPC strategy. Furthermore,
the advantages of the proposed protocol in a power allocation
problem of microgrids are shown in Section IV.

Notations

The statements A � 0 and B � 0 imply A and B are
positive semi-definite and positive definite, respectively. The
set of real numbers is denoted by R whereas the set of
integers is denoted by Z. Moreover, R≥a denotes all real
numbers in the set {i : i ≥ a, i, a ∈ R} and, similarly,
Z≥a denotes all integers in the set {i : i ≥ a, i, a ∈ Z}.
In addition, | · | is the cardinality operator and ‖ · ‖2 is the
Euclidean norm. The vector 0n denotes [0 0 · · · 0]> ∈ Rn
and, similarly, 1n = [1 1 · · · 1]> ∈ Rn. The subscript

k ∈ Z≥0 denotes discrete-time instants while the subscript
t ∈ R≥0 denotes continuous-time instants. For the vectors
vj ∈ Rnj with j ∈ N , the operator [v>j ]>j∈N ∈ R

∑
j∈N nj

denotes the column-wise concatenation that results in a
column-wise vector. Moreover, consider a time-dependent
vector ui,k and a prediction horizon hp. Then, ũi,k denotes
the trajectory of ui,k over the prediction horizon hp, i.e.,

ũi,k =
[
u>i,k|k u

>
i,k+1|k · · · u>i,k+hp−1|k

]>
. Finally, rnd(·)

is the round operator that approximates the argument to the
nearest integer. In the case there are two nearest integers, the
argument is approximated to the larger integer.

II. DISTRIBUTED MPC AND COMMUNICATION FAILURES

In this section, a general description of the system that
is considered and the DMPC approach are presented. After-
wards, a discussion of the impact of communication failures
in a DMPC strategy is provided.
A. Distributed MPC

Consider a time-invariant linear large-scale system (LSS)
that consists of n sub-systems. Let it be described by an
undirected graph G = (S, E), where the set of nodes,
S = {1, 2, . . . , n} denotes its sub-systems and the set of
unweighted links, E ⊆ S × S , represents the existence of
coupling between the sub-systems, i.e., (i, j) ∈ E implies
that the ith sub-system is physically coupled to the jth sub-
system. Furthermore, Ni denotes the set of the neighbours
of the ith sub-system, i.e., Ni = {j : (i, j) ∈ E ,∀j 6= i}. Let
the dynamics of this LSS be described by the discrete-time
state-space model of each sub-system, i.e., for each i ∈ S,

xi,k+1 = Aiixi,k +Biiui,k, (1)

where the states and the control inputs the ith sub-system
are denoted by the vectors xi ∈ Rnx,i and ui ∈ Rnu,i ,
respectively. Moreover, Aii and Bii are the state-space
matrices with the appropriate sizes that define the dynamics
in (1). Note that the dynamics of each sub-system might
also depend on the states, inputs, and/or disturbances of the
neighbouring sub-systems. However, for simplicity of the
exposition in Subsection II-B, such dynamical couplings are
omitted. Instead, some constraints that couple the inputs will
be introduced. Moreover, G is undirected and unweighted
since the interest of this paper is in the existence of commu-
nication, as in [13].

The control inputs are constrained by local polytopic
constraints described by Hiui,k ≤ hi, for each i ∈ S, where
Hi ∈ Rnh,i×nu,i and hi ∈ Rnh,i are constant matrix and
vector, respectively. Furthermore, there also exist some hard
coupled constraints on the control inputs that are described
as
∑
i∈S Giu

c
i,k ≤ g, where Gi ∈ Rng×nuc,i , for all i ∈ S ,

and g ∈ Rng are constant matrices and vector, respectively.
Moreover, uci,k ∈ Rnuc,i , for all i ∈ S, denote the elements
of input ui,k that appear in the coupled constraints. In other
words, ui,k can be arranged such that ui,k = [ul>i,k u

c>
i,k ]>,

where uli,k ∈ Rnul,i denotes the local control inputs. Notice
that the coupled constraints may be constraints in which the
sub-systems share a limited common input source. Hence,



the optimization problem that should be solved in an MPC
scheme at each time instant k ∈ Z≥0 is

minimize
{ũi,k}i∈S

∑
i∈S

Ji(xi,k, ũi,k) (2a)

subject to xi,`+1|k = Aiixi,`|k +Biiui,`|k, ∀i ∈ S, (2b)
Hiui,`|k ≤ hi, xi,k+hp|k ∈ X ti , ∀i ∈ S, (2c)∑
i∈S

Giu
c
i,`|k ≤ g, (2d)

for all ` ∈ {k, . . . , k+hp−1}, where the trajectory of control
input sequence throughout hp at time instant k for each sub-
system is denoted by ũi,k. Notice that the cost function over
hp is separable and it is defined as

Ji(xi,k, ũi,k) =

k+hp−1∑
`=k

x>i,`|kQixi,`|k + u>i,`|kRiui,`|k

+ J ti (xi,k+hp|k),

where Qi � 0, Ri � 0 and it is assumed that Problem (2)
is feasible. Moreover, J ti (xi,k+hp

), which denotes a convex
terminal cost function and X ti , which denotes a terminal
set that is convex, compact, and contains the origin, are
introduced and defined in order to guarantee stability [4],
[6]. Therefore, since the cost function is strictly convex and
by definition the constraints are also convex, Problem (2) is
convex.

