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Abstract 

Topological data analysis is a family of recent mathematical techniques seeking to understand the ‘shape’ of data, and 
has been used to understand the structure of the descriptor space produced from a standard chemical informatics 
software from the point of view of solubility. We have used the mapper algorithm, a TDA method that creates low-
dimensional representations of data, to create a network visualization of the solubility space. While descriptors with 
clear chemical implications are prominent features in this space, reflecting their importance to the chemical proper-
ties, an unexpected and interesting correlation between chlorine content and rings and their implication for solubil-
ity prediction is revealed. A parallel representation of the chemical space was generated using persistent homology 
applied to molecular graphs. Links between this chemical space and the descriptor space were shown to be in agree-
ment with chemical heuristics. The use of persistent homology on molecular graphs, extended by the use of norms 
on the associated persistence landscapes allow the conversion of discrete shape descriptors to continuous ones, and 
a perspective of the application of these descriptors to quantitative structure property relations is presented.
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Introduction
It is estimated that approximately 40% of all drug discovery 
programs are abandoned due to problems with bioactivity 
[1], with solubility being a major concern for oral delivery.

While the field of solubility prediction is well-established, 
with several standard data sets and models being produced 
to generate predictive models, it is however, widely accepted 
that such models are inherently flawed, due to experimental 
difficulties resulting in significant uncertainties in measur-
ing solubility estimated to be around 0.6 log units [2]1.

Prediction algorithms that followed after [2] usually did 
not take this into account and therefore overfit, with a resid-
ual error lower than the estimated experimental uncertainty.

Huuskonen’s papers [3, 4], written two years prior, in 
2000, used multilinear regression and artificial neural 
networks on 30 electronic and topological features, and 
was able to achieve an r2 value of 0.86, with a standard 
deviation of 0.5 log units.

In 2004 [5], Delaney used linear regression on 9 fea-
tures, subsequently reduced to 4, to predict solubility. 
The improvement in accuracy between Huuskonen and 
Delaney’s work falls within the error range of experimen-
tal solubility values.

The same issue arises in the interpretation of the 2013 
results by Baldi et  al. [6], which uses novel methodolo-
gies, utilising the connection between recursive deep 
learning architectures and the molecular graph, but does 
not alter the problem statement: it once again tries to 
improve the prediction of solubility, acknowledging that 
the improvement falls within the expected experimental 
uncertainties.

In 2009, the Solubility Challenge was designed to assess 
the state of the field [7]. This consisted of modeling the 
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1  This refers to solubility as measured in molar concentrations, and Log 
base 10 as will be standard throughout the text.
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solubility of relatively few, but highly trusted measure-
ments. The results of the challenge were mixed, with r2 
values ranging from 0.02 to 0.65 for entrants.

One of these entrants, Hewitt et al. constructed mod-
els of various complexities including linear regressions 
and neural networks [8]. They found that the multi-linear 
regression model outperformed the more complex coun-
terparts, although it was suggested that this may be due 
to the limited number of molecules available in the solu-
bility challenge data set.

Palmer et al. showed that even if we were able to produce 
high-quality experimental data, the deficiencies in quanti-
tative structure property relations (QSPR) models (be that 
the algorithms themselves, or incomplete descriptor sets), 
lead to inaccuracies in solubility prediction [9]. It is clear 
that new descriptors are required, alongside high-quality 
data sets. Therefore, rather than an incremental improve-
ment of precision, we should shift to a deeper understand-
ing of what is determining molecular solubility, and the 
chemical properties of the data. In particular, the main use 
of current solubility prediction tools should at present be 
seen as a technique in the screening of large potential tar-
get sets, rather than as an accurate predictive tool.

It is not fully understood which chemical traits of a 
molecule determine its solubility. Certain features, which 
are known to correlate well with solubility, e.g. LogP or 
melting point, need to be predicted or measured them-
selves, and cannot be read off of the construction of the 
molecule (like the number of atoms, for example). They 
may be easier and more accurate to predict than solubil-
ity, however, and there is certainly scope for such derived 
properties in solubility prediction. Delaney stated that a 
choice of LogP as a descriptor was obvious in his work 
[5], and the general solubility equation (GSE) was con-
structed on a theoretical basis using melting point as 
a parameter [10]. Both these models are able to predict 
solubility to the aforementioned accuracy.

The standard machine learning approaches, as well as 
our own, rely on a set of known descriptors, which are 
easily computed, for example through the online tool 
DRAGON [11], followed by supervised learning, for 
example neural networks.

