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Abstract: This paper proposes a distributed model predictive control strategy for a HVAC
system that relies on its decomposition into subsystems based on the sensitivity analysis.
An economic model predictive controller is implemented for every subsystem to optimize the
operational cost of the building without compromising the thermal comfort of the occupants.
Also, this work demonstrates the coordination strategy between the subsystem controllers
using the sensitivity analysis approach. A discussion about the coordination strategy with
the convergence property is provided. Finally, the proposed approach is illustrated using the
benchmark building that considers the weather of Nancy, France.
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1. INTRODUCTION

Since last three decades, the energy crisis has been cer-
tainly one of the strong motivation in the changes of the
HVAC industry towards more energy-efficient buildings
without compromising the comfort. As energy require-
ment and fuel consumption of heating, ventilation and
air-conditioning (HVAC) systems have a direct impact on
the operational cost of a building as well as an impact
on the environment. For this reason, building energy man-
agement has become an important issue in many countries
(EU, 2016). More sophisticated technological schemes are
now being developed and implemented in the buildings
to reduce energy consumption, as e.g., thermal storage,
building energy management systems (BEMS), advanced
direct digital control, variable-air-volume (VAV) systems,
variable frequency drives, etc. In order to improve the
performance in HVAC various control techniques are de-
veloped e.g. gain scheduling in PID controllers, optimal
control, adaptive control, nonlinear control, neural and
fuzzy control methods. In above all, model predictive con-
trol (MPC) is favored control method due to its obvious
advantages of handling constraints and disturbances. The
detailed analysis of the available HVAC control techniques
are summarized in Afram and Janabi-Sharifi (2014).

In large non-residential and commercial buildings, the
HVAC system must meet the varying needs of different
spaces since different zones of a building may have dif-
ferent heating and cooling needs. Due to these reasons,
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distributed control strategies are becoming very popular
(Lamoudi, 2012). These control strategies hold various
advantages as multivariable interactions, scalability and
isolation in case of occurrence of faults. The class of DMPC
methods are based on the type of decomposition of a large
scale system into subsystems and the type of coordination
between subsystem controllers. In the survey by Afram
and Janabi-Sharifi (2014) about DMPC methods applied
to HVAC systems, various approaches are found in the
literature in the context of the type of the decomposition
of centralized MPC problem e.g. primal an dual decom-
position as in P. Pflaum and M. Alamir (2014), Dantzing
Wolfe and Bender’s decomposition as in Petru-Daniel Mo-
rosan (2010). In spite of the developments in the DMPC
methods, much work is still needed to be done regarding
its application to the HVAC systems.

In this work, we propose: i) a method to decompose the
HVAC building system into subsystems based on the sen-
sitivity analysis and ii) the coordination strategy between
the subsystem controllers considering the sensitivities of
the neighboring subsystem controllers and the coupling
information.

For the illustration of the proposed method, we consider a
benchmark HVAC building system with VAV systems. We
consider every zone is provided with a VAV box in which
a damper manipulates the airflow of supply air with the
constant temperature into the zones to maintain the ther-
mal comfort. This supply air with constant temperature is
provided by an Air Handling Unit (AHU). The complexity
of the centralized control increases exponentially as the
number of zones increases. Hence, we propose the DMPC
approach to achieve the same performance as centralized



control architecture without compromising the thermal
comfort of the occupants.

The organization of this paper is as follows. Section 2
describes the details of the HVAC building system un-
der consideration for the demonstration of the proposed
DMPC approach. Section 3 provides a brief discussion of
the decomposition method to partition a system into the
subsystems based on the sensitivity analysis. In Section
4, the detailed control objectives are formulated. The
proposed sensitivity based DMPC approach is explained
in Section 5 to achieve the above control objectives. The
proposed DMPC method is evaluated using the simulation
platform for the benchmark HVAC building system in Sec-
tion 6 including a comparative analysis. Finally, Section 7
concludes the paper and provides some paths for the future
work.