In a DMPC scheme, sub-problems are derived by decom-
posing (2) and they are solved by local controllers assigned
to the sub-systems. When solving the sub-problems, the local
controllers need to share some information among each other.
Therefore, a DMPC strategy requires an information-sharing
network. In this regard, let the information-sharing network
of system G be described by an undirected connected graph
G̃ = (S, Ẽ), where the set Ẽ shows how the local controllers
share information in this network, i.e., the link (i, j) ∈ Ẽ in-
fers that there exists a bidirectional information flow between
the ith and jth sub-systems through a communication channel.
Many distributed MPC methods, e.g., [5]–[7], require that
local controllers share information with their neighbours in
G. This means that Ẽ = E . Other methods, e.g., the method
presented in [8] and [9], require full information exchange,
i.e., G̃ should be a complete graph.

B. Impacts of Communication Failures

The availability of communication between sub-systems
is the main feature of DMPC strategies. Therefore, this
section is dedicated to show, by an example, what could
happen when there are failures in the information-sharing
network, i.e., at least one communication link fails for a
certain time slot. During this period, the affected sub-systems
cannot communicate with each other while employing a
DMPC strategy. For this example, without loss of generality,
consider a system that consists of two sub-systems, i.e., S =
{1, 2}. Moreover, consider that the system has dynamics and
constraints as described in the previous subsection, implying
that Problem (2) must be solved by the DMPC controllers.

Furthermore, let ũ?i,k, for all i ∈ S , be the optimal solution
of this problem.

Now, a DMPC strategy that is based on dual decom-
position is considered to be implemented and the control
inputs obtained by this strategy are analysed. In principle, the
DMPC strategies that are based on dual decomposition are
iterative and use the concept of duality in convex optimiza-
tion [24]. The iterations, which are called the distributed dual
ascent, are intended to optimize the Lagrange multipliers
that are associated with the coupled constraints in order to
solve its dual problem [25]. The solution of this algorithm
converges to the global optimal value if the primal problem
is convex and the cost function is strictly convex [25]. The
iteration steps of the distributed dual ascent algorithm that is
applied by the ith sub-system for problem (2) are as follows:
1.

1) The update of the decision ũi,k at the rth iteration is

ũ
(r)
i,k = argmin

ũi,k

Ji(xi,k, ũi,k) +

k+hp−1∑
`=k

(
λ
(r)>
i,`|kGiu

c
i,`|k

)
subject to (2b), (2c), ∀` ∈ {k, . . . , k + hp − 1},

(3)
in which λ(r)

i,`|k, for all ` ∈ {k, . . . , k + hp − 1} and
i ∈ S, are the Lagrange multipliers that are associated
with the input-coupled constraints (2d).

2) The update of the Lagrange multipliers is λ(r+1)
i,`|k =

λ
(r)
i,`|k + γ

(
G1u

c(r)
1,`|k +G2u

c(r)
2,`|k − g

)
, for all ` ∈

{k, . . . , k + hp − 1}, where γ ∈ R, 0 < γ < 1.
Notice that all steps of the dual ascent algorithm can be
done locally and each sub-system requires the information
of the decision of its neighbourhood in order to update
the Lagrange multipliers. When exchanging information,
consider the information sharing network G̃ = (S, Ẽ), where
Ẽ = {(1, 2)}.

During a communication failure, it is assumed that each
sub-system uses the information of the neighbourhood from
the previous time instant and considers the unknown infor-
mation to be null, as in [12] and [16]. This is precisely stated
in Assumption 1.

Assumption 1: Consider that the communication link
(i, j) ∈ Ẽ fails. During the period of the fail-
ure, the ith sub-system considers the input trajectory
of the the jth sub-system (ũj,k), denoted by w̃j,k =[
w>j,k · · · w>j,k+hp−1

]>
, as follows:

wj,` =

{
uj,`|k−1, ` = k, . . . , k + hp − 2,

0nu,j
, ` = k + hp − 1,

and vice versa. ♦
Note that based on the structure of ui,k, wj,k =
[wl>

j,k w
c>
j,k]>, where wl

j,k and wc
j,k correspond to the local

inputs and the coupled inputs, respectively. In this case,
during a communication failure, both sub-system cannot
communicate and receive the necessary information, which is
the coupled inputs of their neighbour. It implies that the steps
of updating the Lagrange multipliers for both sub-systems



become

λ
(r+1)
i,`|k = λ

(r)
i,`|k + γ

(
Giu

c(r)
i,`|k +Gjw

c(r)
j,` − g

)
, (4)

for all ` ∈ {k, . . . , k + hp − 1} and i ∈ S, where j ∈ Ni.
The modification of the dual-ascent algorithm implies that
instead of solving Problem (2), the DMPC controllers solve
the following optimization problem:

minimize
{ũi,k}i∈S

∑
i∈S

Ji(xi,k, ũi,k) (5a)

subject to (2b), (2c),
Giu

c
i,`|k +Gjw

c
j,` ≤ g, ∀j ∈ Ni, (5b)

for all i ∈ S and ` ∈ {k, . . . , k + hp − 1}. The difference
between Problem (5) and Problem (2) is in the existence of
coupled constrains (2d) in Problem (2), which are replaced
by (5b). Notice that the inequalities (5b) are not coupled
constraints since wc

j,`, for all j ∈ S and ` ∈ {k, . . . , k +
hp − 1} are known information (see Assumption 1). Hence,
Problem (5) is separable by definition.

