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Abstract: This paper studies threshold computation in observer-based fault detection for discrete-time linear systems
subject to unknown but bounded uncertainties. Based on two different assumptions on uncertainties, we propose two
threshold computation methods for residual evaluation. First, we assume that the uncertainties are bounded in known
intervals and propose a zonotope-based threshold computation method. Second, the uncertainties are assumed to be
norm-bounded and then a threshold computation method using L∞ analysis is proposed. Numerical simulations are
given to verify and compare the performance of the proposed methods.
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1 INTRODUCTION

Fault diagnosis has attracted much attention in the past
decades since it can be used to enhance the safety of control
systems. In the existing results on fault diagnosis, model-
based methods have been most widely and intensively stud-
ied [1, 2, 3]. It is known that model-based fault diagno-
sis consists of two parts: residual generation and residual
evaluation. The task of residual generation is to generate a
residual signal that reflects fault occurrence and the func-
tion of residual evaluation is making decision so as to give
fault diagnosis result. Although both parts are important
in fault diagnosis, most of the existing methods of fault di-
agnosis focus on residual generation such as fault detec-
tion observer [4, 5, 6] and parity space approach [7, 8]. In
contrast to residual generation, there are limited results on
residual evaluation [9, 10, 11, 12].
In fault detection, residual evaluation is usually achieved
by a comparison between the residual feature and a thresh-
old. Therefore, threshold computation is significantly im-
portant in residual evaluation. [2] and [13] have done some
systematic studies on threshold computation in determin-
istic and statistic settings, respectively. Compared with
statistic method, the benefits of the deterministic thresh-
old computation methods lie in the simplicity and easy im-
plementation. Moreover, as pointed out in [2], the well-
established robust control theory provides a systematic way
to threshold computation the deterministic framework. Us-
ing H∞ and peak-to-peak optimization techniques, Ding
et al. propose norm-based threshold computation methods
for observer-based fault detection in linear systems [2] and
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Lipschitz nonlinear systems [12]. However, the studies in
[2] and [12] still have some limitations. First, the system
dynamics of the diagnosed system are used in the methods
proposed [2] and [12], consequently, the obtained design
requires the stability of the open-loop system. Second, the
methods in [2] and [12] do not consider the initial error and
only produce a constant threshold.
In recent years, set-membership estimation has received
much attention and has been used in fault detection
[6, 14, 15]. For example, [6] proposes the concept
of H−/L∞ fault detection for continuous-time linear
parameter-varying systems and then [14] generates this
idea to discrete-time Takagi-Sugeno fuzzy systems. In
[15], a zonotopic fault detection observer is proposed by
integrate H− design with zonotope-based set-membership
estimation. In these references, residual evaluation is con-
sidered in the design of residual generator such that the
proposed method can provide a dynamic threshold for de-
cision making in fault detection. In fact, the major merit of
set-membership estimation is that it provides an effective
and systematic solution to threshold computation in fault
detection. However, to the best of our knowledge, thresh-
old computation methods using set-membership estimation
have not yet been fully studied. Moreover, a comprehen-
sive study on threshold computation based on different set-
membership estimation methods is also needed. In view of
this, this paper proposes two threshold computation meth-
ods for observer-based fault detection in discrete-time lin-
ear systems and compare their performance by numerical
simulations.
2 Problem Formulation

Consider the following discrete-time linear system{
xk+1 = Axk +Buk + E1fk +D1dk
yk = Cxk +D2dk + E2fk

(1)



where xk ∈ Rnx is the state, uk ∈ Rnu is the control
input, yk ∈ Rny is the measured output, fk ∈ Rnf is the
fault signal, and dk ∈ Rnd is the unknown input. A, B,
C, D1, D2, E1 and E2 are known constant matrices with
appropriate dimensions.

Remark 1. Note that the unknown input dk in (1) may con-
tain both process disturbance and measurement noise. For
instance, if the considered system has the following form{

xk+1 = Axk +Buk + E1fk +Dwwk

yk = Cxk +Dvvk + E2fk

it can be rewritten as (1) by letting

dk =

[
wk

vk

]
, D1 =

[
Dw 0

]
, D2 =

[
0 Dv

]
.

Without loss of generality, we assume that x0 and dk are
unknown but bounded.
In this paper, two assumptions on the form of uncertain-
ties are used, depending on the adopted threshold compu-
tation methods. A natural way to describe uncertainties is
using intervals. Therefore,in the zonotope-based method,
interval-based representation is used to describe x0 and dk
as follows

x0 ≤ x0 ≤ x̄0, d ≤ dk ≤ d (2)

where x0 and x̄0 are the lower and upper boundaries of x0,
respectively, and d and d are the lower and upper bound-
aries of dk, respectively. However, the interval representa-
tion in (2) cannot be directly used in the method based on
the L∞ analysis. Therefore, in the second method, we use
norm-based uncertainty representation, e.g.