2. HVAC SYSTEM OF THE BUILDING
DESCRIPTION

In this section, we describe a benchmark school building
which is used to demonstrate the proposed sensitivity
based DMPC approach. The building has two floors with 8
zones having a total area 648m2. The cross sectional layout
for the benchmark building is shown in Figure 1. This

Fig. 1. Building Distribution: two floors with 4 classsrooms
each

benchmark building is served by the VAV based HVAC
system. Each zone has a VAV terminal, temperature sensor
and a return air plenum. The VAV terminal provides
supply air flow to each zone in order to maintain the
thermal comfort which is recirculated to the AHU. AHU
contains heating coil, mixer, and supply fan. Supply fan
forces the supply air of constant temperature into the
zones. The supply airflow rate at each zone is controlled
such that the zone temperature is maintained in the
thermal zones. Then, the supply air is recirculated to the
AHU. In AHU, the fraction of recirculated air is combined
with fresh air in the mixer. Then, the temperature of the
air is increased in the heating coil which is an air-water
heat exchanger. We consider that the hot water supply for
the AHU unit is from production units as the heat pump
or the boiler.

2.1 Thermal zone model

For each zone i, (i = 1, ..., n) where n = 8 denotes the
temperature of the zone by Ti, ṁi mass flow rate at
the output of the i-th VAV box and Ts is the supply

Fig. 2. VAV based HVAC system

air temperature. Then, the first law of thermodynamics
applied to each zone is

Ci
dTi
dt

= ṁicp (Ts − Ti)−
1

Rexti
(Ti − Toa)

−
n∑

j=1,j 6=i

1

Rij
(Ti − Tj) + qi (1)

where Ci is the thermal capacitance of zone i, Rij = Rji
is the thermal resistance between zone i and zone j and
Rexti is the thermal resistance between zone i and the
exterior of the building. Toa is the outside temperature
and qi is the heat flux due to occupancy and electronic
devices. Linearized model from (1) is discretized using
Euler method with a sampling period ts and leads to
written in general form as,

hi(xi, xj , ui) = aixi +

n∑
j=1,j 6=i

aijxj + biui + giw + qi (2)

where state xi is the zone temperature Ti, input ui is the
supply air flowrates ṁi and w as the outside temperature.

3. SYSTEM DECOMPOSITION

The decomposition of the large scale system into the
subsystems is one of the key problem addressed in the
distributed control literature. We propose an approach
based on the global sensitivity of the system motivated
by Sobieski Sobieszczanski-Sobieski (1988). He suggested
to obtain the system sensitivity equations to evaluate the
internal couplings and system behavior related to variable
changes. This approach has been used for distributing
the computing task of mathematical model design into
various engineering disciplines in the 90s, especially for the
aircraft wing design problems. In this work, this notion
is extended to decompose the large scale system into
the subsystems. The proposed decomposition approach
based on the sensitivity analysis is briefly explained in the
following sections.

3.1 Sensitivity Matrix

The sensitivity equations are the partial derivatives of the
system outputs with respect to the independent inputs. It
is clear that if thermal balance for i-th zone as shown in (1)
is simplified, it represents the change in zone temperature
with respect to the inputs as supply flow rate, supply air
temperature and temperatures of the neighboring zones.
For example, the coefficients aij in (2) represents the
sensitivity of the i-th zone temperature with respect to
j-th zone temperature. The values of the coefficients bi



represents the sensitivity of i-th temperature zone with
respect to the i-th input (ui). Note that inputs from
the neighboring zones (uj) will affect the the i-th zone
temperature through j-th zone temperature (xj). This will
be accounted in the coefficient aij .

