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One Sentence Summary (A brief summary of the main result of the paper, without excessive 

jargon): We computed new topological descriptors of the bronchial tree revealed through chest CT 

scans of patients with chronic obstructive pulmonary disease (COPD) to create new radiomic 

features that stratify the patient cohort in agreement with the GOLD guidelines for COPD and can 
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distinguish between inspiratory and expiratory scans. These results form a proof of concept that 

topological methodology applied to lung images offers a new, clinically meaningful way to discover 

a finer classification of COPD, increasing the possibilities for more personalized treatment. 

 

Abstract: Quantitative features that can currently be obtained from medical imaging do not provide 

a complete picture of Chronic Obstructive Pulmonary Disease (COPD). In this paper, we introduce a 

novel analytical tool based on persistent homology, that extracts quantitative features from chest CT 

scans to describe the geometric structure of the airways inside the lungs. We show that these new 

radiomic features stratify COPD patients in agreement with the GOLD guidelines for COPD and can 

distinguish between inspiratory and expiratory scans. These CT measurements are very different to 

those currently in use and we demonstrate that they convey significant medical information. The 

results of this study are a proof of concept that topological methods can enhance the standard 

methodology to create a finer classification of COPD and increase the possibilities of more 

personalized treatment. 

 

Introduction 

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease, affecting more than 

200 million people worldwide. COPD is the fourth leading cause of death in the world and is 

projected to be the third leading cause of death by 2020. There were more than 3 million deaths from 

COPD in 2012 worldwide. The global burden on health resources as a result of COPD is expected to 

rise [1, 2]. COPD is characterized by chronic inflammation of the bronchi and the lung parenchyma, 

resulting in varying degrees of obstructive bronchitis and emphysema due to remodeling of the 

airways and destruction of the alveoli, respectively. Although its pathology is heterogeneous, in 
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functional terms, all forms of COPD result in loss of lung function, which is usually quantified by 

measuring the forced expiratory volume in 1 second (FEV1) and the Forced Vital Capacity (FVC).  

While these spirometry measures are widely used in clinical practice, both to diagnose and stratify 

COPD by severity, they have important limitations, the main being that they are integrative 

measurements which, therefore, do not take into account the highly heterogeneous regional 

pathological changes of COPD [3]. Furthermore, FEV1 correlates weakly with clinical outcomes and 

health status [4, 5, 6]. 

For the needs of COPD, lung function measurements are increasingly complemented by imaging 

methods as a means of visually quantifying regional ventilation and perfusion abnormalities, gas 

trapping, emphysema, and airway remodeling [3]. High-resolution computed tomography (HRCT) 

scans are the most widely used form of imaging, with MRI and nuclear medicine increasingly, but 

still less commonly, used. Technical advances have resulted in dramatic reductions in radiation dose 

of CTs, allowing repeat imaging in longitudinal studies. Assessment of bronchial wall and cross-

section thickness is comparable to histological quantification and also enables estimation of the 

degree of small airways disease that are not directly visualized by CT [7]. Of note, CT imaging 

allows for detection of lung pathology, such as smoking-related inflammation of the small, distal 

bronchi (bronchiolitis), years before airflow limitation is detected by spirometry [8]. For example, 

CT-detected emphysema, assessed by the 15% percentile (Perc15) technique is able prospectively to 

identify rates of lung function decline, even in individuals in whom spirometry does not detect 

airway obstruction [9]. 

Common CT measurements in COPD research include lung attenuation area, mean lung density, 

airway wall area percentage, Perc15, lung volume, airway wall thickness and airway lumen area 

[10]. There is, however, significant room for development of radiomic features derived by data-

characterization algorithms applied to large sets of quantitative features extracted from medical 
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images and, thereby, uncover characteristics that cannot be appreciated by the naked eye. In the 

current study, we have applied, to our knowledge for the first time ever, the technique of persistent 

homology to process lung CT data. We took advantage of the computational tool of persistent 

homology [11, 12, 13] to create topological descriptors which capture the complexity of the lung 

structure; this also enabled computation of a measure of similarity between images. Using this 

approach, our study has introduced a novel set of descriptors computable from a chest CT scan, 

focusing on characteristics that are very different from those used at present. Specifically, we started 

by considering three new radiomic features: upwards complexity, which quantifies the way branches 

stretch upwards, the length of the bronchial tree visible in an inspiratory CT scan, and the number of 

bifurcations in the same tree. We then showed that these three numerical values are very closely 

related and any of them can stratify the inspiratory CT scans of our cohort into groups that agree 

with those given by the GOLD guidelines of COPD. Of note, these stratification results are better 

than those obtained by other CT measurements, like the emphysema score and the volume of the 

lumen. Apart from the upwards complexity, we also computed two additional numerical values 

related to the way branches stretch upwards. Using these, we could clearly distinguish between 

inspiratory and expiratory CT scans. Additionally, we observed that we can also classify our cohort 

into healthy individuals and COPD patients by quantifying and classifying the topological structure 

of the space between the lung periphery and the visible airways in an inspiratory CT scan. Finally, 

we developed a computable characteristic that describes how the branches in the bronchial tree curve 

towards one another and showed that this radiomic feature correlates with lung function more 

strongly when the computations are done using the expiratory CT scans rather than the inspiratory 

CT scans, a phenomenon that is also seen when using standard CT measurements.  

We propose that the relation between lung diseases and the shape of the bronchial tree, including 

properties such as trajectory changes, are of value to advancing our understanding of the 
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mechanisms of COPD. We also propose that further research that applies this method in prospective, 

longitudinal studies and interventional trials is justified. 

 

Results 

The overall aim of this study was to develop a set of new radiomic features that can distinguish 

between healthy non-smokers as well as healthy smokers and patients with COPD. For this purpose, 

the following four study participant groups defined by smoking status and spirometry given by the 

GOLD guidelines [6] were studied: healthy non-smokers and healthy smokers (both judged as 

healthy by spirometry showing FEV1>80% of predicted and FEV1/FVC>0.75), mild COPD 

patients, consisting of GOLD stage 1 (with FEV1≥80% of predicted and FEV1/FVC<0.70) and 

moderate COPD patients, consisting of GOLD stage 2 (50%≤ FEV1<80% of predicted and 

FEV1/FVC<0.70). See Materials and Methods for cohort details and data used. 

In this paper, we made use of Topological Data Analysis (TDA), with emphasis on persistent 

homology, for the computation of our new radiomic features. In Supplementary Materials, we 

explain what persistent homology is and how it works. In Materials and Methods, we explain the 

way we use this TDA tool to obtain each of our geometric signatures.  

 

Directional complexity 

 

For this computation, we began by extracting a graph representing the bronchial tree from each 

inspiratory CT scan (see Materials and Methods). Starting from the top of the scan, we recorded the 

height at which a segment of the bronchial tree changes direction and starts pointing upwards or 

downwards. We computed a geometric summary of this information using TDA as described in 

Materials and Methods. This consisted of a single numerical output we call upwards complexity, 
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which was obtained by counting the number of times a particular branch changes its trajectory to 

start stretching upwards and sum this number over all branches in the bronchial tree. Upwards 

complexity allowed us to stratify the inspiratory CT scans of our cohort into COPD groups that agree 

with those given by the GOLD guidelines. A boxplot illustrating this group-separation can be found 

in Figure 1A and details of the pairwise Kolmogorov-Smirnov (KS) tests can be found in Table 1A. 