In this paper, we analyse a publicly available data set 
found in [12] of drug-like molecules with regards to their 
solubility in water. We are interested in a more qualita-
tive analysis of the features commonly associated with 
solubility prediction. In particular, we seek to under-
stand which features, or combinations of features, might 
explain the solubility properties of the molecules.

Main results
The long term aim of this work is to gain a qualitative 
understanding of the space of molecules. The premise 

underlying our work is that shape matters. In our context 
of solubility prediction, we consider two different con-
cepts for shape: the space of molecules and the space of 
chemical data.

We study these using novel techniques from Topologi-
cal Data Analysis (TDA), namely persistent homology 
and mapper (descriptions of both can be found in the 
Methods section), to tackle the issues connected to solu-
bility prediction. There are two threads of analysis, one 
based on the mapper algorithm and the other based on 
persistent homology.

We use mapper to analyse chemical data space. We 
aim to understand the descriptors that affect solubil-
ity prediction and the interplay between them, instead 
of attempting to increase the accuracy of prediction, as 
we feel there is certainly potential for more explanatory 
model frameworks in this field.

Next, we use topological methods to create a meas-
ure of similarity between molecules that takes account 
of their physical shape, that is the 3D connectivity bond 
structure of the molecules.

In the first part, we investigate the feature space of the 
molecules using the mapper algorithm, where the fea-
tures considered were calculated from SMILES strings. 
In the second part, we focus on the geometric shape of 
the molecules, which includes the positions and relative 
distances of the constituent atoms. We investigate this 
data using tools from persistent homology.

One significant feature that appears in our analyses is 
the number of atoms (nAT), which is closely linked with 
MW (molecular weight), a feature known to correlate 
well with solubility.

We find that another feature, nCIC (the number 
of cycles, or molecular rings), is an important shape 
descriptor. Both our threads of investigation agree on this 
conclusion.

It is known that chemically the number of cycles does 
affect solubility, fulfilling chemical heuristics, but the 
feature itself has not been used in the machine learning 
approaches to solubility prediction mentioned above.

We finally show how these topological features allow 
us to better understand the differences in properties that 
contribute to solubility.

Related work
Persistence based methods have recently been used as a 
tool to discover new nanoporous materials [13], where 
they were used as an effective way to identify materials 
with similar pore geometries. Moreover, in a case study 
of materials for methane storage, it was shown that it is 
possible to find materials that perform as well as known 
top-performing materials by searching the database for 
materials with similar pore shapes. Conversely, the pore 
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shapes of the top-performing materials can be sorted into 
topologically distinct classes, and materials from each 
class require a different optimisation strategy [13]. Fur-
thermore, persistence has found use in a wide variety of 
materials applications, such as categorising amorphous 
solids [14], and analysing phase transitions [15, 16].

Persistent homology has also been used in the analysis 
of protein folding [17–20], and in particular persistent 
homology at different coarse-grained scales has been 
shown to enable the calculation of topological invariants 
in protein classes. Persistent homology has been used 
to relate molecular shape to binding affinity, and other 
molecular properties [21, 22]. Alternatively, persistent 
homology has been used as a descriptor in the construc-
tion of models of shape-dependent properties, such as in 
the case of fullerene stability [23].

In parallel, mapper based methods have found use in 
chemical fields. These range from the analysis of hyper-
spectral imaging data [24], to exploring protein folding 
pathways [25]. In these works, the mapper algorithm 
provides a visualisation technique for cluster analysis to 
detect minor compounds in a multiphase chemical sys-
tem, and to detect low-density transient states in fold-
ing pathways, such as hairpins. Interestingly, standard 
computational chemistry analysis techniques have been 
introduced to understand structure in high-dimensional 
Euclidean data sets, such as in [26]. Here, the nudged 
elastic band algorithm, standard in determining mini-
mum energy pathways, is used alongside Morse theory, as 
an alternative to both mapper and persistent homology.

Materials and methods
In this section, we occasionally use standard mathemati-
cal terminology. Please refer to e.g. Chapters  1, 2 and 
Appendix  1 in [27] for the definitions of mathematical 
terms not explained in the text.

Data set
The solubility measurements used in this study are those 
found in [12] and are collectively here referred to as the 
Wang data set. This data set contains several older data-
sets known to be reliable—Delaney [5], Huuskonen [4] 
and Solubility Challenge [7] among them. It contains 
3663 molecules, given in Sybyl line notation (SLN) [28] 
form. Conversion from SLN to SMILES was performed 
using the RDKit python implementation [29].