∥x0∥ ≤ ∥x0∥∞, ∥dk∥2 ≤ ∥d∥∞ (3)

Note that the interval description can be over-approximated
by a norm-based representation at the cost of certain con-
servatism. This will be shown latter in the simulation part.
In this paper, we study threshold computation in observer-
based fault detection. For the diagnosed system in (1), we
use the following observer-based residual generator{

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k)
rk = yk − Cx̂k

(4)

where x̂k ∈ Rnx is the state estimation, rk ∈ Rny is the
residual for fault detection and L ∈ Rnx×ny is the gain
matrix of the fault detection observer. Note that there have
been abundant of results on fault detection observer de-
sign in the literature [6, 16, 17]. For instance, we can use
H−/H∞ design [6, 16] or H−/L∞ method [14] to design
the observer in (4). Since the focus of this paper is thresh-
old computation, we assume that matrix L has already been
determined.
In the residual evaluation step, it is necessary to calculate
the threshold of the residual rk in fault-free case. To this
end, we need to analyse the dynamic of rk. First, we define
the estimation error as

ek = xk − x̂k (5)

In order to calculate the threshold of rk, we can first analyse
the range of ek. By using (1) and (4), the error dynamic can
be obtained as

ek+1 =Axk +Buk +D1dk + E1fk − (Ax̂k +Buk

+ L(yk − Cx̂k))

=(A− LC)ek +D1dk − LD2dk + E1fk − LE2fk
(6)

In addition, using the definition of residual in (4) yields

rk = yk − Cx̂k

= Cxk +D2dk + E2fk − Cx̂k

= Cek +D2dk + E2fk (7)

In threshold computation, we only consider the fault-free
case, i.e.{

ek+1 = (A− LC)ek +D1dk − LD2dk
rk = Cek +D2dk

(8)

In this paper, we will introduce dynamic threshold compu-
tation methods based on zonotope and L∞ for (8) system.
Then, the performances of the two methods will be com-
pared through several simulation studies. The main objec-
tive of this paper is to compare the two methods to choose
a more accurate one.

3 Two Threshold Computation Methods

3.1 Threshold computation based on zonotopes
In this subsection, the system variables and uncertain pa-
rameters are described by the totally symmetric polytope:
zonotope . The definition of zonotope is as follows
Definition 1 - A m-order zonotope in Rn is the translation
by the center p ∈ Rn of the linear image of an unitary
hypercube of dimension m . Given a matrix H ∈ Rn×m

representing the linear transformation, the zonotope Z is
defined by

Z = ⟨p,H⟩ = {p+Hz : z ∈ Bn} (9)

where p ∈ Rn is the center of Z , H ∈ Rn×m is called
the generator matrix of Z which determines the shape and
volume. In order to simplify the symbol, we use ⟨p,H⟩ to
describe a zonotope Z . So the initial value of the state
error, the process disturbance and the measurement noise
satisfy {

e0 ∈ ⟨p0,H0⟩
dk ∈ ⟨0,Hd⟩

(10)

For the following proof, the following properties of zono-
topes are introduced
The Minkowski sum of two zonotope is also a zonotope

⟨p1,H1⟩ ⊕ ⟨p2,H2⟩ = ⟨p1 + p2,
[
H1 H2

]
⟩ (11)

The linear image of a zonotope by a matrix L satisfies

L⟨p,H⟩ = ⟨Lp,LH⟩ (12)

A zonotope can be enclosed by another one

⟨p,H⟩ ⊆ ⟨p, Ĥ⟩ (13)



where p, p1, p2 ∈ Rn,H,H1,H2 ∈ Rn×m, L ∈ Rl×n

is matrices of appropriate dimensions. Ĥ ∈ Rn×n is a
diagonal matrix, the elements is

Ĥii =
m∑
j=1

|Hij |, i = 1, · · · , n (14)

Note that the dimensions of the zonotopes are increasing
with time, the amount of computation will be eventually
beyond the computing power of the computer. Therefore,
dimension reduction operator should be used to reduce the
computation burden of zonotopes.