We write the thermal balance equations (2) for all the
zones and represent them in matrix form as follows,

Sgs =
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(3)

where the i-th column represents hi denoting the thermal
balance for i-th zone. The rows represent the variables
with respect to which the sensitivity is calculated. This
sensitivity matrix contains the information about the
system couplings with the states and the inputs. The
following section explains the methodology to exploit this
information in the system decomposition. The off-diagonal
coefficients in this block matrix represent the degree of
the sensitivity of the state variables x (x1, . . . , xn) with
respect to other state variables and inputs u (u1, . . . , um).
The basic idea behind the decomposition is to partition
the matrix (3) into p block diagonal form. Every block
will represent the group of zones representing a subsystem.
The methodology of the matrix partition ensuring the
minimal loss of information is explained in detail in the
next section.

3.2 Partitioning based on sensitivity

The sensitivity matrix obtained in (3) is a large scale
sparse matrix. There are various methods proposed in
the literature to transform a sparse matrix into the block
diagonal form (Golub and Loan, 1996; Pothen and Fan,
1990). In this work, we use the nested ε decomposition
method (Siljak, 1991). This method is based on the graph
theory and is very popular in the matrix decomposition
literature. In this method, matrix coefficients that are less
than ε are replaced by zeros. Then, the modified matrix
is reordered to obtain a block diagonal form. Often, this
procedure is carried out iteratively by augmenting ε such
that (εk < εk+1) where k represents the iteration till the
block diagonal form is achieved.

Let Sεkgs be the matrix after eliminating matrix elements
less than εk at k-th interval. This matrix Sεkgs is permuted

to obtain a diagonal form Sεkgs using existing algorithms as
e.g. reverse Cuthill-McKee algorithms (Golub and Loan,
1996).

To ensure minimal loss of the information in the modified
sensitivity matrix Sεkgs,

‖λev(Sgs)− λev(S
εk
gs)‖2 ≤ ‖λev(ζ)‖2 (4)

where Sgs is the sensitivity matrix Sgs after applying

the same permutation applied to the Sεkgs. λev is used
as the symbolic representation to denote eigenvalues of

the matrix and ζ is the user defined tolerance matrix.
The condition (4) should be verified for each iteration.
The detailed procedure of the decomposition of sensitivity
matrix into block diagonal form is stated in the Algorithm
1.

Thus, the sensitivity analysis is extended to obtain p
subsystems. Note that these subsystems may share the
states depending on the selection of the decomposition
architecture. Overlapping diagonal blocks represent cou-
pled subsystems through shared states. Contrary, non-
overlapping diagonal blocks represent decoupled subsys-
tem. To obtain, better results, it is possible to obtain the
mixture of overlapping and non overlapping architectures.
The proposed approach of DMPC is independent of the
architecture of the decomposition due to the formulation
discussed in next sections.

After applying Algorithm 1, we partition the building
system into p groups containing highly coupled zones. Let
the i-th group h̄i contains ni zones, satisfying

∑p
i=1 ni = n

and
∑p
i=1 h̄i =

∑n
i=1 hi.

Algorithm 1 Decomposition of global sensitivity matrix

Input Data: Sgs,ε0, ζ

Result : Sgs
Iterate : k = 0
(1) Replace Sgs(ij) by zero if Sgs(ij) < εk
(2) Permuting Sεkgs system using sparse reverse CM meth-

ods into the matrix Sεkgs
(3) Verify the condition ‖λev(Sgs) − λev(S

εk
gs)‖2 ≤

‖λev(ζ)‖2 is satisfied
(4) If matrix is still not close to the diagonal enough

augment εk to εk+1 and repeat step 1
(5) Otherwise, identify overlapping/nonoverlapping sep-

arable blocks from modified Sεkgs matrix

4. COST FUNCTION FORMULATION

The formulation of the cost function for the considered
VAV based HVAC building systems include the following
objectives (i) to minimize the economic operational cost,
(ii) to maintain the thermal comfort in the zones and
(iii) to generate smoother control signals by eliminating
fluctuations to increase the actuator life-time. Detailed for-
mulation to achieve mentioned goals are explained below.