The DRAGON [11] software suite was used for the cal-
culation of molecular descriptors. It is important to note 
that using SMILES strings as input limits the descriptors 
that are calculated to one- and two-dimensional features. 
Such descriptors are quick to calculate but risk miss-
ing a complete description of chemical behaviour which 
depend on 3D properties. After some preprocessing (e.g. 

removal of constant descriptors) we had 1521 descriptors 
for the set of 3663 molecules via this approach.

When converting from SLN to SMILES, before calcu-
lating the descriptors, we lose isomeric information, such 
as chirality and cis-trans isomerism. We would expect 
the chiral compounds to have the same solubility, but the 
cis-trans ones probably do not. The descriptors we calcu-
late actually do not depend on this isomerism. Although 
the different isomers are not duplicates originally, our 
methodology may cause some of them to appear as if 
they are. Running the subsequent mapper algorithm with 
and without these duplicates did not show any noticeable 
difference in the results, and we chose to include them in 
the data set. This robustness is a desirable property of the 
mapper framework.

The SMILES strings uniquely determine the molecu-
lar graphs. 3D atomic coordinates can be generated by 
using OpenBabel [30], to perform a classical geometry 
optimisation (using the MMFF94 forcefield). The 3D 
coordinates together with the bonds is considered to be 
a weighted, undirected graph, with weights defined by L2 
(or Euclidean) distances between the coordinates of the 
atom centres. We do not take into account bond order 
directly, however this is implicit in the bond lengths. A 
flowchart detailing our two main analytic pipelines can 
be seen in Fig. 1.

The mapper algorithm
The Mapper algorithm is a method for visualising high-
dimensional data and can be considered to be a generali-
sation of hierarchical clustering. A detailed description of 
the algorithm can be found in [31]. Here, we briefly sum-
marise it.

The algorithm takes as input

•	 a data set X,
•	 a metric d on X,
•	 a scalar function f : X → R and
•	 a covering by overlapping intervals (ai, bi) of the 

image f(X).

The preimage of each interval, f −1(ai, bi) , is clustered 
using hierarchical clustering, using d to measure the dis-
tance between data points. Next, a network is created 
whose vertices correspond to clusters and two clusters 
are connected by an edge if their intersection is non-
empty. This creates a representation of data as a highly 
connected graph, as illustrated in Fig. 2.

The most common approach to analyse these outputs 
when using mapper for feature detection, is to look for 
groupings of the data. We look for connected compo-
nents within the mapper graphs, or find groupings of 
vertices that are highly connected, but more loosely 
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connected to the rest of the structure. Afterwards, we 
analyse these groupings to find out which features best 
separate them from the rest of the data. Some of the 
more common metrics used in this approach are varia-
tions of the correlation and euclidean metric. We create 
the scalar function f, also referred to as the lens, using 
PCA, metric PCA (for metrics other than Euclidean), 
MDS and tSNE in the following way.

The PCA lenses generate a factorisation of the data 
matrix into linearly uncorrelated components. The first 
PCA lens is the coordinate given by the highest variance 
component, and the second corresponds to the second-
highest variance. These lenses assume that the data sup-
plied is using the Euclidean metric.

The metric PCA and MDS lenses compute a variant 
of the PCA coordinate lenses, for data that does not use 
the Euclidean metric. In the case of metric PCA, the data 
is first mapped into a Euclidean space using the rows of 
the distance matrix as the coordinates and then PCA is 
performed. Alternatively, MDS transforms the data into 
a Euclidean space, minimising the L2 error. Both of these 
lenses therefore require distance matrices directly, rather 
than the coordinates.

The tSNE [32], or stochastic neighbour embedding, 
lenses generate an embedding of high-dimensional data 
into two dimensions by embedding a k-nearest neighbours 
graph of the data. A k-nearest neighbours graph is gener-
ated by connecting each point to its nearest neighbours.

Fig. 1  The pipeline. A flowchart illustrating the two main threads of study performed. Both the Mapper (top) and persistent homology (bottom) 
routes use simple molecular SMILES strings as input. We use dashed lines to emphasise that we use the average persistence landscape metric as a 
surrogate for the persistence distortion distance

f

Fig. 2  A continuous example of the implementation of the mapper algorithm, with the function f being the height and using the Euclidean metric
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Implementation of mapper
In this paper we use an implementation of the mapper 
algorithm provided by Ayasdi. All of our analyses were 
created using Ayasdi Workbench.

