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Summary

Distributed energy management of interconnected microgrids that is based onModel
Predictive Control (MPC) relies on the cooperation of all agents (microgrids). This
paper discusses the case in which some of the agents might perform one type of
adversarial actions (attacks) and they do not comply with the decisions computed by
performing a distributed MPC algorithm. In this regard, these agents could obtain
a better performance at the cost of degrading the performance of the network as a
whole. A resilient distributed method that can deal with such issues is proposed in
this paper. The method consists of two parts. The first part is to ensure that the deci-
sions obtained from the algorithm are robustly feasible against most of the attacks
with high confidence. In this part, we formulate the economic dispatch problem,
taking into account the attacks as a chance-constrained problem and employ a two-
step randomization-based approach to obtain a feasible solution with a predefined
level of confidence. The second part consists in the identification and mitigation
of the adversarial agents, which utilizes hypothesis testing with Bayesian inference
and requires each agent to solve a mixed-integer problem to decide the connec-
tions with its neighbors. In addition, an analysis of the decisions computed using
the stochastic approach and the outcome of the identification and mitigation method
is provided. The performance of the proposed approach is also shown through
numerical simulations.
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1 INTRODUCTION

Recently, distributed approaches for energy management and control of electrical power systems, including economic dispatch,
have drawn a lot of attention1,2. On one hand, the technological shifting of power generation towards distributed production,
particularly power generation that is based on renewable sources, requires a different control approach than the conventional
centralized one and results in the development of distributed approaches. For example, in order to deal with the intermittency
issue of renewable energy production, storage units might be utilized2. In addition to dispatchable distributed generation units,
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these storage devices must also be controlled. Therefore, the dimension of control inputs/decisions might become very large
and a centralized control scheme might not be able to handle the computational loads. On the other hand, the advancement of
supporting technologies, such as information and communication infrastructures, helps to improve the feasibility of distributed
approaches for real and practical applications.
A distribution network that consists of a number of distributed generation units as well as storages may be perceived as a

system of interconnected microgrids2,3. A microgrid is regarded as an entity that is capable of managing and operating itself2,4.
When a distributed approach is applied to an economic dispatch problem for such a system, the microgrids in the system cooper-
atively optimize a global economic objective, by interacting among each other through a communication network. A distributed
optimization approach requires the agents in the system, which are microgrids, to exchange certain information. The main advan-
tages of such approaches include the optimality/suboptimality of the solutions, the distribution of computational burden, the
plug-and-play ability, the improvement of the privacy and cybersecurity, and the reliability against failures1.
Model predictive control (MPC) has also been proposed as a suitable solution for the economic dispatch problem of the

present electrical networks, particularly, due to the high uncertainty of power generation from renewable generation units and the
utilization of storage units, which have slow dynamics that must be taken into account. Different from the conventional economic
dispatch that computes a power production plan, which typically consists of hourly decisions spanned over one day, MPC-based
economic dispatch keeps optimizing the decision of several time steps ahead based on the measurement at each time instant.
In this regard, different distributed MPC (DMPC) approaches, such as dual decomposition5, alternating direction method of
multipliers (ADMM)6,7, optimality condition decomposition (OCD)4,8 and population dynamics9, have been proposed to solve
economic dispatch problems. These distributed optimization approaches are suitable since they are able to obtain an optimal
solution given that the related optimization problem is convex, with some mild assumptions.
As previously mentioned, one of the main requirements for implementing a distributed approach is the cooperation among

all agents, which must operate in compliance with the algorithm. However, it might happen that some agents in the network do
not cooperate because they selfishly want to have a better performance or suffer from failures. This paper discusses the case in
which there are agents that might perform a certain adversarial behavior. In particular, we consider that the adversarial agents
do not comply with the decisions that are obtained from the distributed algorithm implemented in the network. In other words,
the adversarial agents might implement a different decision/control input than the one that has been computed by using the
distributed algorithm.
Non-compliance of some agents in a network that applies a distributed approach has been discussed in some papers10,11.