4.1 Economic Cost function

Economic cost function in the proposed model predictive
control refers to the total cost of the energy consumed by
the building components, mainly by the supply fan and a
heating coils in the AHUs. Let J be the total cost for a
time interval [t0, tf ],

Jie =

∫ tf

t0

(Jh + Jfan) dt (5)

where Jh and Jfan are the costs due to energy consumed
by the heating coil and the supply fan in the AHU:

(1) Energy cost at the heating coil . The power or heat

transfer rate (Q̇coil) in the AHU required at the



heating coil to deliver an airflow at temperature Ts is
directly obtained from the energy conservation law

Q̇coil =

n∑
i=1

ṁicp (Ts − Tmi) (6)

where Tmi is temperature of air at the output of
mixer. Then, the energy cost due to heating is simply
given by

Jh = c1Q̇coili (7)
where c1 represents the related energy cost per kWh.

(2) Energy cost delivered for the mass airflow. The VAVs
require a certain total mass airflow depending on
each local (zone) heating load. This mass airflow is
discharged by the power fan which is driven by a
variable speed drive. The power fan characteristics
for the AHU is given by a cubic law, that is,

Ẇfan = α
( n∑
i=1

ṁi

)3

With the above power characteristics, the cost the
energy for a supply fan is as follows,

Jfan = c2Ẇfani
(8)

where c2 is corresponds to energy cost per kWh.

Thus, the total power demand from the AHU can be
summarized from (5), (7) and (8). Note that J is a
functional depending on the decision variables u, the state
x and the disturbance d on [t0, tf ]. In a discrete-time
setting, the value of this integral (5) during sampling
interval [tk, tk+1] for any k = 0, 1, ..., n is exactly given

by
∫ tk+1

tk
Jedτ = Jik. Then, we discretize Je integral with

Euler method using sampling time h. Hence the total
economic cost for the building operation,

`ek(u(k)) = c1

n∑
i=1

ui(k)2 + c2

n∑
i=1

ui(k) (9)

4.2 Thermal comfort

To maintain the thermal comfort in the zones, the tem-
perature should be controlled in the range of [xmin, xmax].
These bounds are relaxed to allow economic optimization,

−ζ + xmin ≤ x(k) ≤ ζ + xmax (10)

where ζ is relaxation parameter with 0 ≤ ζ ≤ 0.5. Hence,
the magnitude of this relaxation parameter ζ is considered
as optimization variable by adding a penalty term in the
optimization problem defined by,

`tck (ζ) = ζ2 (11)

4.3 Elimination of fluctuations in the control signal

The above cost functions (9) and (11) considers the energy
use and thermal comfort aspects. In addition, we introduce
a term which indirectly addresses the maintenance cost.
This is achieved by minimizing the variations in the control
signal. Hence, the smooth control signals reduces the
fatigue in the actuators, lowering the system maintenance
cost. This term is a regularization term that is formulated
as one norm over a variation of control signal shown below,

`rek (u(k)) = λ{‖u(k)− u(k − 1)‖1} (12)

where ui(k − 1) is the the control input implemented at
previous instant and λ is the regularization parameter with

λ > 0. For more details, readers are refered to Gallieri
(2014) and Darure et al. (2016).

Now, the total cost for the k-th instant can be expressed
as

J (u(k), x(k), ζ) = αe`
e
k(u(k)) + αtc`

tc
k (ζ) + αre`

re
k (u(k))

(13)
where αe, αtc and αre are the appropriate weights defined
by the user.

5. SENSITIVITY BASED COOPERATION IN DMPC

In the proposed DMPC, the coordination of the subsystem
controllers is based on the sensitivity of the control actions
with respect to the neighboring subsystem information.