It is possible to e a publicly available software, for 
example KeplerMapper [33], to reproduce our analyses. 
In KeplerMapper, the lenses (t-SNE, PCA) and metrics 
(called clusterer) are used via the scikit library. The cover-
ing is defined by the variables n_cubes and perc_overlap.

In the Ayasdi implementation, the parameters resolu-
tion, gain and equalize manage the covering of the image 
by overlapping intervals. If the equalize parameter is set, 
the preimages of the intervals all contain the same num-
ber of data points. Resolution corresponds to the num-
ber of intervals the image f(X) is partitioned into, while 
gain corresponds to the amount of intersection between 
neighbouring intervals, i.e.

Increasing the resolution will create a topological 
model that contains a larger number of nodes. Increasing 
the gain increases the number of edges in the network.

In this implementation, the tSNE lenses are referred to 
as the Neighbourhood lenses. The k-nearest neighbours 
graph is embedded in two dimensions using Ayasdi’s 
proprietary graph layout algorithm used in their visu-
alisations. These lenses work to emphasise the metric 
structure of the data. Because these lenses are the x and y 
coordinates of this two-dimensional embedding, it is rec-
ommended using both of them together whenever one 
uses these lenses, and not to equalise them. The neigh-
bourhood lenses use the selected metric to compute the 
lens.

In case one wishes to use the data without normalising 
it first, there are variations of the Euclidean metric and 
correlation, called Variance Normalized Euclidean and 
Norm Correlation, that take this into account.

Persistent homology on graphs
The second thread of this work involves the use of persis-
tent homology on the molecular graphs to create a meas-
ure of similarity. For this we use a variation of a distance 
between metric graphs proposed in [34].

We view molecules as simple, undirected graphs 
equipped with a weight function on the edges, which 
assigns a nonnegative number—the physical distance 
between the atom centres—to the edges (see Fig. 3). The 
weight function allows us to view the graph G as a metric 
space (|G|, dG) , which allows the use of persistent homol-
ogy. Here |G| is the set of points of this metric space, 
consisting of all the vertices of G together with the points 

percent of intersection = 1−
1

gain
.

of the edges considered as line segments of length equal 
to the weight assigned to the edge. For any two points 
z,w ∈ |G| , the distance dG(z,w) is given by the minimum 
length of a path connecting z to w in |G|.

In general, to a metric space (X,  d) equipped with a 
function f : X → R one can assign a persistence diagram 
as follows: First, we define the super-level set of X with 
respect to α ∈ R by

If α1 > α2 we have the inclusion Xα1 ⊆ Xα2.
For p = 1, 2, . . . , the pth homology gives information 

about the p-dimensional holes: For p = 0 , this refers to 
connected components, for p = 1 , it refers to loops, for 
p = 2 , it is cavities or voids, etc. The number α is called 
a p-critical value of f if the number of connected com-
ponents of Xα−ǫ and Xα+ǫ changes for p = 0 , or if the 
number of loops in Xα−ǫ and Xα+ǫ changes for p = 1 , 
for all small ǫ > 0 . For graphs, we do not calculate higher 
homologies (as graphs are 2 dimensional structures).

For metric graphs this works as follows. Fix a vertex v 
in G, and define a function f : |G| → R , called the height 
function at v, which assigns to each point x ∈ |G| the path 
distance dG(v, x) . Note that for general metric spaces X, it 
is also possible to consider sub-level sets of X, but in the 
case of metric graphs with the path distance, the number 
of connected components would always be the same (it 
would always equal 1). See Fig. 3 for a visual explanation. 
This is why it is more interesting to consider super-level 
sets for this particular height function.

We take all p-critical values α1 > α2 > · · · > αn . Then 
the super-level sets connected by natural inclusion maps 
give rise to a filtration:

The zeroth persistence diagram Dg0(f ) captures the 
connected components that were born or died passing 
through a critical point. It consists of a set of points in 
the plane {(a, b) ∈ R

2 | a < b} (see Fig. 3e, g). Each point 
can occur more than once. The coordinates a and b of a 
point indicate the birth and death times of the connected 
components. The multiplicity of the point indicates the 
number of connected components that were born at 
time a and died at time b. The first persistent diagram 
Dg1(f ) does the same for loops instead of connected 
components.

A common measure of similarity of persistence dia-
grams is the bottleneck distance. It is stable with respect 
to perturbations of a filtration. It is the shortest distance 
δ for which there exists a perfect matching between the 
points of the two diagrams (where if there are different 
cardinalities, leftover points are mapped to the diagonal) 
such that any couple of matched points are at distance at 

Xα := {x ∈ X | f (x) ≥ α}.