An analysis regarding the performance of the controllers
can be made by evaluating Problem (5). Problem (5) may
be infeasible even though Problem (2) is feasible due to
the changes of the constraints. In this case, the dual-ascent
algorithm with the updating steps according to (3) and (4)
will not obtain a solution. Suppose that Problem (5) is
feasible. Since it is convex, the dual-ascent algorithm can
find a solution. Consider that each sub-system obtains a

solution ũ∗i,k, for all i ∈ S . Thus, ũ∗k =
[
ũ∗>1,k ũ

∗>
2,k

]>
must be examined, since this is the control input that will be
applied to the system. The solution ũ∗k may be an infeasible
solution for Problem (2), i.e., it violates some constraints
of Problem (2). The DMPC scheme in [12], which apply
Assumption 1 during failures, also assumes that null control
input is a feasible solution. However, the latter assumption
does not always hold in general. Furthermore, supposing

that ũ∗k is feasible, if ũ∗k =
[
ũ?>1,k ũ

?>
2,k

]>
, then ũ∗k is the

optimal solution. Otherwise, ũ∗k is a suboptimal solution.
Thus, this DMPC strategy does not have a guarantee on the
feasibility, let alone the stability and the optimality, during
communication failures even though the problem is convex
with a strictly convex cost function. Similar issues may also
be found when the strategy is applied to a more complex
and larger problem and in other DMPC strategies. Hence,
increasing the resilience of communication infrastructure is
important. Section III discusses a proposal to improve the
resilience of the information-sharing network.

III. INFORMATION-EXCHANGE PROTOCOL BASED ON
DISTRIBUTED PROJECTION DYNAMICS

The proposal focuses on the methodology of sharing
information, which is independent from the control strategy.
Thus, it is a general and complementary methodology that
can be applied to any DMPC method.

A. Description of the Protocol

Recall the information-sharing network as the graph
G̃ = (S, Ẽ), where Ẽ shows how the local controllers are
connected with each other in the information-sharing net-
work. Furthermore, consider that some nodes (sub-systems)
require information denoted by sv = [s1v s

2
v · · · s

ns,v
v ]> ∈

Rns,v , from the vth node. Depending on the DMPC strategy
applied to the system and the couplings in the system, sv may
consist of either state or input information, which is required
by some or all other nodes to run the DMPC algorithm.
Therefore, there exists a sub-graph G̃v = (Sv, Ẽv) ⊆ G̃,
where Sv ⊆ S is the set that consists of node v and the
nodes that require sv , while Ev ⊆ E is the set of links that
connect the nodes in Sv . For instance, in the DMPC strategies
that require neighbour-to-neighbour communication, some
neighbours j ∈ Nv might be included in Gv while the other
neighbours are included in the other information-sharing
subgraphs. In order to apply the protocol, the following
assumptions must hold.

Assumption 2: The undirected sub-graph G̃v is connected.
♦

Assumption 3: The node v, which sends the information,
has prior knowledge of |Sv|, while all i ∈ Sv\{v} know
ns,v . ♦
Note that, following Assumption 2, it is possible that there
are some nodes in Sv that do not need the information sv ,
but they are required as intermediate nodes in order to ensure
the connectivity of G̃v .

The proposed information-exchange protocol is based on
the following dynamics:

ṗi,t = α
∑
j∈Ñi

(pj,t + rj − pi,t − ri), ∀i ∈ Sv, (6a)

qi,t = pi,t + ri, ∀i ∈ Sv, (6b)

where qi, ri,pi ∈ Rns,v are the information state, the refer-
ence input, and the internal state of the ith node, respectively,
Ñi is the set of nodes that are the neighbours of the ith node
in G̃v , i.e., (i, j) ∈ Ẽv for all j ∈ Ñi, and α ∈ R>0 is a
constant gain. Furthermore, the reference inputs of all nodes
in Sv are given by

ri =

{
|Sv|sv, i = v,

0ns,v
, otherwise,

(7)

and the internal states are initialized as

pi,0 = 0ns,v
, ∀i ∈ Sv. (8)

It is shown in (7) that the information sv is used as the
reference input of the vth node. In the following subsection,
the convergence of the protocol is discussed.

Remark 1: The dynamics (6) are in the class of dynamic
consensus, which tracks the average of the changing ref-
erence inputs. The reader is referred to [26] for further
discussions on this topic. ♦

Remark 2: The vectors qi,pi, ri ∈ Rsv for all i ∈ Sv are
dedicated only for the transmission of information sv . Thus,
each local controller needs to allocate a different data storage



for acquiring another information, i.e., if there are more than
one source nodes. ♦

B. Convergence of the Protocol

Theorem 1 below states the convergence of the proposed
information-exchange protocol.

Theorem 1: Suppose that Assumptions 2 and 3 hold.
Under the dynamics (6) and by providing the references as
in (7) and the initial value of the auxiliary state as in (8),
the equilibrium point of the information state, i.e., q?i = sv ,
for each i ∈ Sv , is asymptotically stable.