We also studied how the branches in the bronchial tree bend in other directions, obtaining a different 

number for each direction. This directional complexity in directions other than upwards did not 

improve the group-separation results obtained by the combination of upwards complexity and 

bronchial tree length (introduced in the next section), hence our focus on the latter two 

measurements. More details on this are given in Materials and Methods.  

 

Length of the bronchial tree and number of branching points 

 

To complement directional complexity, we measured the length of the entire bronchial tree 

observable in an inspiratory CT scan. The length of the bronchial tree was estimated from a graph 

representing the bronchial tree in the CT (see Materials and Methods) using the number of vertices 

in this graph as a proxy for the length of the bronchial tree. Using this measure, we could again 

stratify the inspiratory CT scans of our cohort into groups that agree with those given by the GOLD 

guidelines. For these group-separation results, see Figure 1B for the boxplot and Table 1B for the 

results of the pairwise KS test. In particular, notice how the bronchial tree length separates the group 

of moderate COPD patients from all other three groups.  

It is remarkable that the combination of upwards complexity and the length of the bronchial tree 

were able to distinguish all groups, except for that of healthy smokers (HS), from those of healthy 

non-smokers (HNS) or mild COPD patients (Mild). This can be checked by observing how for all 
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comparisons except for HSvsHNS and HSvsMild, either in Table 1A or in Table 1B. Of note, these 

findings may indicate that the group of healthy smokers is heterogeneous and intersects with the 

healthy non-smokers at one end and with the mild COPD patients at the other. This could not be 

established using FEV1 (% of predicted) and the ratio FEV1/FVC.  

 

To investigate whether any part of the lung may be contributing more to the above findings, we 

computed the length of the bronchial tree starting from different airway generations. This showed 

that such thresholding does not improve the separation presented in Figure 1B and Table 1B 

regardless of the generation from which the computation began. In a separate computation, an almost 

identical separation to the one in Figure 1B and Table 1B was reproduced by using the total number 

of points where airways branch out instead of the length of the bronchial tree. 

 

Relationship between directional complexity and bronchial tree length 

When investigating the directional complexity in any given direction and the length of the bronchial 

tree, these two measures were found to be strongly related (see Figure 2A for an illustration of this 

using upwards complexity). Moreover, as shown in Figure 2A, this close relation was maintained 

across the four groups in the cohort. 

 

Comparison with other analytical methods  

Having observed significant separation between study groups using our new radiomic methods on 

inspiratory CT scans, we looked for similar differences between subject groups when using other CT 

measurements. Specifically, we quantified emphysema using the standard measure of percentage 

area of low attenuation and we approximated the volume of the airway lumen as the number of 
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voxels inside the airways (see the red airway structure in Figure 3A). This showed that the 

differences between subject groups identified by our radiomic features were much more significant 

than the differences identified by the emphysema score and the volume of the lumen (compare the 

boxplots Figure 1C and Figure 1D with those in Figure 1A and Figure 1B, and the numerical results 

in Table 1C and Table 1D with those in Table 1A and Table 1B). Indeed, using the volume of the 

lumen, we did not find any difference between subject groups with a p-value<0.05, and the 

emphysema score only found two such differences – namely, that between healthy smokers and 

moderate COPD patients (|KS|=0.55, p=9.88⋅ 10−3) and that between healthy non-smokers and 

moderate COPD patients (|KS|=0.48, p=4.16⋅ 10−2). These separations were weaker and less 

significant than the separation of the same groups obtained using the bronchial tree length (Figure 

1B and Table 1B).  

 

Relation to height 

When assessing standard lung function measurements, the values are typically normalized by the 

individual’s height. To study the effect of height on some of our new radiomic features, we divided 

the upwards complexity of each participant by the person's height. We then examined which 

participant groups separated more clearly by either applying or not the height normalization. To this 

end, we compared 2-sample Kolmogorov–Smirnov tests. Normalizing upwards complexity exhibited 

a clearer separation in 3 cases (using the notation in Figure 1, those cases are the comparisons Mod-

HNS, HS-Mod and Mod-Mild) and a less clear separation in 2 cases (Mild-HNS, HS-Mild) 

(compare Figure 1E and Table 1E to Figure 1A and Table 1A, respectively). 

We repeated the same normalization with the length of the bronchial tree and found that in 2 

instances (HNS-Mild, HS-Mod), not normalizing by height provided a more clear separation 
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between groups, and normalizing did not improve the clarity of separation in any instance (compare 

Figure 1F and Table 1F to Figure 1B and Table 1B, respectively). This suggests that, unlike standard 

spirometry, the bronchial tree length may capture bronchial structure information relevant in COPD 

in a way that is independent of height.  

 

Comparison of expiratory and inspiratory phase CTs 

For 30 participants (8 healthy non-smokers, 9 healthy smokers, 8 mild COPD and 5 moderate 

COPD), both inspiratory and expiratory CT scans were obtained. This provided an opportunity to 

demonstrate first that our methodology can not only distinguish between healthy individuals and 

COPD patients but also detects differences in structure between the inspiratory and expiratory 

phases of the breathing cycle. Furthermore, we showed that the amount to which branches in the 

bronchial tree curve towards one another correlates with lung function more strongly in expiratory 

CT scans than in inspiratory ones. The stronger correlation with expiratory scans is in keeping with 

our previous findings using standard CT measurements that mean lung density (MLD) during 

expiration correlated better with reduced lung function that inspiratory MLD [14].  

To address the first point, we considered again the height at which branches in the bronchial tree 

start or stop stretching upwards, as used in the computation of upwards complexity. We used the 

same input to compute a different topological summary (see Materials and Methods), which allowed 

us to compare the scans of different participants and plot them together. The output of our 

computations were two values per CT scan, which we used as coordinates of a point in the plane, see 

Figure 4B. This showed a clear separation between the inspiratory and expiratory CT scans.  

To quantify how branches curve towards one another in the bronchial tree graph, we introduced 

another radiomic feature, called branch-to-branch proximity, which. This was done by virtually 
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thickening the visible airways and recording the thickness at which the airways begin to touch (see 

Figure 5 and Figure 6 for an illustration). Using this approach, we found that the branch-to-branch 

proximity observed in the expiratory phase correlated more strongly with FEV1 (% of predicted) 

than the branch-to-branch proximity observed in the inspiratory phase (compare Figure 2B and 

Figure 2C). Again, this was consistent with standard CT measurements, which also correlate better 

with FEV1 (% of predicted) when measured during expiration [10, 14]. 

 

Small airways 

Having shown that we can compute clinically meaningful topological features of the airways by 

using their tree structure, we showed that the shape of the space separating the lung periphery from 

the airways visible in an inspiratory CT scan is also related to the development of COPD. Our CT 

scan data consists of voxels which are cubes 0.7mm long in each direction, giving a spatial 

resolution of 2.1mm. This makes the small airways, which are defined as those with a diameter 

<2mm, invisible in a CT scan. However, it is well known that small airways dysfunction plays a key 

role in COPD. Hence, what happens in the void between the visible airways and the lung periphery 

is crucial. To overcome the relatively low resolution of the standard CT scan, we found a topological 

way to quantify and classify the structure of that void and showed how the resulting radiomic feature 

can distinguish between healthy individuals and COPD patients. This was achieved by placing 

virtual balls centered within the visible structure (airways and lung periphery) and allowing them to 

expand until they fully occupied the space. This procedure uses thickening in a similar way to Figure 

5, see Materials and Methods for details. The output is a pair of real numbers (𝑥, 𝑦) representing 

each CT scan. In Figure 4A, we represent each CT scan as a point in the plane with the 

corresponding coordinates (𝑥, 𝑦). This approach placed the healthy smoking and non-smoking 
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individuals into one group that was distinct from the mild and moderate COPD patients who formed 

another group (see Figure 4A). 