Xα1 ⊆ Xα2 ⊆ · · · ⊆ Xαn = X .
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most δ . The set of persistence diagrams together with this 
metric can be considered as a metric space.

In order to define the discrete PD distance, we make 
use of a more general construction, called the Hausdorff 
distance (illustrated in Fig.  4), which measures how far 
two subsets of a metric space are from each other. More 
precisely, for two non-empty subsets X and Y of a metric 
space (M, d), we define their Hausdorff distance by

For the definition of the discrete PD distance, only 
the 0-dimensional persistent homology is considered. 
Suppose we are given two metric graphs (G1, dG1) and 
(G2, dG2) . Let (V1,E1) and (V2,E2) denote the node and 
edge sets for G1 and G2 , respectively.

Choose any vertex s ∈ V1 as the base point, and con-
sider the shortest path distance function dG1,s : G1 → R 
defined as dG1,s(x) = dG1(s, x) for any point x ∈ G1 . Let Ps 
denote the 0-dimensional persistence diagram D0(dG1,s) 
induced by the function dG1,s . Define dG2,t and Qt simi-
larly for any base point t ∈ V2 for the graph G2.

This way, we associate a persistence diagram Ps to each 
vertex s ∈ V1 , and similarly, a persistence diagram Qt is 
associated to each vertex t ∈ V2 . Because the persis-
tence diagrams can vary for different vertices, we want 

dH (X ,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}.

to consider all possible ones, in order to end up with an 
invariant for the given graph. To the graph G1 we asso-
ciate the set of all persistence diagrams C := {Ps|s ∈ V1} . 
Similarly, to G2 , we associate the set F := {Qt |t ∈ V2}.

Definition 1  The discrete Persistence Distortion dis-
tance between G1 and G2 , denoted by dPD(G1,G2) , is the 
Hausdorff distance dH (C , F) between the two sets C and 
F where the distance between two persistence diagrams 
is measured by the bottleneck distance. In other words,

Persistence landscapes
Persistence landscapes, first introduced by Bubenik [35], 
are an encoding of persistence diagrams by a sequence 
of continuous, piecewise linear functions (see Fig.  5). 
This allows statistics to be performed on them, the lack 
of which was a drawback of persistence diagrams. In 
particular, it is possible to calculate (unique) averages of 
landscapes. While the persistence landscape has a cor-
responding persistence diagram, the mean persistence 
landscape does not. The Landscapes toolbox [36] can 
translate persistence diagrams into landscapes, can com-
pute averages of landscapes, Lp distances and norms 
between landscapes, as well as the bottleneck distance.

dPD(G1,G2) = dH (C , F).

Fig. 3  A visualisation of the superlevel set filtration of a molecular graph, for the molecule dibromomethane. The 3D model of the molecule b can 
be viewed as a metric graph (c). We first consider one of the hydrogen atoms as the base point (d), and get a corresponding persistence diagram 
(e). If, instead, we choose the carbon atom as the base point (f), we associate a different persistence diagram (g) to the graph. Note that in this 
second diagram the points have multiplicity 2
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Implementation of graph persistence
For the calculation of the persistence diagrams on the 
molecular graphs, we use the rca1mfscm program, 
which is part of the TDAtools package developed by 
Harer et  al.  [37]. This program takes as input a simple, 
undirected graph G (without weights) with a function f 
defined on its vertices and edges. The requirement for the 
function f on G is that the values on the edges have to be 
greater than or equal to the values on the vertices. Such 
a function results in a filtration of G by sublevel sets of f.

In order to use this program to calculate an approxi-
mation of the Persistence Distortion distance, we need a 
superlevel filtration of the graph G by the path distance 
function starting at each choice of vertex.

For a choice of vertex s, let us consider the function f 
defined on vertices v by f (v) = dG(s, v) and on edges 
(v,  w) by f (v,w) = max{f (v), f (w)} . This is an approxi-
mation of the path distance function starting at s.

However, it is possible to use this program in our case, 
because there is the following relationship between 
superlevel and sublevel filtrations: the sublevel set 

Fig. 4  A visualisation of the Hausdorff distance. Let the red triangles be the subset X, and the orange circles be the subset Y. In b, the ǫ illustrates 
the supy∈Y infx∈X d(x , y) part. It is the smallest number for which the disc of that radius around the orange circle farthest away from any of the 
triangles includes a triangle. To make the definition symmetric, this step is repeated for the triangles, and the maximum of the two radii is chosen

Fig. 5  A visual explanation of persistence landscapes. The persistence diagram (left) is tilted, so that the diagonal becomes the new horizontal axis 
(top right). The �i are the piecewise linear functions (bottom right)
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filtration of a function f is the superlevel set filtration of 
the function −f .