Proof: Firstly, notice that the dynamic equations (6a)
correspond to distributed projection dynamics (DPD) [17]
with the fitness functions fi,t : Rns,v → Rns,v , for all i ∈
Sv , which are defined as fi,t = − (pi,t + ri). The protocol
dynamics (6a) can be rewritten in the form of the DPD as

ṗi,t = α|Ñi|fi,t − α
∑
j∈Ñi

fj,t, ∀i ∈ Sv. (9)

Note that fi,t = [f1i,t f
2
i,t · · · f

ns,v

i,t ]>, where f li,t = −pli,t−
rli, for each l ∈ {1, . . . , ns,v}, is related to the information
datum slv . Then, these dynamics can be rearranged into

˙̌plt = −αL(G̃v)f̌ lt , ∀l ∈ {1, 2, . . . , ns,v}, (10)

where ˙̌plt = [ṗli,t]
>
i∈Sv , f̌ lt = [f li,t]

>
i∈Sv , for all l ∈

{1, . . . , ns,v}, and L(G̃v) ∈ R|Sv|×|Sv| is the Laplacian of
the graph G̃v . Hence, it is shown in (10) that the dynamics
depend on the structure of the graph G̃v .

Secondly, it is necessary to show that the set

∆ =

{
pt ∈ R|Sv|ns,v :

∑
i∈Sv

pli,t = ml, ∀l ∈ {1, . . . , ns,v}
}
,

is invariant. This statement can be concluded by the fact that
1>|Sv|L(G̃v) = 0, i.e.,

∑
i∈Sv ṗ

l
i,t = −α1>|Sv|L(G̃v)f̌ lt = 0,

for all l ∈ {1, . . . , ns,v}. Furthermore, by denoting the whole
auxiliary states as pt = [p>i,t]

>
i∈Sv and the equilibrium point

as p? = [p?>i ]>i∈Sv , where p?i is the equilibrium point of the
ith sub-system, and, based on Assumption 2, the equilibrium
point p? can be characterized from (10), i.e., p? = {pt ∈
∆ : ˙̌plt = 0, ∀l ∈ {1, . . . , ns,v}} = {pt ∈ ∆ : f̌ lt ∈
span{1|Sv|}, ∀l ∈ {1, . . . , ns,v}}, since span{1|Sv|} is the
nullspace of L(Gv) when Gv is connected.

Now the solution of q?i is derived from p?i . Recall that
∆ is invariant. Due to the initialization in (8),

∑
i∈Sv p

l
i,t =∑

i∈Sv p
l
i,0 = 0. Therefore, based on this fact and since f̌ lt ∈

span{1Sv} implies f li (p
l?
i ) = f lj(p

l?
j ) for all i, j ∈ Sv , it

is obtained that f̌ li (p
l?
i ) = − 1

|Sv|
∑
j∈Sv (plj,0 + rj), which

implies pl?i = −ri + 1
|Sv|

∑
j∈Sv rj , for all i ∈ Sv and l ∈

{1, . . . ns,v}. Hence, the whole vectors pi,t, for all i ∈ Sv ,
have the following equilibrium point:

p?i = −ri +
1

|Sv|
∑
j∈Sv

rj = −ri + sv, (11)

since according to (7) and Assumption 3,
∑
j∈Sv rj =

|Sv|sv . Thus, by substituting pi,t into (6b) with the expres-
sion in (11), it is obtained that the equilibrium points of the
information states are q?i = sv , for all i ∈ Sv .

Finally, the convergence of the internal state pi,t
is shown since it implies the convergence of qi,t
to the equilibrium point q?i . To this end, consider
the radially unbounded Lyapunov function candidate:
V (pt) =

∑
i∈Sv

1
2

(
p>i,tpi,t − p?>i p?i

)
+ r>i (pi,t − p?i ) ,

where V (pt)→∞ as ‖pt‖ → ∞. The function V (p?) = 0
and V (pt) > 0 for all pt 6= p?. The time derivative of
V (pt), i.e.,

V̇ (pt) =
∑
i∈Sv

f>i,tṗi,t

=
∑
i∈Sv

−αf>i,t
|Ñi|fi,t − ∑

j∈Ñi

fj,t


=

ns,v∑
l=1

−α∑
i∈Sv

f li,t|Ñi|f li,t − f li,t ∑
j∈Ñi

f lj,t


=

ns,v∑
l=1

(
−αf̌ l>t L(Gv)f̌ lt

)
.

Since G̃v is connected by assumption, L(G̃v) � 0. Hence,
V̇ (pt) ≤ 0, for all pt ∈ R|Sv|ns,v . Furthermore, notice that
equality V̇ (pt) = 0 only holds when f̌ lt ∈ span{1|Sv|}, for
all l ∈ {1, . . . , ns,v}, i.e., at the equilibrium point p?. Then,
applying the LaSalle-invariance principle, convergence to the
equilibrium point p? is concluded [27]. Hence, q?i = sv , for
all i ∈ Sv , are also asymptotically stable.

Remark 3: The convergence rate of the protocol depends
on the structure of the network. It can be seen from the
representation of the protocol in (10), which is similar to the
standard consensus algorithm formulation. The convergence
rate of such protocol is indicated by the second smallest
eigenvalue of the Laplacian of the graph [28]. ♦

Remark 4: Although the information states asymptotically
converge to q?i = sv , for all i ∈ S, in practice, sufficiently
similar information can be recovered in a finite time. ♦
C. Advantages of the Protocol

Two main advantages of the DPD-based information-
exchange protocol are highlighted as follows. Firstly, it
relaxes some assumptions that are required by most of
DMPC strategies. Particularly, it relaxes the requirement of
the information-sharing network topology. As discussed in
Section II-A, different DMPC strategies might have differ-
ent requirements regarding the information-sharing network
topology supposing that the information is exchanged di-
rectly as required. However, by employing the proposed
protocol, these requirements are relaxed such that G̃ does
not have to fulfil certain topological structure. Instead, only
the connectivity of G̃ is necessary (Assumption 2). Secondly,
this protocol also enhances the resiliency of DMPC-type
controllers against communication failures. According to As-
sumption 2, the information can still be exchanged although



some links of the network G̃ fail as long as the network is
still connected. Therefore, to some extent of link failures, a
DMPC strategy that uses the proposed protocol to exchange
information can still be performed.