 

Discussion 

Since its creation, persistent homology, a key tool of TDA, has developed rapidly, both in terms of 

its mathematical foundations [15, 16, 17] and possible applications. Persistent homology has been 

used in fields as diverse as digital imaging [18, 19], sensor networks coverage [20], materials science 

[21, 22], molecular modelling [23, 24, 25], signal processing [26, 27] and virus evolution [28]. In 

this study, we took advantage of the ability of persistent homology to offer alternative ways of 

measuring global properties of complex objects through the use of topology.   

In respiratory imaging, this method represents a completely new way of taking measurements of the 

bronchial tree. In contrast to existing methods, such as measuring the dimensions of the airway walls 

and lumen, which look at airway branches individually, our approach condenses the topological 

properties of the entire bronchial tree into a small number of unique characteristics for each 

individual. Along with previous studies [29, 30], this creates major new opportunities for persistent 

homology to be used more widely in medicine, in particular in clinical radiology. This new 

methodology is especially applicable to studying the lung at the population level because of the 

manner in which it represents the complexity of the airway tree through a single low-dimensional 

data point that represents the entire bronchial tree. By collecting these data over a large number of 

subjects and combining them with other imaging, physiological and measurements of 

pathobiological biomarkers, we could build a picture of how variations in the topological nature of 

the bronchial tree impact on the pathophysiology of people with a variety of respiratory diseases 

such as COPD, asthma and idiopathic pulmonary fibrosis (IPF). This is likely to have significant 

translational impact as a valuable tool for use in deep-phenotyping, which is central in stratified 
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medicine and precision medicine [31]. 

 

We have created a set of novel radiomic features which capture the overall complexity of the lung 

structure and enable a quantitative comparison of the CT scan images. We have demonstrated that 

these properties are important in the context of a common respiratory disease. These measurements 

provided a more complete picture of differences between the four groups in this study than standard 

CT measurements. In particular, there was a significant relationship between upwards complexity, 

the length of the bronchial tree, and COPD severity.  

Additionally, our comparison between inspiratory and expiratory phases can have various 

applications. The manner in which tissue inside the lung expands and contracts throughout the 

breathing cycle is known to be an indicator of disease, for example gas trapping in COPD. 

Comparison of the inspiratory and expiratory scans can therefore be exploited as a means of making 

localized measurements of disease [32]. Our proposed technique makes it possible to study how the 

shape of the bronchial tree changes during the breathing cycle and offers the potential to be a new 

method for the identification of localized areas of disease, such as gas trapping. Similarly, indices 

that are the subject of current, clinical, pulmonary CT research also include the Parametric Response 

Mapping (PRM) technique, which uses co registration of paired inspiratory and expiratory scans to 

compare areas of low attenuation on a voxel to voxel basis [33, 34]. Our methodology may further 

inform the PRM technique and could be the subject of future research.   

Our approach to persistent homology is similar to that employed in [30] to study cerebral 

vasculature, but our topological summaries, such as the directional complexity or branch-to-branch 

proximity, are different and have not been used before. As explained in Supplementary Materials, 

the output from persistent homology calculation is summarized in the so-called barcode. In the study 
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of cerebral vasculature, Bendich et al [30] simplified the analysis by retaining the 100 longest bars 

from which summaries were produced using the Principal Component Analysis. In contrast, in our 

study this approach did not work as the number of bars can vary significantly between patients, 

which can be seen in Figure 1A where some participants have about 160 bars in the upwards 

complexity barcode, whereas others exhibit only about 20 bars. For this reason, in our study we 

retained the entire barcode without thresholding. From this input data, we computed a measure of 

similarity between scans of individual patients. This can be used for visualization or to train 

classification models in a way similar to the approach by Adcock et al. on hepatic lesions [29]. 

We also created a new topological characteristic to circumvent the relatively low spatial resolution 

of CT scans. This is one of the main mathematical novelties of the paper as it provides a first 

instance where topology has been used to infer the structure of the object under study. We achieved 

this by incorporating to the computation the boundary of the lung lobes. This technique can be 

applied to any kind of imaging, for example, to 3-dimensional Magnetic Resonance Angiography 

images of the arterial tree within the brain [30], where the new characteristics developed here can be 

used to enhance the analysis if the meninges are used in the same way we used the outer layer of the 

lobes in our study.  

Of note, we made use of persistent homology in degrees 0, 1 and 2 in different ways to obtain 

different kinds of clinical insight. In degree 0, it was used to define the directional complexity (a 

number that can distinguish severity groups) and to characterize the distinction between the 

inspiratory and expiratory CT scans. Using persistent homology in degree 1, we showed that CT 

measurements correlate with FEV1 (% of predicted) more strongly during the expiratory phase than 

in the inspiratory phase, which could be expected based on similar observations in past CT studies 

[10, 14]. As stated before, the degree 2 was used to overcome the limitation of the low spatial 

resolution of CT scans by including information of the outer boundary of the lobes. This led to a 
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much clearer visualization of the difference between the healthy and COPD participants, which 

could not be recovered using the topological characteristics in degrees 0 and 1. Thus, our 

methodology provides one of the first significant uses of the second-degree persistent homology in 

applications. The other uses of degree 2 up to date are summarized in [19, 35, 36]. 

In summary, this study has shown that our analytical method can extract information from CT scans 

to provide a new perspective on lung structure. Because this method can be readily applied to large 

CT datasets, we propose that it is of value for clinical research. Further studies are needed to assess 

its prognostic value in longitudinal and interventional studies. 

 

Materials and Methods 

All the procedures explained in the Results section can be formalized and computed efficiently 

through the tool of persistent homology, which is described in detail in the Supplementary Materials. 

 

Study design and participants 

The imaging data used for this study were acquired from two previous imaging studies performed in 

Southampton (manuscripts in preparation). Both studies focused on COPD and had identical 

inclusion and exclusion criteria. In both studies, participants were recruited into two COPD groups; 

GOLD stage 1 disease (FEV1/FVC ratio < 0.70 and FEV1≥80% of predicted) and GOLD stage 2 

disease (FEV1/FVC ratio < 70% and FEV1 50-79% of predicted), referred to as mild and moderate 

COPD, respectively. Both healthy smoker and healthy non-smoker groups had no clinical evidence 

of obstructive airways disease, and had spirometry results of FEV1/FVC ratio >0.75 and FEV1>80% 

of predicted. Both studies were approved by the Southampton and West Hampshire local research 

ethics committee (LREC number: 11/SC/0319 and 09/H0502/91). In total, 64 participants were 
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assessed (18 healthy non-smokers, 19 healthy smokers, 14 COPD GOLD-1 and 13 COPD GOLD-2). 