Let us consider that optimization problem associated to
the centralized MPC can be expressed as follows,

minimize
Uk,Xk,ζ

JN (Uk, Xk, ζ)

subject to
h(Xk, Uk) = 0
xmin ≤ Xk ≤ xmax
umin ≤ Uk ≤ umax
x (k| k) = x(k)

ζ ≥ 0

(14)

where Uk = {u(k), . . . , u(k + N − 1)} and Xk = {x(k +
1), . . . , x(k + N)} are the sequences of predicted control
inputs at time k. Also, JN (Uk, xk, ζ) is the cost function
(13) over the prediction horizon N . The bounds on the
input vector u i.e. on the supply airflow rate [umin, umax]
represent the damper limits in the VAV box. The bounds
on states [Xmin, Xmax] represent the soft bounds on the
zone temperature to maintain thermal comfort.

For better understanding of the proposed approach let us
rewrite (14) in simplified form as,

J = minimize
z

φ(z)

subject to

h(z) = 0 (15)

zmin ≤ z ≤ zmax

z = [z1, . . . , zn+m]

where z = (X(k)k, U(k), ζ) and the function φ(z) corre-
sponds to (JN ) the overall cost over the prediction horizon
N .

Using the decomposition approach presented in the Sec-
tion 3, we decompose the large scale system into the p sub-

systems by grouping the highly coupled states (ĥn1..., ĥnp).
Let us formulate the sensitivity based optimization prob-
lem for the i-th subsystem,

Ji = Minimize
zi

φ(zi, z̄j) +

{
∂φ

∂zi
+

p∑
k=1
k 6=i

∂ĥk
∂zi

}
(zi − z̄i)

subject to

ĥi(zi) = 0

zmini ≤ zi ≤ zmaxi (16)

zi = [z1, . . . , zni
]



where z̄i and z̄j are initial feasible values of the subsys-
tems. Note, this formulation will be valid irrespective of
separability property of the overall cost function φ.

As observed from this formulation, the cost function in-
cludes the terms representing sensitivity of i-th subsystem
with respect to j-th subsystems.

From (15), the Lagrange function L is as follows,

L(z) = φ(z) +

n∑
k=1

λkhk(z) (17)

where λk are Lagrange multipliers. Now, the necessary
condition of optimality in Boyd (2009) for the Lagrange
function (17) at initial feasible point (z̄, λ̄) is

∇L|z̄ =
∂φ(z)

∂z

∣∣∣
z̄

+ λ
∂h(z)

∂z

∣∣∣
(z̄,λ̄)

(18)

The sensitivity based DMPC formulation applied to (16)
allows the cost function for i-th subsystem be rewritten as
follows

φi(zi, z̄j) = φ(zi, z̄j) +

p∑
j=1
j 6=i

{ ∂φ
∂zi

∣∣∣
z̄j

+ λ̄j
∂ĥj
∂zi

∣∣∣
z̄j

}
(zi − z̄i)

(19)
Let the Lagrange function for i-th subsystem be,

Li(zi) = φi(zi, z̄j) +

p∑
j=1
j 6=i

λ̄j ĥj(z) + λiĥi (20)

The necessary condition of the optimality of the i-th local
subsystem MPC is given by,

∂φ(zi, z̄j)

∂zi
+

p∑
j=1
j 6=i

λ̄j
∂hj(zi, z̄j)

∂zi
+ λi

∂hi(zi, z̄j)

∂zi
= 0 i 6= j

Now, necessary condition for optimization for all p sub-
problems,
p∑
i=1

p∑
j=1
j 6=i

∂φ(zi, z̄j)

∂zi
+ λ̄j

∂hj(zi, z̄j)

∂zi
+λi

∂hi(zi, z̄j)

∂zi
= 0 (21)

Note that the necessary condition for the centralized
problem (18) and distributed problem (21) are equivalent.
This indicates that the solution obtained by mean of the
centralized architecture and sensitivity based distributed
architecture are the same.