The advantages provided by the protocol also come with
some costs, which are extra computation and communication,
in terms of the amount of data that is exchanged. This is due
to the fact that all sub-systems should reach consensus by
iteratively exchanging information and applying (6) before
obtaining the correct information from their neighbours.
Therefore, one must ensure that the total time to exchange
information using the DPD-based protocol and to compute
the control inputs is smaller than the sampling time of
the controlled system. In practice, the satisfaction of this
assumption depends on the system complexity, i.e., the in-
strumentation and the other hardware as well as the software,
e.g., the optimization solver.

D. Selecting the Information-Sharing Graphs

Now consider that the system has an information-sharing
network that connects its sub-systems in a certain way. In this
subsection, a discussion on how to choose the information-
sharing sub-graph, G̃v , from the available information-
sharing network is provided. Two criteria of selection are the
resiliency of the network against communication failures and
the convergence rate of the proposed method. It is a direct
implication that, when the information-sharing graph has
more links (edges) connecting the sub-systems, the chance
that the graph is still connected when a failure occurs is
higher. Furthermore, as stated in Remark 3, the second
smallest eigenvalue of L(G̃v) indicates the convergence rate
of the protocol in the sense that a larger eigenvalue implies a
faster convergence rate. As noted in [28], the second smallest
eigenvalue of a sparse Laplacian is relatively small compared
to a dense Laplacian. Hence, these criteria lead to the fact
that the network should have as many links as possible.

Redundancy is required when dealing with communication
failures. Thus, when selecting an information-sharing graph,
it is important to consider having redundant links in the
information-sharing graph. For instance, a path is not a
suitable structure since once a link is disconnected, the
graph is disconnected. In that sense, a cyclic graph is more
redundant because the proposed method could still be applied
when one link of this graph is broken. Furthermore, it is
obvious that a complete graph is the most suitable one. On
the other hand, the topology of an LSS usually has a sparse
Laplacian matrix due to the fact that a sub-system is usually
only coupled with other closest sub-systems. This may imply
its information-sharing network has sparse Laplacian as well.
However, this network can be decomposed into some sub-
graphs that do not have sparse Laplacian, which implies they
may have faster convergence rate. By also considering the
redundancy criterion, then one may be able to use a smaller
yet redundant information-sharing graph.

As an example, consider the information-sharing graph
depicted in Fig. 1. Its Laplacian has the second smallest
eigenvalue of 0.23. However, now consider its sub-graphs
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Fig. 1. A system with 12 nodes. The physical network G and the
information-sharing network G̃ are represented by the solid and dashed lines,
respectively.
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Fig. 2. Decomposition of G̃ into 5 smaller connected sub-graphs.

that are depicted in Fig. 2. Notice that the sub-graphs that
are formed are cyclic, in order to satisfy the redundancy
requirement. Among these sub-graphs, the smallest value
of the Laplacian second smallest eigenvalues is 2.00. This
means that the convergence rate of the proposed method
is much faster by using the smaller sub-graphs as the
information-sharing graphs among the sub-systems. How-
ever, the redundancy of the sub-graphs is not as good as the
overall graph, G̃. For instance, consider sub-graph G̃3 (Fig.
2c) and suppose that the links (7, 9) and (6, 7) are broken,
then this sub-graph is not connected anymore, which implies
the nodes in this sub-graph (6, 7, 8, and 9) cannot exchange
information among each other. However, the graph G̃ is in
fact still connected, allowing the protocol to be applied and
all nodes to exchange information when the G̃ is used as the
information-sharing graph of all information.

E. Reconfiguration of Information-Sharing Graphs

In this section, a distributed algorithm to reconfigure the
information-sharing graphs is proposed. The reconfiguration
is a contingency procedure when the information-sharing
graphs are disconnected due to the failures, i.e., Assumption
2 does not hold. Moreover, the reconfiguration can also be
applied even though the graphs are still connected in order
to maintain redundancy.



Consider again the information-sharing network
G̃ = (S, Ẽ) and its sub-graph G̃v = (Sv, Ẽv) ⊆ G̃
that is used to share information of the vth node, denoted by
sv , among the sub-systems in Sv ⊆ S . Now, denote the set
of links that fail by Ẽf ⊂ Ẽv . Moreover, let the following
Assumption 4 holds.

Assumption 4: Each node i ∈ S has prior knowledge of
its neighbours in the information-sharing network G̃, i.e., Ñi
and M̃i := {j : (i, j) ∈ Ẽ , ∀j /∈ Sv}. ♦
Then, for each link (y, z) ∈ Ẽf , find a node that is a
neighbour of y and z in G̃ and does not belong to Sv . By
defining Θ := {θ : θ ∈ M̃y ∩ M̃z, ∀(y, z) ∈ Ẽf} and
Ẽθ := {(θ, y), (θ, z), ∀θ ∈ Θ, ∀(y, z) ∈ Ẽf}, the updates of
the sub-graph G̃v are S̃v ← S̃v ∩Θ and Ẽv ← {Ẽv\Ẽf}∩ Ẽθ.