 

MSCT imaging 

Multi-Slice Computed Tomography (MSCT) scans were performed on a Siemens Sensation 64 CT 

scanner (Siemens Medical Solutions, Erlangen, Germany) using a high-resolution algorithm, with 

detector thickness 0.75 mm, pitch 1.0, effective mAs 90 and a tube voltage of 120kV. The high-

resolution algorithm was chosen to ensure the best visualization of the airway tree [37], and the 

scanning was performed at suspended full inspiration and expiration. The images were reconstructed 

using a slice thickness of 0.75 mm, a reconstruction increment of 0.5 mm, and a sharp reconstruction 

algorithm.  Additional reconstructions were also performed using several soft reconstruction kernels, 

including B30f and B35f, which were chosen to suit the recommended protocol in the Apollo 

analysis software (Vida Diagnostics, Iowa, USA). 

 

MSCT analysis 

The Apollo software (Vida Diagnostics, Iowa, USA) was used to perform the analysis of the multi-

slice computed tomography scans. This software was designed to semi-automatically analyze 

pulmonary MSCT imaging data, including segmentation of the lungs, the airway tree and the lobes 

(see Figure 3A). For the needs of the current study, only the lung, lobes and airway tree were of 

interest. In many cases, the Apollo software was able to achieve the desired results entirely 

automatically, but for some participants it was necessary to manually edit the results of the lobe 

segmentation to ensure that they were defined as accurately as possible. 

Custom software written in Matlab (R2015b, MathWorks, Natick, MA 01760-2098, US) was used to 

extract the specific details of the center lines and branch points of the airway tree from the .XML 
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data output by the Apollo software. An example of the extracted center lines, along with the 

segmented airway tree is shown in Figure 3B, where the center lines are colored according to 

generation number and are, for simplicity, plotted between the branch points only. For all of the 

analysis in this paper, the complete center line information was used, which captured the true shape 

of the airway branches. In particular, there can be up to 264 extra points describing the shape of the 

bronchial tree between two branch points. 

Along with the branch center lines, binary masks were exported representing the airway tree and 

lobes for each participant. 

 

Persistent homology 

Persistent homology [11, 12, 13] has been designed to provide numerical information about the key 

features of an object under study at a range of scales, which can be regarded as variable resolution at 

which the object is viewed. It is commonly used as a 3-step process: first, a simplified approximation 

of the object is built, which grows as the scale parameter 𝑟 is varied. In this study, we made use of 

two different approximations: one based on alpha complexes (see Supplementary Materials) and one 

based on a notion of height function, explained in the directional complexity section (below) and 

expanded in the Supplementary Materials. We computed topological characteristics of the chosen 

approximation, using all scales at once. These are numerical invariants obtained by computing 

homology groups 𝐻𝑛 of the approximation, and tracing the life-span of features as they appear and 

disappear with the changing scale. For each degree 𝑛 ≥ 0, this information is represented in the form 

of a collection of intervals with multiplicities, called the degree-𝑛 barcode explained in detail in the 

Supplementary Materials. These intervals have the form [𝑟1, 𝑟2) for different values of the changing 

parameter 𝑟, and are also known as bars, hence the name barcode for a collection of these. 
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Intuitively, degree-0 gives information about the evolution of the connected components along the 

sequence of growing representations of the object under study. Similarly, degree 1 indicates the 

evolution of the loops or holes, and degree 2 captures the evolution of cavities or voids, etc. We 

compared the resulting barcodes using pseudo-distance functions, the Wasserstein and Bottleneck 

pseudo-distances being examples with important stability properties; see Supplementary Materials. 

In summary, we used persistent homology to take a growing approximation of an object, compute 

the associated degree-n barcode for some 𝑛 ≥ 0, and compare the corresponding barcodes of 

different objects using the Bottleneck or Wasserstein distances. 

 

Directional complexity 

We quantified the amount of changes in trajectory in a particular direction by defining a notion of 

directional complexity on the 3D graph representation of the bronchial tree described in the MSCT 

analysis subsection (above). To measure upwards complexity, we slid a horizontal plane downwards 

(see example in Figure 7A). At any given distance ℎ from the top of the imaginary box containing 

the bronchial tree, 𝑋ℎ was defined as the part of the tree that sits above the plane at that position. In 

this way, we obtained an approximation of the bronchial tree that converged to the original tree as 

we increased the distance h from the top (see Figure 7A). 

The degree-0 barcode corresponding to this sequence of growing graphs has the following 

interpretation: a bar of the form [ℎ1, ℎ2) in this barcode indicates that there is a connected 

component 𝐶 in the graph 𝑋ℎ1 which is not present in 𝑋ℎ for any ℎ < ℎ1. Additionally, the following 

holds for ℎ2 but it does not hold for any ℎ < ℎ2: in the graph 𝑋ℎ2, the component represented by 𝐶 

will merge with another component of 𝑋ℎ2 which was present in 𝑋ℎ for some ℎ < ℎ1.  

In Figure 7B, we represent each bar of the form [ℎ1, ℎ2) in the degree-0 barcode as a vertical line, 
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with the starting point at distance ℎ1 from the top and end point at distance ℎ2 from the top. In this 

representation, every bar corresponds to a branch changing trajectory to start stretching upwards. We 

called upwards complexity the number of vertical lines in such a representation, i.e., the number of 

upwards changes of trajectory of the airways. 

To compute directional complexity in other directions, we rotated the bronchial tree, slid the plane 

top to bottom and counted the number of finite bars in the corresponding degree-0 barcode. 

As mentioned in the Results section, directional complexity in other directions did not improve the 

group-separation results obtained by the combination of upwards complexity and bronchial tree 

length, hence our focusing on the upwards direction. For instance, by rotating 10˚, 220˚ and 0˚ 

around the 𝑋, 𝑌 and 𝑍 axes, respectively, following the right-hand rule, directional complexity 

produced no group separation at all. However, using instead the angles 20˚, 40˚ and 0˚, respectively, 

the group-separation results given by directional complexity were very similar to those of the 

bronchial tree length. 

To generate these barcodes, we used the publicly available software package TDATools [38]. To 

compute the barcode of one of these graphs in a 3D box, we used the function 'rca1mfscm' of this 

package, which requires the definition of a function 𝐹 on each vertex and edge of the graph. For 

instance, to compute the upwards complexity, we assigned to each vertex its distance to the top of 

the box, and to each edge, the maximum of the values of 𝐹 attained at the two vertices it connects. 

Note that all barcodes in this study were computed with coefficients in the field of two elements, ℤ2. 

 

Length of the bronchial tree 

The length of the bronchial tree was estimated from the 3D graph representation of the bronchial tree 

described in the MSCT analysis subsection above. We used the number of vertices in this graph (that 
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include not only the branch points but also the many vertices connecting consecutive branch points) 

as a proxy for the length of the bronchial tree. As stated in the Results section, a separate 

computation with only the branch points was performed and the results were similar to those in 

Figure 1B and Table 1B. 

 

Small airways 

For the computation of the representation in Figure 4A, we started with a 3D array of binary voxels 

representing the luminal surface of the airways together with the surface of the lobes as in Figure 

3A. For each binary voxel image, we constructed a point cloud in ℝ3 by including the coordinates of 

every voxel with value 1 and then built the alpha complex filtration (see Supplementary Materials) 

on these points. The degree-2 barcode of this filtration gave information about how the airways fill 

the cavity of the lobes. The alpha complex filtrations and their barcodes were computed using the 

GUDHI library [39]. 