For instance, a secure dual-decomposition-based DMPC, in which each agent should monitor two neighbors that provide
extreme control input values and disregard these extreme values, has been proposed10. Furthermore, a cyber-attack problem
of a consensus-based distributed control scheme for distributed energy storage systems has also been addressed11, where the
approach involves a fuzzy-logic-based detection and a consensus-based leader-follower distributed control scheme. Related to
the cyber-security issue of cyber-physical systems, the work of Pasqualetti et al.12 provides a mathematical framework for attack
detection andmonitoring, particularly for deterministic systems.Moreover, consensus problems in which some of the agents per-
form an adversarial behavior to prevent convergence have also been investigated13,14,15. In the DMPC framework, the issue that
some agents might provide false information, which is a different type of adversarial behaviors, has also been discussed16,17. A
scenario-based defensemechanism16 and a compensation scheme to incentivize truth telling among agents17 have been proposed
to deal with false information problems.
The main contribution of this paper is the distributed energy management algorithm for interconnected microgrids that is

resilient with respect to the non-compliance of some microgrids. The proposed approach combines both passive and active
mechanisms to deal with the issue of unexpected disturbances. On the one hand, we robustify the controllers via constraints with
a stochastic method and on the other hand we use an active mechanism to disconnect some agents. Specifically, we formulate
the economic dispatch problem, which takes into account the adversarial behavior, as a chance-constrained problem in which
attacks, loads, and renewable power generation are regarded as uncertain disturbances. In order to solve the problem, we apply
a stochastic two-step approach. The first step of the approach is to compute probabilistic bounds using a randomization-based
program while the second step is to solve a robust program that takes into account the probabilistic bounds. As a result, we can
guarantee that the obtained solution is also a feasible solution of the chance-constrained problem. Furthermore, we also propose
an active methodology based on hypothesis testing using Bayesian inference to identify and disconnect from the agents that
perform adversarial actions. In order to decide the connection with the neighbors, each agent must solve a local mixed-integer
problem. Note that the probabilistic bounds computed in the passive mechanism are necessary ingredients for the identification
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scheme. Additionally, we present the robustness characteristics of the solutions and show how the attack identification and
mitigation method works analytically and by means of simulation.
This paper is developed based on reported preliminary results18,19, in which we limit the adversaries by only assuming there

is only at most one adversarial neighbor per agent. Initially, we propose to solve a robust program to deal with the attacks18.
However, here we consider a stochastic approach19 to deal with the attacks and other uncertainties. In this regard, we do not
assume the knowledge of the bounds of attacks or uncertain loads and power generation. Furthermore, we could also then obtain
a less conservative solution than the robust program proposed in the preliminary paper18 at the cost of allowing constraint
violation with small probability. Moreover, in this paper, we also provide a convergence analysis of the attack identification and
mitigation method. Since the control approach considered in this paper is based onMPC, it is more related to the work of Velarde
et al.10, than that of Sharma et al.11 However, different from the method proposed by Velarde et al.10, our methodology deals
with the attacks by computing control inputs that are robust with respect to such attacks. Furthermore, our approach is also able
to identify the adversarial agents in certain cases and can also deal with more general systems in which there are more than one
adversarial agent in the network.
The remaining of the paper is structured as follows. Section 2 introduces the economic dispatch problem and the distributed

scheme considered in this paper, and presents the adversary model. Afterward, the stochastic approach is proposed in Section
3 whereas the methodology to identify the adversarial agents is presented in Section 4. Furthermore, Section 5 provides the
analysis of the overall control algorithm, which includes the characterization of the decisions computed by the algorithm and
the outcome of the attack identification method. Numerical simulations that show the effectiveness in the performance of the
proposed method are discussed in Section 6. Finally, Section 7 provides some concluding remarks and discussion of future work.

Notations
The sets of real numbers and integers are denoted by ℝ and ℤ, respectively. Moreover, for any a ∈ ℝ, ℝ≥a denotes the subset of
ℝ that is defined by {b ∶ b ≥ a, b ∈ ℝ} and, for any a ∈ ℤ, ℤ≥a denotes the subset of ℤ that is defined by {b ∶ b ≥ a, b ∈ ℤ}.
A similar definition is used for the strict inequality cases. For column vectors vi with i ∈  = {l1,… , lm}, the operator [v⊤i ]

⊤
i∈

denotes the column-wise concatenation, i.e., [v⊤i ]
⊤
i∈ = [v

⊤
l1
⋯ v⊤lm]

⊤. The vector1n denotes [1 1 ⋯ 1]⊤ ∈ ℝn. The set cardinality
and Euclidean norm are denoted by | ⋅ | and ‖ ⋅ ‖2, respectively. Supposing that Ωi, for i = 1, 2,… , n, is a subset of ℝni , then the
Cartesian product over the sets Ωi is defined by

∏n
i=1Ωi = Ω1 ×⋯ × Ωn. Furthermore, ℙ(⋅) denotes the probability measure,

and ℙ(⋅|⋅) denotes the conditional probability measure. Finally, discrete-time instants are denoted by the subscript k and the list
of symbols is given in Appendix A.