Since the sub-graph G̃v is modified, Assumption 3 no
longer holds. If the number of links that fail, |Ẽf |, is known
by the source node, v, then it can easily update |S̃v| after
the reconfiguration since one node is added for each link that
fails. If this is not the case, the standard distributed consensus
algorithm can be used to recalculate the total number of
nodes in |S̃v|. To this end, consider an auxiliary variable,
denoted by ξi,t, for each node i ∈ Sv . Initialize ξi,0 = 0 for
i 6= v and ξv,0 = 1. By applying the standard distributed
consensus [28]

ξ̇i,t =
∑
j∈Ñi

α(ξj,t − ξi,t), (12)

ξi,t converges to ξ? = 1/|Sv| as t → ∞, for all i ∈ Sv .
Therefore, in a finite time, ts, which denotes the settling
time of the consensus, the vth node can obtain |Sv| =
rnd(1/ξv,ts). Note that the whole reconfiguration procedure
can be performed in a distributed fashion, i.e., the algo-
rithm only requires each node to have local information of
its neighbours (Assumption 4) and neighbour-to-neighbour
communication. The distributed reconfiguration procedure is
stated in Algorithm 1.

Algorithm 1 Reconfiguration Procedure
1: Each node i ∈ Sv detects whether there are link failures.
2: for nodes y and z, for all (y, z) ∈ Ẽf do
3: Detect the links that are failed.
4: Send information of the failed links to the neighbors

that do not belong to Sv , e.g., node y sends to {j :
j ∈ M̃y} and node z sends to {j : j ∈ M̃z}.

5: end for
6: for θ ∈ Θ do
7: Receive the same information of one failed link from

two different neighbors.
8: Confirm to join the sub-graph G̃v .
9: end for

10: Compute the updated |Sv| using the distributed consen-
sus algorithm.

Remark 5: The intersection of M̃y and M̃z for (y, z) ∈
Ẽf might be empty. In this case, the associated information-
sharing graph cannot be reconfigured. ♦

IV. APPLICATION OF THE PROPOSED PROTOCOL TO
DMPC IN MICROGRIDS

In this section, the optimal power allocation problem
of a network of microgrids is discussed and solved by
applying a distributed MPC strategy. It is a high-level control
problem with the objective to determine the set-points of
the distributed generators. Furthermore, it is assumed that
there are low-level local controllers that ensure the operation
of distributed generators is according to the obtained set
points [29]. Some previous works, e.g., [21], [22], and
[30], have addressed the advantages of using distributed
control strategy for energy management in power networks.
Since such systems cover a large geographical area, the
communication between local controllers is important to
be maintained. Therefore, it is thought that the proposed
information-exchange protocol is suitable to be applied in
these systems.

A. System Description

Consider the system as an undirected graph G = (S, E),
where S = {1, . . . , n} denotes the set of microgrids, and E
denotes the physical interconnection among the microgrids,
i.e., the link (i, j) ∈ E corresponds to the possibility of
exchanging energy between the ith and the jth microgrids.
Note that Ni denotes the set of the neighbours of the ith

microgrid. Each microgrid is considered to have local loads,
a dispatchable distributed generator, a storage system, and
a controller that must provides set points to the generator.
Furthermore, it is possible to transfer energy between two
connected microgrids and there exists an external party from
which the microgrids can import energy if necessary. Note
that the consideration of having one generator at each mi-
crogrid is to simplify the problem without loss of generality.
The following formulation can easily be extended for the
case in which there are multiple distributed generators per
microgrid.

Each microgrid, i ∈ S, has a power balance equation that
must be satisfied at each time instant, as follows:

pdi,k − pgi,k − psti,k − pimi,k −
∑
j∈Ni

ptij,k = 0, (13)

where pdi,k ∈ R≥0 denotes the local demand (load) of the
ith microgrid, pgi,k ∈ R≥0 denotes the total generated power
of the dispatchable generator, psti,k ∈ R denotes the power
delivered by or to the storage, pimi,k ∈ R≥0 denotes the
imported power from an external party, and ptij,k ∈ R is
the power that is transferred between the ith microgrid and
its neighbour j ∈ Ni. The storage systems have dynamical
behaviour that is described by a discrete-time state-space
model, i.e.,

xi,k+1 = aixi,k + bip
st
i,k, ∀i ∈ S, (14)

where xi is the state-of-charge (SOC), ai denotes the effi-
ciency of the storage, 0 < ai < 1, and bi = −Ts/emax

i ,
where Ts ∈ R≥0 is the sampling time and emax

i denotes
the maximum energy that can be stored. The operational



constraints that are imposed to the storages are the upper
and lower bounds of the SOC, as follows:

xmin
i ≤ xi,k ≤ xmax

i , −pchi ≤ psti,k ≤ pdci , ∀i ∈ S, (15)

where xmin
i , xmax

i ∈ R≥0 denote the minimum and the max-
imum SOC of the storage of the ith microgrid, respectively.
Moreover, pchi ∈ R≥0 and pdci ∈ R≥0 denote the maximum
charging and discharging power of the storage.