Next, we computed the bottleneck distances between all the degree-2 barcodes. This gave a measure 

of distance between the lung scans by proxy, giving us a pseudo-metric on the set of lungs. The 

bottleneck distances were computed using the Hera software [40]. Due to computational constraints, 

we made use of the software’s approximate bottleneck calculation. If one supplies a relative error, 

then the software computes an approximate distance which satisfies the inequality  

|𝑑𝑒𝑥𝑎𝑐𝑡 − 𝑑𝑎𝑝𝑝𝑟𝑜𝑥| 
𝑑𝑒𝑥𝑎𝑐𝑡
⁄ < 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟, 

where 𝑑𝑒𝑥𝑎𝑐𝑡 is the exact bottleneck distance and 𝑑𝑎𝑝𝑝𝑟𝑜𝑥 is the computed approximation, as 

described in the documentation of [40]. We used a relative error of 10−4. After measuring the 

pairwise distances between all barcodes, we used Multi-Dimensional Scaling (MDS) to obtain a 2D 
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representation shown in Figure 4A. 

 

Expiratory CT analysis  

For 30 participants (8 healthy non-smokers, 9 healthy smokers, 8 mild COPD and 5 moderate 

COPD), both inspiratory and expiratory CT scans were obtained. Recall that the upwards complexity 

was computed as the number of vertical lines in Figure 7B. This was, in turn, the number of bars in 

the degree-0 barcode constructed by considering the part of the bronchial tree graph that sits on top 

of a horizontal plane that we slide downwards.  

In order to compute the representation shown in Figure 4B, we used the same degree-0 barcode in a 

different way. We compute such barcodes for both the inspiratory and expiratory bronchial tree 

graphs and compared those 60 barcodes (corresponding to the inspiratory and the expiratory 

bronchial tree of the 30 patients) using the Wasserstein2 distance (see Supplementary Materials). 

The Wasserstein computations were done with the software package Hera [40]. After calculating the 

distances between all these barcodes, the final representation in Figure 4B was obtained using a 2D 

MDS projection.  

In a separate computation, we quantified how branches bend towards one another on the tree graph 

(See Figure 5 and Figure 6 for an intuitive illustration of this computation). We used the alpha 

complex filtration (see Supplementary Materials) built on the nodes of this graph. Next, we 

computed the degree-1 barcode, which consisted of points of the form (𝑟1, 𝑟2). Finally, we defined 

the branch-to-branch proximity as the sum of the numbers 𝑟2 − 𝑟1 corresponding to all such points. 

We performed this for both the inspiratory and expiratory tree graphs of each participant. The alpha 

complex filtrations and their barcodes were computed using the GUDHI library [39]. 
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Supplementary Materials 

The Supplementary Materials expand on the Materials and Methods of the manuscript, and contain 

the background information on persistent homology. It is divided in 7 subsections: Persistent 

homology, Persistence modules and barcodes, Simplicial complexes, Comparing persistence 

diagrams, Stability, Height filtration and Alpha complexes. The Supplementary Materials also 

include two figures which illustrate some of the constructions in these sections. 
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Figure 1 Differences between severity groups given by 6 radiomic features. In the boxplots, HNS = healthy non-smokers, Mild = mild COPD 

patients, Mod = moderate COPD patients and HS = healthy smokers. The + signs denote outliers. The 6 radiomic features studied are (A) 
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upwards complexity (see Materials and Methods for details), (B) bronchial tree length, (C) emphysema score (as percentage of low attenuation 

area), (D) volume of the airways (computed as the number of voxels inside the red airway structure in Figure 3A), (E) upwards complexity 

divided by participant’s height, (F) bronchial tree length divided by participant’s height. The combination of radiomic features A and B can 

distinguish all groups except for HS from HNS or from Mild, which outperforms the combination of methods C and D. 

 

 

A 

 

B 

 

C 

 

Figure 2 Analysis of topological characteristics. (A) Correlation between upwards complexity and bronchial tree length (Pearson 

correlation coefficient 𝜌=0.97, p-value 𝑝=1.56 ⋅ 10−41). Similar results were obtained using directional complexity in other directions. 

(B) Correlation between the inspiratory branch-to-branch proximity, which quantifies how branches of the inspiratory bronchial tree bend 

towards one another, and FEV1 (% of predicted) (𝜌=0.38, 𝑝=0.040). (C) Expiratory counterpart of (b) (𝜌=0.57, 𝑝=0.001). Notice that the 

correlation is stronger and more significant for expiratory scans than for inspiratory scans. 

 

 

A 
 

 

B 

 

Figure 3 MSCT analysis. (A) The Apollo software (Vida Diagnostics, Iowa, USA) being used to segment the lobes from the MSCT scan. 

(B) Illustration of the extracted branch center lines, along with the segmented airway tree for one of the participants. The center lines are 

colored according to generation number. Note that for the purposes of illustration, the center lines are plotted between the branch points 

only. For all of the analysis described in this paper, the complete center line information was used, which captured the true shape of the 

airways as in Figure 7. 
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A 

 

B 

 

Figure 4 Spatial representation of similarities between lungs. These are obtained by describing the shape of each lung through a set of 

topological characteristics called barcodes (see Materials and Methods for details) and computing distances between the barcodes of individual 

subjects.  In the legends, Healthy=healthy smokers and non-smokers, COPD=mild and moderate COPD patients. (A) This representation uses 

degree-2 persistent homology of inspiratory data to infer the shape of the airways inside the cavity of the lobes and it shows a clear separation 

between Healthy and COPD groups. Note two dots indicated by arrows: they represent healthy smokers which our algorithm places among the 

COPD patients, indicating a potential undiagnosed problem. (B) This representation takes into account how the airways bend upwards and shows 

that this topological feature clearly separates the inspiratory and expiratory stages of the bronchial tree. This analysis was not performed for the 

expiratory phase because the information about the lobe structure was not available.    

 

 
               A   B                          C 

 

Figure 5 Computing of branch-to-branch proximity. Consider the graph representing the bronchial tree as explained in Materials and Methods (A). 

This graph is called a tree since it contains no loops, i.e., no branches that bifurcate and then merge. Of note, there are many nodes (up to 264) between 

any two consecutive bifurcations, so the nodes appear dense in the graph representation. Centered at each node of this graph, we virtually set a ball of a 

fixed radius, thickening the construction. As we keep thickening more and more, by increasing the radius of those balls, at some point we will find that 

some branches merge, creating a loop (B). We record the radius 𝑟1 at which this happens. For a large enough radius 𝑟2, though, this loop will be filled 

in (C). If a merging of branches creates a loop that appears for the value 𝑟1 of the radius and disappears at 𝑟2, we represent this merging as the positive 

number 𝑟2 − 𝑟1. Summing up all these terms, we obtain a number we call branch-to-branch proximity. 
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Figure 6 Calculations show that the lung function is better when more branches bend towards one another in the expiratory bronchial tree (such as the 

branches in the two circles on the left, in contrast with those in the circle on the right). See Figure 2C. 