2 DISTRIBUTED ECONOMIC DISPATCH AND ADVERSARY MODEL

Firstly, the economic dispatch problem of interconnected microgrids is formulated in Section 2.1. Secondly, the distributed
approach based on dual decomposition is presented in Section 2.2. Finally, Section 2.3 describes the adversary model that may
be present in the system.

2.1 Dynamic Economic Dispatch Problem
Consider the undirected graph  = ( , ), where  = {1, 2,… , n} is the set of nodes and  ⊆  × is the set of edges.
It represents a system of n interconnected microgrids. Each node, i ∈  , represents a microgrid and an edge, (i, j) ∈  ,
describes that microgrids i and j are physically connected. Moreover, denote the set of neighbors of microgrid i by i, i.e.,
i = {j ∶ (i, j) ∈ }.
Here, eachmicrogrid, i ∈ , consists of a set of dispatchable distributed generation (DG) units, a set of generation units based

on renewable energy sources (RES) that are non-dispatchable, a storage unit, and an aggregated load. Furthermore, consider that
each microgrid is also able to import power from the main grid if it is connected to it, while two microgrids that are connected
can exchange power with each other. In addition, we also consider that each microgrid has the capability to be in the island
mode, i.e., it is able to meet the local loads independently using its own generators though this may be costly. A simple example
of the system is shown in Figure 1 .
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FIGURE 1 A 4-microgrid system as an example. Squares indicate the distributed generation units, i.e., filled squares,■, and
empty squares,□, represent renewable generation units and dispatchable generators, respectively, whereas crosses, ×, indicate
the storage units.

In the economic dispatch problem of interconnected microgrids, economically optimal operating points of dispatchable gener-
ation and storage units are computed so that the power injected to a microgrid is equal to its load, while satisfying the operational
constraints of the system. The economic dispatch problem can be described as a constrained optimization problem, where an
economical cost function is considered and the constraints come from the power balance equations, the dynamics of the storage
units, and the operational limits of the system components. Note that we assume that the storage and dispatchable generation
units have low-level controllers20 that control the units such that the computed operating points are met.
The power balance equations of each microgrid, i ∈ , are written as follows:

�di,k − �
st
i,k − �

g
i,k − �

im
i,k −

∑

j∈i

�tji,k = 0, (1)

�tij,k + �
t
ji,k = 0, ∀j ∈i, (2)

where �di,k ∈ ℝ denotes the power disturbance, which is an uncertain variable that represents the difference between the uncertain
load and uncertain power generation from non-dispatchable generation units, such as wind- or solar- powered units. Moreover,
�gi,k ∈ ℝ≥0 denotes the total power generated by the dispatchable DG units; �sti,k ∈ ℝ denotes the power delivered by or to the
storage; �imi,k ∈ ℝ≥0 denotes the imported power from the main grid; and �tji,k ∈ ℝ, for all j ∈i, denote the power transferred
between microgrids i and j. Equation (1) describes the local power balance of microgrid i whereas (2) describes the power
balance between microgrid i and its neighbors.
The dynamics of the storage unit in microgrid i are described as the discrete-time state-space model as follows:

xi,k+1 = aixi,k + bi�sti,k, (3)

where xi,k denotes the state of charge (SoC) of the storage unit, ai ∈ (0, 1] denotes its efficiency and bi = − Ts
ecap,i

, where Ts and
ecap,i denote the sampling period and the maximum capacity of the storage unit, respectively. Note that the input is normalized
by ecap,i since we consider the SoC level as a percentage of the maximum capacity.
Furthermore, the operational limits of the components of microgrid i are described as follows:

xmini ≤ xi,k ≤ xmaxi , (4)
−�chi ≤ �sti,k ≤ �dhi , (5)

�g,mini ≤ �gi,k ≤ �g,maxi , (6)