Furthermore, some operational constraints of the power
generated by the distributed generators pgi,k ∈ R, the power
transferred between two neighbouring microgrids, and the
power imported from the external party are also established,
as follows:

pg,min
i ≤ pgi,k ≤ p

g,max
i , ∀i ∈ S, (16)

−pg,down
i ≤ pgi,k − p

g
i,k−1 ≤ p

g,up
i , ∀i ∈ S, (17)

−pt,max
ij ≤ ptij,k ≤ pt,max

ij , ∀(i, j) ∈ E , (18)

pimi,k ≤ pim,max, ∀i ∈ S, (19)

where, pg,min
i , pg,max

i ∈ R≥0 denote the minimum and the
maximum power generated by the distributed generator of
the ith microgrid, respectively, pg,down

i , pg,upi ∈ R≥0 denote
the maximum ramping down and ramping up of the power,
respectively, while pt,max, pim,max ∈ R≥0 is the upper
bound of the transferred power and imported power from
the external party. In addition, there are additional coupled
constraints related to ptij,k, which are

ptij,k + ptji,k = 0, i 6= j, ∀(i, j) ∈ E . (20)

Let the vector ui,k = [ul>i,k uc>i,k ]> ∈ Rnu,i with
uli,k = [psti,k pgi,k pimi,k]>and uci,k = [ptij,k]j∈Ni be the
decision/control inputs. Denote the trajectory of the con-
trol inputs and that of the coupled control inputs by ũi,k
and ũci,k, respectively. Moreover, consider a quadratic cost,
i.e., Ji,k(ũi,k) =

∑k+hp−1
`=k u>i,`|kRiui,`|k, where Ri =

diag
(

[csti cgi c
im
i cti1

>
|Ni|]

>
)
� 0, for all i ∈ S . Note

that csti , cgi , cimi , and cti denote the cost to store, generate,
import, and transfer energy, respectively. The centralized
optimization problem that is convex and needs to be solved
in an MPC scheme can be written as

minimize
{ũi,k}i∈S

∑
i∈S

Ji,`(ũi,k) (21a)

subject to x̃i,k+1 = aixi,k +Biũi,k, ∀i ∈ S, (21b)
Hiũi,k ≤ hi,k, ∀i ∈ S, (21c)

ũci,k +
∑
j∈Ni

Gijũ
c
j,k = 0, ∀i ∈ S, (21d)

where x̃i,k+1 =
[
x>i,k+1|k x

>
i,k+2|k · · · x>i,k+hp|k

]>
is the

trajectory of the state over the whole prediction horizon. The
dynamics of the SOC of the storages (14) are rewritten as
xi,k+1 = aixi,k+biui,k, in which bi = [bi 02+|Ni|] in order
to form (21b) with the appropriate concatenated ai ∈ Rhp×1

and Bi ∈ Rhp×hpnu,i .

The constraints that only include local decisions, which
are (13), (15)–(19), over the whole prediction horizon, are
compacted in (21c) with the appropriate Hi and hi,k. More-
over, the coupled constraints in (20) for the whole prediction
horizon are written as in (21d). Additionally, it is assumed
that Problem (21) has a set of feasible solutions for k ∈ Z≥0.

B. DMPC Design

The DMPC strategy that is based on dual decomposition
is designed for Problem (21). It is presented in Algorithm
2, where λi ∈ Rhp|Ni|, for all i ∈ S, are the Lagrange
multipliers associated to the coupled constraints (21d) and
ψi =

(
ũci,k +

∑
j∈Ni

Gijũ
c
j,k

)
, for all i ∈ S. Notice that

Algorithm 2 requires the microgrids to exchange information
with their neighbours twice at each iteration, as stated in
steps 3 and 5. It is assumed that the default protocol of ex-
changing information is that a microgrid sends and receives
information to and from the neighbours through the direct
communication links available between them. Furthermore,
the proposed information-exchange protocol that is based on
DPD may also be applied to this algorithm to replace the
default one. When the DPD-based protocol is applied, it
is assumed that the information shared at the end of the
information-exchange steps is similar enough such that it
does not affect the convergence of the algorithm. In addition,
rmax, which denotes the maximum number of iterations
available in one sampling time, depends on the computational
power of the controllers.

Algorithm 2 The Dual-Ascent Algorithm

1: All sub-systems, i ∈ S, set r = 1 and initialize λ(r)
i .

2: while r < rmax do
3: Information exchange: Receive λ(r)

j from the neigh-
bours, all j ∈ Ni, and send λ(r)

i to the neighbours.
4: Solve the local optimization problem:

minimize
ũi,k

fi(ũi,k) + ỹ>i ũ
c
i,k

subject to (21b) and (21c),

where ỹ>i = λ
(r)>
i +

∑
j∈Ni

λ
(r)>
j Gji.

5: Information exchange: Receive the solution ũcj,k
from the neighbours, all j ∈ Ni, and send ũci,k to the
neighbours.

6: Update λi as λ(r+1)
i = λ

(r)
i + γψi, for 0 < γ < 1.