 

 

 
 

A 
 

 

B 

 
 

Figure 7 Explanation of upwards complexity. The color gradient indicates height. (A) To study upwards complexity, we slide a 

horizontal plane downwards. If we denote by 𝑋ℎ the part of the tree that sits above the horizontal plane at distance ℎ from the top of the 

image, then 𝑋ℎ ⊆ 𝑋ℎ′ whenever ℎ ≤ ℎ′, obtaining a sequence of nested graphs approximating the bronchial tree more accurately as we 

increase ℎ. (B) The right part of the panel shows the degree-0 barcode of the sequence of nested graphs in (A). In this picture, the 

correspondence between bars in the barcode and branches that change trajectory upwards becomes apparent. In particular, the length of a 

bar indicates for how long a branch follows that upwards trajectory. 
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A 
           |KS| 

  p-value 
HNS Mild Mod HS 

HNS 
 

0.51 0.70 0.29 

Mild 2.14E-02 
 

0.49 0.33 

Mod 4.95E-04 5.25E-02 
 

0.53 

HS 3.71E-01 2.79E-01 1.56E-02 
 

 

B 
           |KS| 

  p-value 
HNS Mild Mod HS 

HNS  0.48 0.76 0.25 

Mild 3.24E-02  0.63 0.24 

Mod 1.26E-04 4.59E-03  0.61 

HS 5.23E-01 6.57E-01 3.44E-03  
 

C 
           |KS| 

  p-value 
HNS Mild Mod HS 

HNS 
 

0.29 0.48 0.31 

Mild 4.34E-01 
 

0.29 0.40 

Mod 4.16E-02 5.63E-01 
 

0.55 

HS 2.70E-01 1.15E-01 9.88E-03 
 

 

 

D 
           |KS| 

  p-value 
HNS Mild Mod HS 

HNS 
 

0.29 0.31 0.21 

Mild 4.69E-01 
 

0.18 0.17 

Mod 3.83E-01 9.73E-01 
 

0.29 

HS 7.71E-01 9.51E-01 4.56E-01 
 

 

 

E 
           |KS| 

  p-value 
HNS Mild Mod HS 

HNS 
 

0.48 0.76 0.40 

Mild 3.24E-02 
 

0.56 0.29 

Mod 1.26E-04 1.67E-02 
 

0.58 

HS 7.90E-02 4.22E-01 5.66E-03 
 

 

 

F 
           |KS| 

  p-value 
HNS Mild Mod HS 

HNS 
 

0.42 0.76 0.29 

Mild 8.90E-01 
 

0.63 0.26 

Mod 1.26E-04 4.59E-03 
 

0.56 

HS 3.47E-01 6.00E-01 3.43E-02 
 

 

Table 1 Differences between severity groups given by 6 radiomic features. For each radiomic feature, we show the table with the pairwise 

Kolmogorov-Smirnov that compares HNS = healthy non-smokers, Mild = mild COPD patients, Mod = moderate COPD patients and HS = 

healthy smokers. The values in italics in yellow shaded boxes indicate the absolute value of the KS score and the values in roman type in blue 

shaded boxes indicate p-values. The 6 radiomic features analyzed are (A) upwards complexity (see Materials and Methods for details), (B) 

bronchial tree length, (C) emphysema score (as percentage of low attenuation area), (D) volume of the airways (computed as the number of 

voxels inside the red airway structure in Figure 3A), (E) upwards complexity divided by participant’s height, (F) bronchial tree length divided 

by participant’s height. The combination of radiomic features A and B can distinguish all groups except for HS from HNS or from Mild, which 

outperforms the combination of methods C and D. 
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Supplementary Materials: 

Materials and Methods 

Persistent homology 

The main mathematical method used in this paper to analyze the lung CT scans is called persistent 

homology [11, 12, 13]. It has been designed as a computational way to capture the shape of objects 

depending on the scale at which they are viewed. To understand the basic idea of persistence, 

imagine a given set of high resolution images of a human face. If one zooms in, one can capture tiny 

details of the face, but one may not be able to recognize the person in the photo. Zooming out, one 

sees less detail, but it will be easier to see the person in the photograph. Continuing the process of 

zooming out, eventually all details are lost. It is clear that the choice of zooming scale depends on 

the kind of information we are hoping to recover. We can avoid making a particular choice of 

zooming scale, and instead study all possible scales at once. This is the approach of persistent 

homology to study data – it presents us with information about the shape of our data at a range of 

scales, controlled by a parameter 𝑟. For small values of 𝑟, we see single points; as 𝑟 increases, 

connections between points begin to emerge, creating an approximate shape of the data.  

The data set to be analyzed is typically thought to be a discrete subset 𝑆 sampled from a metric 

space. To understand the structure of the set, and so capture the information it contains, one creates 

approximations of 𝑆 by simple shapes 𝐾𝑟, called simplicial complexes, for a range of values of the 

scale parameter 𝑟. We define the notion of simplicial complex in Section 3 below. As 𝑟 increases, 

the corresponding complexes will grow and their structure will also change. Persistent homology 

will exhibit the evolution of these approximations. Intuitively, homology in degree zero describes 

the components of the set, in degree one it uncovers the existence of non-trivial loops at a particular 

scale, while degree two identifies voids or cavities.  
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This topological information is represented in the form of a set of intervals or bars with 

multiplicities, called the barcode (see Figure 8). The long bars, which represent features that persist 

over a wide range of values of the scale parameter, represent significant features of the underlying 

space the data was sampled from, while short bars typically (but not always) represent noise. Two 

barcodes can be compared by computing their distance, which provides a measure of similarity. 

Thanks to the stability theorem, this comparison is robust with respect to noise and small-scale 

perturbations. We now give details of this process. 

 

Persistence modules and barcodes 

A starting point of persistent homology is the notion of a persistence module 𝑉, which is a family of 

vector spaces over some field 𝔽 and linear maps of the form: 

𝑉0
𝑓0
→ 𝑉1

𝑓1
→⋯

𝑓𝑛−1 
→  𝑉𝑛, 

in which composing the consecutive maps starting from some 𝑉𝑖 to 𝑉𝑗 we get linear maps 𝑓𝑖,𝑗: 𝑉𝑖 →

𝑉𝑗, for any 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. In particular, 𝑓𝑖,𝑖 is the identity map and 𝑓𝑖,𝑖+1 = 𝑓𝑖. A particularly simple 

persistence module, denoted by  𝐼[𝑖,𝑗−1], which plays a special role in the theory, is obtained as 

follows. Fix 𝑖 and 𝑗, such that 0 ≤ 𝑖 ≤ 𝑗 − 1 ≤ 𝑛 and consider the following persistence module 

0 → ⋯ → 0 → 𝔽
𝑖𝑑
→⋯

𝑖𝑑
→ 𝔽 → 0 → ⋯ → 0 

where 𝔽 is the ground field considered as a 1-dimensional vector space over 𝔽. The first and the last 

nontrivial terms appear at the places 𝑖 and 𝑗 − 1 respectively. More complex examples are obtained 

by taking sums of these simple modules in the following sense. If 𝑉 and 𝑉′ are persistence modules, 

then their direct sum 𝑉⨁𝑉′ is the persistence module 𝑉′′, where 
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𝑉𝑖
′′ = 𝑉𝑖⨁𝑉𝑖

′,    and   𝑓𝑖
′′ = (

𝑓𝑖 0

0 𝑓𝑖
′). 

A theorem by Gabriel [41] states that any persistence module is a direct sum of persistence modules 

of the form 𝐼[𝑖,𝑗]. Hence, a persistence module 𝑉 can be fully characterized by a finite set 𝐷(𝑉), 

called the persistence diagram, which contains a point (𝑖, 𝑗) ∈  ℝ2 (0 ≤ 𝑖 ≤ 𝑗 < 𝑛) for every 

summand of the form 𝐼[𝑖,𝑗−1] appearing in the decomposition of 𝑉 (and a point of the form (𝑖,∞) ∈

ℝ × (ℝ ∪ {∞}) for every summand of the form 𝐼[𝑖,𝑛]). Each point in 𝐷(𝑉) appears with multiplicity 

equal to the number of copies of the corresponding summand. For technical reasons, all points in the 

diagonal {(𝑥, 𝑦) ∈ ℝ2| 𝑦 = 𝑥} are added to 𝐷(𝑉) as well.   