Lemma 1. Consider an m-order zonotope Z=⟨p,H⟩ ,
H ∈ Rn×m and integer s , where n ≤ s ≤ m , Ĥ is
a matrix whose columns are those of H reordered in de-
creasing Euclidean norm, then the dimension of zonotope
can be reduced from m to s

Z ∈ ⟨p,
[
Ĥ1 Q

]
⟩ (15)

where Ĥ1 is the first s-n columns of Ĥ , Ĥ2 is the rested
part of Ĥ , Q is a diagonal matrix which can be obtained
by the following eqution according to (14)

Qii =
m∑
j=1

|Ĥ2|ij , i = 1, · · · , n (16)

The following theorem are proposed to calculate the thresh-
old for the residual by zonotope-based method.

Theorem 1. Assuming ek ∈ ⟨pk, Ĥk⟩, then according to
(8) and (10) , ek+1 satisfies

ek+1 ∈ ⟨pk+1,Hk+1⟩ (17)

where{
pk+1 = (A− LC)pk
Hk+1 =

[
(A− LC)Hk (D1 − LD2)Hd

] (18)

Proof. The error dynamic equation can be obtained:

ek+1 = (A− LC)ek + (D1 − LD2)dk

By the linear property of zonotope, we have{
(A− LC)ek ∈ ⟨(A− LC)pk, (A− LC)Hk⟩
(D1 − LD2)dk ∈ ⟨0, (D1 − LD2)Hd⟩

(19)

By using (19) and the property of zonotope, we have

ek+1 ∈ ⟨pk+1,Hk+1⟩ (20)

where{
pk+1 = (A− LC)pk
Hk+1 =

[
(A− LC)Hk (D1 − LD2)Hd

] (21)

After obtaining the zonotope representation of any time of
ek ∈ ⟨pek ,Hek⟩, we can get the bound of residual rk to be
the threshold

rk ∈ ⟨Cpek ,Hrk⟩ (22)

where
Hrk =

[
CHek D2Hd

]
(23)

3.2 Threshold computation based on L∞ analysis
For the system (1), supposing that a stable residual genera-
tor (4) has been designed, the state estimation error vector
ek and the generated residual rk have been obtained as{

ek+1 = (A− LC)ek + E1fk + (D1 − LD2)dk
rk = Cek + E2fk +D2dk

(24)
where the initial conditions of the system and the distur-
bance satisfy

eo ≤ e0 ≤ e0, ∥dk∥2 ≤ ∥d∥∞ (25)

The following theorem is proposed to design the L∞
threshold of residual.

Theorem 2. Given positive scalar α and γ, if there exists
a symmetric positive definite matrix P = PT ∈ Rnx×nx ,
and the following conditions hold[

S1 S2

ST
2 S3

]
≺ 0 (26)

∥C∥22 − γ2P ≺ 0 (27)

where S1 = (A− LC)TP (A− LC)− αP
S2 = (A− LC)TP (D1 − LD2)
S3 = (D1 − LD2)

TP (D1 − LD2)− (1− α)I
(28)

then the residual sastifies

∥rk∥2 ≤
√
γ2αkV (0) + (γ2 + ∥D2∥22)∥dk∥2∞ (29)

where V (0) is the upper bound of the initial value of the
selected Lyapunov function

V (0) = eT0 Pe0 ≤ λmax(P )∥e0∥2∞ (30)

Proof. Setting fk = 0, the state estimation error system
which only effected by disturbance and noise is written as{

xk+1 = Axk +Buk +D1dk
yk = Cxk +D2dk

(31)

A Lyapunov function is chosen as

V (k) = eTk Pek (32)

Given a positive scalar 0 < α < 1 , under zero initial
conditions, if the following inequality holds

V (k + 1) < αV (k) + (1− α)dTk dk (33)

then, we have

V (k) < αkV (0) + (1− α)
k−1∑
i=0

αidTk dk

< αkV (0) + (1− α)

k−1∑
i=0

αi∥d∥2∞

< αkV (0) + (1− αk−1)∥d∥2∞
< αkV (0) + ∥d∥2∞ (34)



Furthermore, if it is satisfied in (27) , such that

∥C∥22 < γ2P (35)

then, it obtains

∥Cek∥22 < γ2eTk Pek (36)

According to the definition of the residual rk in (24), we
have

∥rk∥22 ≤ ∥Cek∥22 + ∥D2∥22∥d∥22 (37)

Based on (34) and (36), and the priori condition and initial
state (25) we obtain that

∥rk∥2 ≤
√
γ2P∥ek∥22 + ∥D2∥22∥d∥2∞

≤
√
γ2αkV (0) + (γ2 + ∥D2∥22)∥d∥2∞

≤
√
γ2αkV (0) + (γ2 + ∥D2∥22)∥d∥2∞ (38)

Substituting (32) into (33), we have[
ek
dk

]T [
S1 S2

ST
2 S3

] [
ek
dk

]
< 0 (39)

then (26) can be derived from (39).
In order to get a more accurate threshold, we need to get a
smallest γ when the α is given, the observer gain matrix is
transformed by solving the following optimization problem

min
s.t.