�imi,k ≤ �im,maxi , (7)
−�t,maxi ≤ �tji,k ≤ �t,maxi , ∀j ∈i, (8)

where xmini , xmaxi ∈ [0, 1], denote the minimum and the maximum SoC of the storage unit, respectively; �chi ∈ ℝ≥0 and �dhi ∈ ℝ≥0
denote the maximum charging and discharging power of the storage; �g,mini , �g,maxi ∈ ℝ≥0 denote the minimum and the maximum
of the total power generated by the DG units of microgrid i, respectively; �im,maxi ∈ ℝ≥0 denotes the maximum imported power
from the main grid, which is 0 if microgrid i is not connected to the main grid; and �t,maxi ∈ ℝ>0 denotes the maximum energy
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that can be transferred between microgrid i and j. Notice that �t,maxi is a local bound and it can be different from one microgrid
to another.

Remark 1. When two neighboring agents i and j have different maximum limits of the allowable transferred power, i.e.,
�t,maxi ≠ �t,maxj , then the more restrictive constraint is naturally imposed. In order to clarify further, consider that agent i and j
are neighboring agents. Thus, we have the following bounds on �tji,k and �

t
ij,k:

−�t,maxi ≤ �tji,k ≤ �t,maxi , −�t,maxj ≤ �tij,k ≤ �t,maxj .

Furthermore, since we also have the power balance equation among neighboring microgrids (2) the variables �tji,k and �
t
ij,k in

the centralized problem are then bounded as follows:

−min
(

�t,maxi , �t,maxj

)

≤ �tji,k ≤ min
(

�t,maxi , �t,maxj

)

,

−min
(

�t,maxi , �t,maxj

)

≤ �tij,k ≤ min
(

�t,maxi , �t,maxj

)

.

The above equations show that the bounds of the power transferred between two neighboring agents depend on both agents.□

By defining the control input of microgrid i as ui,k = [�sti,k �
g
i,k �

im
i,k u

c⊤
i,k]

⊤ ∈ ℝ3+|i|, where uci,k = [�
t
ji,k]

⊤
j∈i

is the vector of
coupled control input variables, we consider the quadratic stage cost function of each microgrid as follows:

Ji,k = u⊤i,kRiui,k, (9)

where Ri = diag([csti c
g
i c

im
i cti1

⊤
|i|
]) > 0, in which csti , c

g
i , c

im
i , c

t
i ∈ ℝ>0 denote the per-unit cost of storage operation, the per-

unit cost of producing energy, the per-unit cost of buying energy from the main grid, and the per-unit cost of transferring energy
to/from the neighbor due to losses, respectively7.

Remark 2. The per-unit cost of transferring energy is considered to be equal for all neighbors, i.e., with a common cti , for
simplicity of the exposition in the proposed attack identification and mitigation approach. However, in general, this cost can be
different from one neighbor to another. □

Based on the preceding description of the system and the stage cost defined in (9), the finite-time open-loop optimization
problem that underlies an MPC strategy for the dynamic economic dispatch of this system is stated as follows:

minimize
{{ui,l|k}i∈ }

k+ℎp−1
l=k

∑

i∈

k+ℎp−1
∑

l=k
Ji,l(ui,l|k) (10a)

subject to F iui,l|k ≤ f i,l , ∀i ∈ , (10b)
uci,l|k +

∑

j∈i

Gijucj,l|k = 0, ∀i ∈ , (10c)

for all l ∈ {k,… , k + ℎp − 1}, where ℎp ∈ ℤ≥1 denotes the prediction horizon, the local constraints (10b) that only include
local control inputs are constructed from (1), (3)-(8), whereas the coupled constraints (10c) are constructed from (2). Since Ri,
for all i ∈  , are positive definite, the cost function (10a) is strictly convex. Furthermore, the constraints (10b)–(10c) form a
compact polyhedral set. Hence, Problem (10) is convex.

Remark 3. We consider that the power injected to the storage and the power extracted from the storage units as a single decision
variable, i.e., �sti,k, in order to obtain a convex optimization problem. When charging and discharging efficiencies are taken into
account and the injected and drawn power are distinguished, the dynamics become hybrid and the economic dispatch problem
(10) becomes non-convex. In this case, there is no guarantee that distributed methods considered in this paper can provide a
solution that converges to the optimal one. Nevertheless, the resilient methods that we propose in this paper can also be extended
to this case.