So, while the values of f range from 0 at s to some maxi-
mum value f (vmax) at the (not necessarily unique) vertex 
vmax farthest away from s, we define the filtration func-
tion F by an obvious reversal of f. That is, for v ∈ V (G) , 
we define

and F(v,w) = max{F(v), F(w)} . This function now has 
the value 0 at vmax and the value f (vmax) at s. Then we 
use the rca1mfscm program to compute the sublevel 
set filtration of F. Afterwards, the persistence diagrams 
have to be ‘translated’ back.

As we repeat this process for each choice of vertex s, 
we end up with as many persistence diagrams as G has 
vertices.

In contrast to the PD distance, we computed persis-
tence diagrams in both zero and one dimension. Comput-
ing the Hausdorff distance between the sets of persistence 
diagrams, in either dimension zero or one, proved too 
expensive for the number of molecules in our set. Instead, 
we use persistence landscapes to first average over all dia-
grams corresponding to the different vertices. Then we 
calculate the bottleneck distances between these average 
landscapes, ending with two distance matrices, one for H1 
and one for H0 . For visualisation and analysis, these can be 
embedded into lower dimensions using different dimen-
sionality reduction methods, like MDS, PCA or tSNE.

Similarity network fusion
Similarity Network Fusion (SNF) [38] is a recent compu-
tational method for data integration. Briefly, SNF com-
bines many different types of measurements for a given 
set of samples. For n data points with m different types 
of measurements, m different n× n distance matrices are 
constructed, which can be thought of as a network on n 
points, with the distances being the weights on the edges. 
First, these are transformed into similarity matrices W by 
using an exponential similarity function. The SNF imple-
mentation takes these similarity matrices as input. To 
compute the fused matrix from multiple types of meas-
urements, a full similarity matrix P and a sparse similar-
ity matrix S are defined for each measurement. For the 
first, P is constructed by performing a form of normalisa-
tion on W, in the following way:

The matrix S is constructed using K nearest neigh-
bours. For each i, let Ni represent the K nearest neigh-
bours of i, including i itself, giving

F(v) = max{f (vi)} − f (v)

P(i, j) =

{

W (i,j)
2
∑

k �=i W (i,k)
, for j �= i,

1
2 , for j = i.

Next, the matrices P are iteratively updated to converge 
to a single similarity matrix. In the case m = 2 , the initial 
matrices are P(1)

t=0 = P(1) , and P(2)
t=0 = P(2) . The iterative 

step is given by

After t steps, the overall status matrix is computed as

We transform our H0 and H1 distance matrices into 
similarity matrices using the same exponential function 
described above and then use SNF to combine them into 
one matrix.

Results and discussion
Feature discovery through mapper
The most straightforward feature selection or reduc-
tion technique is to simply see which features correlate 
best with the log of solubility feature. As solubility itself 
is a continuous feature, it is straightforward to use data 
analysis methods that are designed for this data type, 
however this approach excludes many potentially useful 
descriptors which happen to be discrete/categorical or 
binary/logical. As these are different data types, different 
statistics are calculated for them, and mixing data types 
and the different permissible statistics defined for them 
can be challenging.

This constraint does not apply to mapper. In fact, we 
found that one categorical descriptor, in particular, called 
nCIC in the data set, might give important information 
about how the shape of the molecules influences their 
solubility.

We performed several analyses using different metrics 
and lenses to discover embeddings of the data set that 
were grouping the data by solubility. We found that not 
normalising data and using the norm correlation and var-
iance normalised Euclidean metrics gave better results. 
Several embeddings using different lenses showed a 
marked gradient when coloured by solubility.

After analysing these embeddings, we discovered that 
the same feature, nCIC (the number of cycles, or molec-
ular rings), accounted best for the formation of cluster-
like groupings within the output graphs. This remained 

S(i, j) =

{

W (i,j)
∑

k∈Ni
W (i,k)

, for j ∈ Ni,

0, otherwise.

P
(1)
t+1 = S(1)P

(2)
t (S(1))T

P
(2)
t+1 = S(2)P

(1)
t (S(2))T .

P(c) =
P
(1)
t + P

(2)
t

2
.
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consistent when changing between lenses and metrics, 
as well as varying the parameters of resolution, gain and 
equalisation in Ayasdi Workbench.