γ
(26)−(27)

(40)

As α is an artificial selection scalar, it needs to analyze the
relationship between α and γ to make the γ lowest. In this
paper, the scalar α is selected by linear searching method.

4 Simulations

In this section, we use the linearized dynamic model of a
vertical take-off and landing aircraft borrowed from [17] to
test and compare the performance of the aforementioned
two threshold computation methods. The considered sys-
tem has the form of (1) with

A =


0.9828 0.0083 −0.0454 −0.2461
0.0117 0.5813 −0.3898 −1.6662
0.0458 0.1274 0.8230 0.4803
0.0117 0.0358 0.4433 1.1361

 ,

B1 =


0.2666 0.0365
1.7629 −3.2664
−2.3152 1.7209
−0.6083 0.4660

 , D1 =


−0.0069 0.0026
−0.0688 0.3896
0.4433 0.0358
0.1144 0.0063

 ,

E1 = B1, C =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 1 1

 , D2 =


0 0.2
0 0.1
0.3 0
0 0

 , E2 = 0.

In the simulation, we use the fault detection observer in (4)
with the following gain matrix

L =


−0.1400 0.3210 0.1638 −0.4014
0.8187 1.1276 −0.1521 −0.2019
0.6713 −0.1058 1.1504 0.1467
0.3658 −0.5171 0.1117 0.4864

 .

Note that the considered threshold computation methods
use different geometric sets to describe dk. Although the
interval-based uncertainty set can be over-approximated
by a norm-based representation, and vice versa, the over-
approximation will bring certain conservatism. Therefore,
in order to fairly compare the performance of these two
methods, two cases with different form of dk are conducted
in the simulation.
Case 1. In the first case, dk is randomly generated from the
following set [

−0.5
−0.5

]
≤ dk ≤

[
0.5
0.5

]
.

This is an interval-based set, hence it is suitable for
zonotope-based threshold computation. However, to use
the L∞ threshold computation method, one should con-
struct a norm-based set to over-approximate this interval-
based set. In this case, the sets used in these two threshold
computation methods are depicted in the Fig. 1, where the
interval-based uncertainty set is in red and the norm-based
uncertainty set is in blue.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
d 2

d
1

Figure 1: The uncertainty sets in Case 1.
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Figure 2: The maximum fault that cannot be detected by
the L∞-based method in Case 1.

To compare the two methods, we consider the following
fault as a unit fault function

f0 =


[
1 0

]T
, if k ≥ 20[

0 0
]T

, if k < 20
.



Through simulations, we found that the maximum fault that
cannot be detected by the L∞-based method is 0.14f0. The
fault detection result is depicted in Fig. 2. In this situation,
if we apply the zonotope-based method, we will get the
fault detection result in Fig. 3. From Fig. 3, it can be
seen that r3 and r4 occasionally exceed the threshold. This
implies that the performance of the zonotope-based method
is a little better than the L∞ method.
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Figure 3: The fault detection result by the zonotope-based
method in Case 1.
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Figure 4: The uncertainty sets used by the two threshold
computation methods in Case 2.

Case 2. In the second case, the considered dk has the fol-
lowing form

dk =

[
0.5 sin(k)
0.5 cos(k)

]
.

In this case, the uncertainty sets in the studied thresh-
old computation methods are shown in Fig. 4, where the
interval-based uncertainty set is in red and the norm-based
uncertainty set is in blue. It is obvious that the interval-
based uncertainty set has certain conservatism compared to
the norm-based one.
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Figure 5: The maximum fault that cannot be detected by
L∞-based method in Case 2.
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Figure 6: The fault detection result by the zonotope-based
method in Case 2.

By simulations, we found that the maximum fault that can-
not be detected by the L∞-based method as 0.13f0, as
shown in Fig. 5. By applying the zonotope-based method,
we can get the result in Fig. 6. In this situation, the
zonotope-based method can detect the fault, but it also al-
most reaches the detection limit.



5 Conclusion

In this paper, we propose two threshold computation meth-
ods for observer-based fault detection of discrete-time lin-
ear systems. The first method assumes that the uncertain-
ties are bounded in known intervals and the second one as-
sumes the uncertainties to be norm-bounded. The main
contribution of this paper is that it proposes systematic
methods for residual evaluation based on reasonable as-
sumptions that the uncertainties are unknown but bounded.
Numerical simulations are given to verify and compare the
performance of the proposed methods. It is noted that the
residual evaluation problem is still challenging and future
works need to be done to further reduce the conservatisms
of the threshold computation methods.
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