A barcode is a graphical representation of 𝑉 equivalent to the persistence diagram 𝐷(𝑉). It is a 

collection of intervals with multiplicities [42]�. The barcode of 𝑉 consists of one interval (or bar) of 

the form [𝑖, 𝑗) for every off-diagonal point (𝑖, 𝑗) in 𝐷(𝑉), which describes the range of values of the 

scale parameter over which a particular feature persists. The multiplicity of an interval is that of its 

corresponding point in 𝐷(𝑉). Figure 8 shows an example of a barcode. 

 

Simplicial complexes 

The persistence modules most commonly used in topological data analysis arise from filtered 

simplicial complexes, whose combinatorial nature is very suitable for computations. 

A simplicial complex 𝐾 with vertex set 𝑆 is a family of nonempty, finite subsets of 𝑆. Subsets of  

𝑆 of 𝑝 + 1 elements are called 𝑝-simplices. A 𝑝-simplex is represented as a list of its vertices  

[𝑣0, … , 𝑣𝑝]. In a simplicial complex 𝐾, one requires that all elements 𝑣 of 𝑆 form 0-simplices [𝑣] in 

𝐾, and if 𝜎 ∈ 𝐾 and ∅ ≠ 𝜏 ⊂ 𝜎, then 𝜏 ∈ 𝐾. We usually consider the case when 𝑆 is finite. A 

simplicial complex 𝐾 has the associated space |𝐾|, called the geometric realization, which can be 
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regarded as a triangulated polyhedron in an appropriate Euclidean space. The combinatorial structure 

of 𝐾 can be used to define the so-called 𝑝th homology 𝐻𝑝(𝐾) of |𝐾| for all  𝑝 ≥ 0. To define 𝐻𝑝(𝐾), 

we first define the space of 𝑝-chains 𝐶𝑝(𝐾) to be the vector space consisting of all finite sums 

∑ 𝑎𝜎𝜎𝜎 , where 𝜎 runs through all 𝑝-simplices, and 𝑎𝜎 is an element of a ground field 𝔽. Typically, 

coefficients 𝑎𝜎  are taken from a finite field ℤp of integers modulo 𝑝, for instance ℤ2 = {0,1}, which 

was also used in our computations. These vector spaces are connected by the boundary 

homomorphism 𝜕: 𝐶𝑝(𝐾) → 𝐶𝑝−1(𝐾). This map is defined on 𝑝-simplices 𝜎 = [𝑣0, … , 𝑣𝑝] by 

𝜕(𝜎) =  ∑(−1)𝑘[𝑣0, … , 𝑣𝑘̂
𝑘

, … , 𝑣𝑝], 

and then extended by linearity. Here the symbol 𝑣𝑘̂ means that the corresponding element 𝑣𝑘 is 

omitted. The next step is to define a vector space 𝑍𝑝(𝐾) of 𝑝-cycles of 𝐾, which consists of all 

vectors 𝑣 ∈ 𝐶𝑝(𝐾) such that 𝜕(𝑣) = 0, and a vector space 𝐵𝑝(𝐾) of 𝑝-boundaries of 𝐾, which 

consists of all 𝑣 ∈ 𝐶𝑝(𝐾) such that 𝑧 = 𝜕(𝑤), for some 𝑤 ∈ 𝐶𝑝+1(𝐾). It is important to note that 

∂ ∘ ∂ = 0, that is, performing this operation twice sends every simplex to zero. This guarantees that 

𝐵𝑝(𝐾) forms a vector subspace of 𝑍𝑝(𝐾). Hence, it makes sense to define the quotient space, which 

is called the 𝑝th homology of 𝐾: 

𝐻𝑝(𝐾) =
𝑍𝑝(𝐾)

𝐵𝑝(𝐾)
⁄ . 

The dimension of 𝐻𝑝 (𝐾) is known as the 𝑝th Betti number 𝛽𝑝, of |𝐾|. Intuitively, 𝛽0 computes the 

number of connected components of the geometric realization of 𝐾. Likewise, 𝛽1 computes the 

number of 1-dimensional holes, 𝛽2 computes the number of 2-dimensional holes, etc. 

If 𝐿 is also a simplicial complex on the set of vertices 𝑇, such that 𝑇 is a subset of 𝑆 and any simplex 

𝜎 of 𝐿 is also a simplex of 𝐾, then 𝐿 is called a subcomplex of 𝐾 and we write 𝐿 ⊂ 𝐾. It follows that 
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𝐶𝑝(𝐿) ⊂ 𝐶𝑝(𝐾). If 𝑧 is a p-cycle in 𝐿, it is also a p-cycle of 𝐾 and if 𝑧 is a p-boundary in 𝐿, it is also 

a p-boundary in 𝐾. Hence, there is a well-defined map 𝑓:𝐻𝑝(𝐿) → 𝐻𝑝(𝐾), 𝑝 ≥ 0, which is called 

the induced map. In general, the induced map is not injective, even though 𝑍𝑝(𝐿) ⊂ 𝑍𝑝(𝐾). 

A filtered complex 𝐾 is a nested sequence of subcomplexes 

𝐾0 ⊂ 𝐾1 ⊂ ⋯ ⊂ 𝐾𝑛. 

Choosing a homology degree 𝑝 ≥ 0, we can write all homology groups and induced maps as a 

sequence 

𝐻𝑝(𝐾0)
𝑓0
→𝐻𝑝(𝐾1)

𝑓1
→⋯

𝑓𝑛−1
→  𝐻𝑝(𝐾𝑛)   

that forms a persistence module. The degree-𝑝 barcode of |𝐾| is defined as the barcode of this 

persistence module. 

 

Comparing persistence diagrams 

There is a number of ways to compare persistence diagrams [43]. If X and Y are persistence 

diagrams, then the bottleneck distance between 𝑋 and 𝑌 is defined by  

𝑑𝐵(𝑋, 𝑌) = 𝑖𝑛𝑓
𝛾
𝑠𝑢𝑝
𝑥
‖𝑥 − 𝛾(𝑥)‖∞ 

where 𝛾 runs through all bijections from 𝑋 → 𝑌, while 𝑥 runs through all points of 𝑋 and for a point 

of the form 𝑧 = (𝑎, 𝑏) ∈  ℝ × (ℝ ∪ {∞}), one has ‖𝑧‖∞ = 𝑚𝑎𝑥 {|𝑎|, |𝑏|}, and ‖(𝑎,∞) −

(𝑏,∞)‖∞ = |𝑎 − 𝑏|. The 𝑞th Wasserstein distance (𝑞 ≥ 1) is defined by 

𝑑𝑊𝑞(𝑋, 𝑌) = 𝑖𝑛𝑓
𝛾
(∑‖𝑥 − 𝛾(𝑥)‖∞

𝑞

𝑥

)

1
𝑞

. 
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These expressions define pseudo-metrics, as it is possible to create distinct persistence diagrams for 

which either of these distances is zero.  