The feature nCIC is the one that according to mapper 
determines most strongly the similarity between mol-
ecules. This creates one possible depiction of chemical 
space. To see whether this measure of similarity is use-
ful, we decided to partition our data set according to the 
number of cycles. Next, we looked at how the correlation 
values had changed within these subgroups.

And indeed, we could make the following interest-
ing observation: The feature that changes the most is 
X% , the percentage of halogen atoms. In Table  1, we 
can see that for the whole set, its correlation with solu-
bility is − 0.3327 . However, restricted to molecules with 
two rings we get a correlation of − 0.8163 . In molecular 
drug design, a large proportion of halogens tend to be 
chlorines, due to the relative ease of chlorination. We 
therefore chose to investigate nCL, the number of chlo-
rines, to observe if it was this property that was affecting 
molecular solubility. Looking carefully at the makeup of 
the molecules in question, we were able to deduce that 
it is indeed the number of chlorine atoms (once again, a 
discrete feature), that is responsible for the increase of 
the percentage.

Molecular weight (MW), a feature known to corre-
late well with solubility, also shows some interesting beha 
viour, depending on the number of cycles. Overall correla-
tion of MW with LogS is − 0.5520 . However, for molecules 
with more than 2 rings ( nCIC > 2 ), we get a correlation of 
− 0.0213 . This interesting behaviour of molecular weight 
versus average molecular weight becomes immediately 
visually apparent in the mapper graphs.

The embeddings have different shapes. However, they 
all agree on certain observations. We discuss the analysis 
of the PCA lens (Fig. 6c, f ) in more detail.

In Fig.  7, we can see this analysis coloured by differ-
ent relevant features. It has several distinct groupings of 
nodes (a). The red colour indicates a higher number of 
molecules per node. Coloured by solubility (b), we can 
see a gradient, as the average solubility values decrease 
from left to right. To investigate what gathers together 
the molecules in each cluster, we create subgroups of the 
data and using Ayasdi’s own tools, investigate what sepa-
rates these subsets from the rest. The feature that seems 
to separate the groupings best is the number of cycles in 
the molecular graph, as can be seen in the third image (c). 
Finally, to compare, we show the same graph coloured 
by molecular weight (d). As a feature known to correlate 
with many other features, including solubility, it is to be 
expected that the mapper analysis will pick up on this. 
Indeed, a colour gradient can be observed, but it is not as 
obvious as in the case of the number of cycles.

Applying persistent homology to molecular graphs
We have seen that molecules can be thought of as met-
ric graphs. The metric, given by the path distance, turns 
these graphs into metric spaces, and more generally, into 
topological spaces.

Persistent homology of a topological space—a metric 
graph G, in our case—gives the topological invariants of 
G summarised in a persistence diagram. These invari-
ants are used to distinguish topological spaces by means 
of the bottleneck distance which provides a pseudomet-
ric on the persistence diagrams or landscapes. This way 
we turn the set of molecular graphs into a pseudometric 
space, which is typically high dimensional.

To provide a visualisation of this molecular space, we 
use low-dimensional embeddings of the H0 and H1 dis-
tance matrices.

Using one of the low-dimensional embeddings dis-
cussed above, e.g. tSNE or MDS, the H0 distance matrix 
shows a strong gradient when coloured by the number of 
atoms, or molecular weight, while the H1 distance matrix 
shows a gradient when coloured by nCIC, as can be seen 
in Fig. 8.

It is interesting to note that the mapper algorithm 
points to the same topological descriptors of the mole-
cules as persistent homology.

Using SNF, we combined the two distance matrices 
to get a single similarity matrix. This gives us a unified 
homology-based depiction of the space of molecular 
graphs. The tSNE embedding can be seen in Fig.  9. It 
retains the main characteristics of its components, show-
ing a radial gradient with respect to the number of rings, 
and an angular gradient with respect to the number of 
atoms. When coloured by the number of chlorines, we 
can see that the small, distinct subsets in the upper left 
corner correspond to the molecules with two rings which 
we found using mapper. While they also appear in this 
depiction of chemical space, it is on the whole not as 

Table 1  The table shows the  changes in  correlation 
values with  solubility for  the  feature X% , depending 
on the number of rings

Responsible for this change are the number of chlorine atoms in the molecule. 
Also shown are the correlation values of average molecular weight, which itself 
correlates well with X% , and molecular weight. The highest (bolditalic) and 
lowest (italic) correlation values are emphasised

nCIC X% AMW MW

All − 0.3327 − 0.2673 − 0.5520

0 − 0.0793 − 0.0392 − 0.4237

1 − 0.3830 − 0.3147 − 0.5176

2 − 0.8163 − 0.7203 − 0.5326

> 2 − 0.4318 − 0.4024 − 0.0213

�= 0 − 0.5458 − 0.4311 − 0.4954



Page 10 of 14Pirashvili et al. J Cheminform           (2018) 10:54 

intuitive to interpret and draw conclusions from as map-
per networks.