7: r ← r + 1.
8: end while

C. Simulation Results and Discussion

Numerical simulations are carried out in MATLAB on
a PC with 16 GB of RAM and 2.6 GHz Intel core i7.
The power network consists of 12 microgrids, i.e., S =
{1, . . . , 12}. Fig. 1 depicts the topology of the grid, denoted
by G = (S, E), and the overall information-sharing network
of the controllers, denoted by G̃ = (S, Ẽ). The simulation
time of all simulations is one day with the sampling time of
15 minutes. The prediction horizon of the DMPC controller



TABLE I
PARAMETERS OF THE MICROGRIDS

Parameters Value Unit Sub-system (i)

xmin
i , xmax

i 20%, 80% - all

pchi , pdci 50, 50 kW all

pg,min
i , pg,max

i 0, 1000 kW all

pg,down
i , pg,upi 100, 100 kW all

pt,max
i , pim,max

i , 100, 2000 kW all
ai 0.90 - all

csti , cimi , cti 0.1, 250, 0.1 - all

cgi 2 - 2, 6, 11

cgi 10 - 1, 3, 4, 5, 7,
8, 9, 10, 12

TABLE II
THE AVERAGE STAGE COST AT TIME INSTANTS AT WHICH THE

FAILURE OCCURS

Scenario Protocol, Communication Cost (Proportional)

1 Default, no failures 1.00
2 DPD-based, no failures 1.00
3 Default, with failures 1.16
4 DPD-based, with failures 1.00

is hp = 6 and the parameters corresponding to each micro-
grid are shown in Table I. Furthermore, it is assumed that
each local controller knows the local load and its forecast
over the prediction horizon at each time instant.

In order to compare the performance of the proposed
method, four scenarios, which are described in Table II,
are simulated. The communication failures are defined as
follows. At k = {2, 3, 10 − 13, 40 − 42, 80 − 82}, the
information-sharing network during the failure scenarios is
G̃′ = (S, Ẽ ′), where Ẽ ′ = Ẽ\{(2, 3), (4, 6), (9, 11)} (the
failed links are indicated by || in Fig. 1). In addition, in
Scenarios 2 and 4, the proposed information-exchange pro-
tocol uses sub-graphs as shown in Fig. 2 as the information-
sharing graphs in order to increase the convergence rates.
During failures, all information-sharing sub-graphs only lose
one link, hence they are still connected.

Scenario 1 is considered as the baseline performance since
the controllers produce the global optimal solution. The
simulation result of Scenario 2, as seen in Table II, shows
that the proposed information-exchange protocol is able to
achieve the optimal performance. In Scenario 3, the mi-
crogrids that are disconnected cannot exchange information
using the default protocol. Therefore, these microgrids adopt
Assumption 1, which means that the unknown information
of the neighbours is considered to be null. Table II shows
that there is a performance degradation (16% of higher cost
than the optimal case) when the microgrids are in Scenario
3. On the other hand, all microgrids are able to obtain the
required information with the proposed methodology despite
the occurrence of the failures, as expected. Therefore, the
optimal solutions can be obtained by the system, as can be
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Fig. 3. The operation of sub-systems 3 and 2 in Scenario 3 (solid lines)
and Scenarios 1, 2, and 4 (dashed lines): a. Power generated by sub-system
3 (pg3), b. Power generated by sub-system 2 (pg2), and c. Power transferred
from sub-system 2 to sub-system 3 (pt3,2).

seen by comparing the cost of Scenario 4 and that of Scenario
1, which are equal.

As illustrations, Figs. 3-5 show the operation of the
microgrids that are affected by the communication failures
in Scenarios 3 and 4. The communication links between
these neighbouring microgrids are broken. In Scenario 4,
the 3rd and 4th microgrids import power from the the 2nd

and 6th microgrids, respectively, at the time instants when
the failure occurs. Furthermore, there is also some energy
that is exchanged between the 9th and 11th microgrids during
these time instants. These decisions are equal to those that
are taken in Scenarios 1 and 2. However, in Scenario 3, the
3rd and 4th microgrids do not import any power from their
neighbours (see Figures 3c and 4c). Instead, they produce
more power to comply with the load (see Figures 3a and
4a). Moreover, the 9th and 11th microgrids do not always
exchange energy and their power generation decisions are
slightly different than those in Scenario 4 during these time
instants (Figure 5c).

V. CONCLUSION AND FUTURE WORK

A methodology to cope with the problem of communica-
tion failures in distributed MPC strategies has been proposed.
It involves an information-exchange protocol that is based
on DPD. A numerical study, which shows the application of
this protocol to a distributed MPC strategy that is designed
to optimize the power production in a microgrid network,
demonstrates the advantages of the proposed protocol.

As future work, in order to extend the results obtained
in Section III-D, a study on how to design an optimal
information-sharing network that is able to deal with fail-
ures in general while ensuring fast convergence rate of the
protocol should be carried out. Moreover, an implementation
of time-varying partitioning of the information-sharing net-
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Fig. 4. The operation of sub-systems 4 and 6 in Scenario 3 (solid lines)
and Scenarios 1, 2, and 4 (dashed lines): a. Power generated by sub-system
4 (pg4), b. Power generated by sub-system 6 (pg6), and c. Power transferred
from sub-system 6 to sub-system 4 (pt4,6).
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Fig. 5. The operation of sub-systems 9 and 11 in Scenario 3 (solid lines)
and Scenarios 1, 2, and 4 (dashed lines): a. Power generated by sub-system
9 (pg9), b. Power generated by sub-system 11 (pg11), and c. Power transferred
from sub-system 11 to sub-system 9 (pt9,11).

work may bring advantages to improve the reconfiguration
procedure that is discussed in Section III-E.
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