 

Stability 

The stability theorem for persistent homology, due to Cohen-Steiner, Edelsbrunner and Harer [44], is 

easier to state in terms of tame functions on triangulable spaces, that is on spaces which can be 

represented as a simplicial complex.  

Let 𝑋 be a triangulable topological space and let 𝑓: 𝑋 → ℝ be a real-valued function on 𝑋. A 

homological critical value of 𝑓 is a real number 𝑎, for which there exists an integer 𝑝 such that for 

all sufficiently small 𝜀 > 0 the map 𝐻𝑝(𝑓
−1(−∞, 𝑎 − 𝜖]) → 𝐻𝑝(𝑓

−1(−∞, 𝑎 + 𝜖]) induced by 

inclusion is not an isomorphism. So, the number 𝑎 corresponds to the value at which the homology 

of sub-level sets changes. A function f is tame if it has a finite number of homological critical values 

and the homology groups 𝐻𝑝(𝑓
−1(−∞, 𝑎 − 𝜖]) are finite dimensional for all 𝑝 ≥ 0 and 𝑎 ∈ ℝ. 

Typical examples of such functions are Morse functions on compact manifolds and piece-wise linear 

functions on finite simplicial complexes. For a real number 𝑟, one sets 𝑉𝑟 = 𝐻𝑝(𝑓
−1(−∞, 𝑟]). If 

𝑟 < 𝑡, we have 𝑓−1(−∞, 𝑟] ⊂ 𝑓−1(−∞, 𝑡] and therefore we can consider the induced linear map 

𝑉𝑟 → 𝑉𝑠, which is an isomorphism, if the interval [𝑟, 𝑠] contains no homological critical value of 𝑓. 

Hence, varying 𝑟, one obtains a finite number of distinct vector spaces 𝑉𝑟𝑖, leading to a persistence 

module   

𝑉𝑟0 → 𝑉𝑟1 → ⋯ → 𝑉𝑟𝑛 . 

In particular, we have a corresponding persistence diagram 𝐷(𝑓). The classical stability theorem 

reads as follows [44]: 
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Theorem 1.  Let 𝑋 be a triangulable topological space with continuous tame functions 𝑓, 𝑔: 𝑋 → ℝ. 

Then the persistence diagrams satisfy 

𝑑𝐵(𝐷(𝑓), 𝐷(𝑔)) ≤ ‖𝑓 − 𝑔‖∞. 

 

In other words, persistence diagrams are stable under possibly irregular perturbations of the function 

used to create the diagram. In our particular case, this theorem ensures that imprecisions of 

measurement, such as small differences in the alignment of lungs when the scans were taken, will 

not lead to a drastic change in the resulting barcodes. There are similar results in terms of 

Wasserstein distances [44].  

 

Height filtration 

In data analysis, a given data set can typically be approximated in several different ways by a family 

of simplicial complexes. In choosing a suitable representation, one is guided by the properties of the 

set and computational efficiency. Such a representation is fixed by choosing a real-valued tame 

function 𝑓 and computing its sublevel sets 𝑓−1(−∞, 𝑡] as in the section on Stability above.  

For instance, given a 3D object 𝑋, a commonly used function 𝑓: 𝑋 → ℝ is that which sends each 

point (𝑥, 𝑦, 𝑧) ∈ 𝑋 to its “height”, i.e. its third coordinate, 𝑧. In the paper, to compute the upwards 

complexity of the graph representation 𝑋 of a bronchial tree, we use a function very similar to this: 

for each vertex 𝑣 in 𝑋, we define 𝑓(𝑣) as the vertical distance from 𝑣 to the highest point in the CT 

scan, and for each edge 𝑒 in 𝑋 connecting two vertices 𝑣 and 𝑣′, we define 

𝑓(𝑒) = 𝑚𝑎𝑥{𝑓(𝑣), 𝑓(𝑣′)}. 

For functions like these, the bars in the degree-0 barcode have a clear interpretation as changes in 

trajectory. In the case of upwards complexity, those are airway trajectories that change to face 
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upwards. 

 

Alpha complexes 

Another construction we use are 3D alpha complexes, which can substantially reduce the 

computational complexity. To describe this construction, first let us say a word about Voronoi 

diagrams. Given a set 𝑆 of points in Euclidean space ℝ𝑛, one defines convex polytopes 𝑉𝑠, 𝑠 ∈

𝑆 called Voronoi cells, which consist of all points 𝑥 ∈ ℝ𝑛 such that 𝑑𝑖𝑠𝑡(𝑥, 𝑠) ≤ 𝑑𝑖𝑠𝑡(𝑥, 𝑠′) for any 

other 𝑠′ ∈ 𝑆. The subsets 𝑉𝑠 give a tessellation of ℝ𝑛. 

Given a finite set of points 𝑆 ⊂ ℝ𝑛 and a real number 𝑟 ∈ ℝ𝑛, one defines the region 𝑅𝑠(𝑟) =

𝐵̅𝑠(𝑟) ∩ 𝑉𝑠, where 𝐵̅𝑠(𝑟) is the closure of the ball of radius 𝑟 centered at 𝑠. Now we can form the α-

complex (or alpha complex) 𝐾𝑟 as follows: a subset 𝜎 ⊂ 𝑆 is called an α-simplex if 

⋂𝑅𝑠(𝜎) ≠ ∅.

𝑠∈𝜎

 

See Figure 9 for an illustration of this construction. Varying 𝑟, one obtains a finite family of 

nested α-complexes 

𝐾𝑟0 ⊂ 𝐾𝑟1 ⊂ ⋯ ⊂ 𝐾𝑟𝑛 . 

This is a typical example of a filtered complex. Hence, one can apply the machinery of persistent 

homology. In particular, we have the corresponding persistence diagrams. This geometric 

construction can also be phrased in terms of tame functions as before, and thus fits into the same 

general framework.  

In the Materials and Methods section in the paper, we applied the alpha complex filtration to two 

sets of points in ℝ3. On the one hand, we used the vertices of the 3D graph representation of the 

bronchial tree described in the Materials and Methods subsection called MSCT analysis. The degree-
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1 barcode of the alpha complex filtration on this collection of vertices provided additional 

information about the complexity of the branching structure of the airways. On the other hand, we 

also used a 3D array of binary voxels representing the luminal surface of the airways together with 

the surface of the lobes as in Figure 3A of the paper. For each binary voxel image, we constructed 

the point cloud in ℝ3 by including the coordinates of every voxel with value 1. The degree-2 

barcode of the alpha complex filtration on this set of points gave information about how the airways 

fill the cavity of the lobes.  

 

Figures 

 

Figure 8 A point cloud is sampled from a deformed annulus in the plane. The sequence of pictures from left to right shows simplicial 

representations of the set at different scales. In the picture on the left, there are nine components, represented by the hor izontal bars below the 

picture. As the scale increases, all the components combine into one as we move from the left to the middle picture, and this  persists for all 

remaining scales. There are no loops in the left picture, but two loops emerge at the middle scale, represented by the two bars at the bottom. 

Increasing the scale parameter from the middle to the right picture causes one of those loops to disappear, while the other one persists. Thus, the 

topological signal is that we have a ‘shape consisting of one piece with a hole in it’.  
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Figure 9 An example of a system of Voronoi cells constructed for a particular value of the scale parameter on a subset of the plane (shown in 

blue). Superimposed is the alpha complex that represents the structure the set at this scale. The topological signal here is that, at this scale, the 

points were sampled from a deformed annulus.   
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