Combining persistence and mapper
Using the persistence landscapes toolbox, we can com-
pute the Lp norms of persistence landscapes. In our 
case, we computed L2 norms. This way we obtain two 

new features (one for the H0 persistence diagrams and 
one for the H1 persistence diagrams). These feature vec-
tors contain continuous values. In effect, this is a way to 
create related, continuous features for the discrete vari-
ables nAT and nCIC. Continuous variables are in general 
preferable to discrete ones, as there are a wider vari-
ety of options available for their analysis (most notably 

Fig. 6  The first row shows three different analyses coloured by rows per node. The red patches indicate groupings of a large number of molecules. 
The first analysis uses the MDS lenses and norm correlation metric (resolution: 30, gain: 2.5, not equalized), the second is MDS lenses and Variance 
Normalized Euclidean metric (resolution: 35, gain:, 2.5, equalized) and the last one uses PCA lenses and the Variance Normalized Euclidean metric 
(resolution: 30, gain: 2.5, equalized). The second row shows the same analyses coloured by nCIC. Here blue corresponds to no cycles, green to 1 
cycle, etc. The presented graphs have been created using Ayasdi Workbench

Fig. 7  Coloured by rows per node (a), LogS (b), nCIC (c), MW (d), AMW (e) and nCL (f). We can see the red region in (d), corresponding to molecules 
with a high number of chlorines, matches the blue patch in (b). These are molecules with two rings, as we can see from (c), with a particularly low 
solubility. It is precisely these molecules which distort the colour gradient in (b). This visualisation was created using Ayasdi Workbench
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correlation). The newly computed variables can also be 
added to the data matrix to be input into Ayasdi Work-
bench where they give very similar results to their dis-
crete counterparts.

Conclusion
We performed a systematic study of in silico calculation 
of aqueous solubility of molecules utilizing the method-
ology of topological data analysis.

TDA provided molecular-scale understanding of how 
the ring structure of the molecules affects solubility. In 
particular, TDA naturally allows us to see how the impact 
of chlorine affects the variation of solubility as a function 
of ring count.

While our analyses do not provide a quantitative pre-
diction of solubility, this approach illustrates how minor 
changes in molecular design affect the physical proper-
ties of the bulk.

We have used techniques from topological data 
analysis, namely mapper and persistent homology, to 

understand chemical space and also to aid in solubil-
ity prediction. Mapper provided useful insights into the 
structure of a descriptor space generated by a standard 
cheminformatics software, and made subtle correlations 
far more prominent. In particular, it was seen that the 
effect of chlorinated groups to reduce solubility was far 
more powerful in larger molecules in our data set. This 
behavior is clear from the mapper output, even though 
the vast majority of molecules have no chlorines. Fur-
thermore, the molecules with chlorinated groups are 
evenly distributed as a function of the number of rings. 
We are therefore confident that this is a real effect, and 
not a product of our data set.

Persistent homology allowed the determination of a 
chemical shape space, through the persistence distortion 
distance on weighted chemical graphs. Using this dis-
similarity, we were able to produce a set of metric shape 
spaces. Using different degrees of homology, we were 
able to separate molecules both by their atom numbers, 

Fig. 8  The first row shows tSNE embeddings of the H0 (a) and H1 (b) distance matrices, coloured by number of atoms and number of rings, 
respectively. The second row shows the MDS embeddings of the same
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and their ring counts. Understanding the structure inside 
these groups is an area of further study.

Furthermore, we were able to use norms on persistence 
landscapes to convert these discrete descriptors into con-
tinuous ones. In particular, we envisage the continuous 
analogue of ring count will prove a useful descriptor in 
traditional QSPR approaches, as now quantities such as 
correlation will have more meaning.

This graphical depiction of chemical space might pro-
vide use in the field of chemography. In particular, we 
envisage the use of such tools in projects such as ‘The 
Chemical Space Project’ [39], or an alternative to tradi-
tional topographic mapping, such as in [40]. Topological 
networks, as output by the mapper algorithm, could also 
provide an alternative to current chemical exploration 
tools, such as Pharmit [41].
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