Algorithm 2 summarizes the method based on the problem
formulation (14),

6. SIMULATION RESULTS

In the benchmark building introduced in Section 2, the
occupants are present in the school in the working time
i.e. from 08:00 to 18:00. The study is carried out during
the winter season at Nancy in France. The plots of the
heat flux due to occupancy and weather temperature over
five workings days are shown in the Figure 3.

Thermal balance equations (2) are evaluated for every zone
in the benchmark building. The data shown in Table (1)

Algorithm 2 Sensitivity based Distributed Model Predic-
tive Algorithm

Initial Data: ĥ,x0
k, u

0
k,umax,umax,xmax,xmax, J

(1) Solve the problem (16) for all the subsystems at local
level

(2) Implement the solution u∗i (k) to the i-th subsystem
(3) Obtain the measurements x(k) from the subsystems
(4) Previous implemented control signals and measure-

ments of states will be initial condition x0
k+1, u

0
k+1

for (k + 1)-th instant for each problem (16)
(5) Repeat step 1
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Fig. 3. Disturbances

Ci 4.5 kJ/s Rext 6 W/◦C
Rij 18 W/◦C cp 1.005 kJ/kg◦C
T 0
oa 5 ◦C T 0

s 28 ◦C
ṁ0

i 0.192 m3/s qi 0.65 kW
Tmin 22 ◦C Tmax 24 ◦C
ṁmin 0.192 m3/s ṁmax 0.42 m3/s
T 0
i 23 ◦C N 24 h

Table 1. Numerical data values used for bench-
mark building simulation

is used in simulating the case study school building (Tash-
tousha et al., 2005). The sensitivity matrix (3) is calculated
and partitioned to obtain the subsystems as groups of
zones. From the building layout presented in Figure 1,
we obtain two groups p = 2 as {1, 2, 3, 4} and {5, 6, 7, 8}.
The number of groups or partitions are decided by the
user. Applying Algorithm 2, sensitivity based DMPC con-
troller is simulated considering the obtained subsystems.
To represent the performance of the implemented architec-
ture, the temperature response and corresponding supply
airflow for zone 1 are shown in Figure 4 and Figure 5,
respectively. Note that the thermal range and actuators
limits can be different and is convenient to define the
proposed distributed architecture.

According to the convergence analysis presented in Sec-
tion 5, the performance of the sensitivity based DMPC is
equivalent to the CMPC framework. This is verified from
the temperature and supply airflow behavior of the re-
spective control architectures. We also compare the control
performance with decentralized MPC architecture (Siljak,
1991). In decentralized MPC, subsystem controllers oper-
ate independent of the state of the neighboring subsystems
i.e. without any coordination or data exchange between
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Fig. 4. Temperatures response for all the zones
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Fig. 5. Supply airflow rates for all the zones

the controllers. Also, the dynamics of the subsystems in
decentralized control architecture completely ignores the
coupling with the neighboring subsystems.

Figure 4 and the Figure 5 compares the performance of
the all the control architectures. To support the previous
conclusions, we also compare the energy consumed by the
benchmark HVAC building over the five working days in
the Figure 6. As, in the building system, the coupling
between the zones are effective and if ignored, it results
in consuming more energy and poor control performance.

7. CONCLUSION

In this work, we propose an approach that addresses the
two stages of DMPC for the VAV based HVAC building
system as i) the decomposition of the building system
into subsystems and ii) the coordination between obtained
subsystem controllers. Both objectives are based on the
basic notion of sensitivity analysis. The proposed criterion
in the method of decomposing the system into subsys-
tems ensures minimum loss of the information of system
dynamics. The method of sensitivity based coordination
among the subsystem controllers is discussed in detail.
The convergence analysis of the proposed method suggests
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that the performance of the sensitivity based DMPC is
equivalent to the CMPC performance. The decomposition
and coordination strategies are demonstrated on the VAV
based HVAC building.

The method can be adapted to different systems regardless
of the separability of the cost function and the couplings
between the subsystems. Future work will be focused for
possible extension for the nonlinear systems and other
types of HVAC buildings applications.
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