2.2 Distributed Optimization Method
Distributed optimization methods have been considered as suitable approaches to solve large-scale economic dispatch prob-
lems5,6,7,8. One of the main reasons is the fact that the solution obtained by applying a distributed optimization algorithm
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approximates the optimal solution obtained from the centralized approach. The main challenge when one wants to solve an eco-
nomic dispatch problem, such as Problem (10), in a distributed manner is that the problem is not trivially separable. In Problem
(10), the equality constraints (10c) couple neighboring microgrids. One of the methods to deal with the couplings is by con-
sidering its dual problem, which is decomposable21. This approach is called the dual decomposition method and an iterative
distributed algorithm such as the dual-ascent algorithm21 or the accelerated gradient algorithm22 can be applied to solve the
dual problem.
We apply the dual decomposition approach and the dual-ascent algorithm to compute the control inputs. In this regard, Lemma

1 states the result of the dual-ascent algorithm based on the duality theory of convex optimization21, §5.2.3.

Lemma 1. Let  ⊂ ℝn be a compact polyhedral set, f ∶ ℝn → ℝ be a strictly convex quadratic function, and A ∈ ℝm×n be
any matrix. Consider the optimization problem defined as follows:

min
u∈

f (u), subject to Au = 0, (11)

whose feasible set is nonempty, and the dual ascent algorithm that has the following iteration rules:

1. u(r+1) = argminu∈ f (u) + �(r)⊤Au,

2. �(r+1) = �(r) + 
Au(r+1),

where � ∈ ℝm is the Lagrange multiplier vector associated to the equality constraint Au = 0, 
 ∈ (0, 1) is the step size, and the
superscript (r) indicates the iteration step. Then, u(r) converges to the optimal solution of (11) with the dual-ascent algorithm.□

The dual problem of (10) is derived by introducing the Lagrange multipliers associated to (10c) and denoted by �i,l ∈ ℝ|i|,
for all l ∈ {k,… , k+ ℎp − 1} and i ∈ . Note that the dimension of �i,l is the same as the dimension of the coupled decision
variable uci,k, due to the association with (10c). As a result, the distributed dual-ascent algorithm that solves Problem (10) is
presented in Algorithm 1, where i,l ∈ ℝ3+|i| in step 4 is the local polyhedral set defined from the local constraint (10b) and
�i is a small positive scalar that determines the stopping criterion of the algorithm. Note that the step of the dual-ascent method
for computing the decision variables, is carried out in step 4 and the step of the dual-ascent method for updating the Lagrange
multipliers, is carried out in step 6. Based on Lemma 1, since (10b) forms a compact polyhedral set, and (10a) is strictly convex,
the solutions coming from Algorithm 1, which are denoted by u⋆i,l|k, for all i ∈ and l ∈ {k,… , k+ ℎp − 1}, converge to the
optimal solution of Problem (10). Note that in order to implement the algorithm (performing steps 3 and 5), it has been assumed
that there exists a bidirectional communication between two neighboring agents, i.e., for all i and j, where (i, j) ∈  .

Algorithm 1 Distributed dual-ascent algorithm, for each agent i ∈

1: Set r = 1, �i ∈ ℝ>0, and initialize �
(r)
i,l .

2: do
3: Receive �(r)j,l for all l ∈ {k,… , k + ℎp − 1} from all neighbors j ∈i, and send �

(r)
i,l for all l ∈ {k,… , k + ℎp − 1} to

the neighbors.
4: Solve the local optimization problem

minimize
{ui,l|k}

k+ℎp−1
l=k

k+ℎp−1
∑

l=k

⎛

⎜

⎜

⎝

Ji,l(ui,l|k) +
⎛

⎜

⎜

⎝

�(r)⊤i,l +
∑

j∈i

�(r)⊤j,l Gji

⎞

⎟

⎟

⎠

uci,l|k
⎞

⎟

⎟

⎠

subject to ui,l|k ∈ i,l , ∀l ∈ {k,… , k + ℎp − 1}.

5: Receive the decision ucj,l|k for all l ∈ {k,… , k + ℎp − 1} from all neighbors j ∈ i, and send uci,l|k for all l ∈
{k,⋯ , k + ℎp − 1} to the neighbors.

6: Update �i,l for all l ∈ {k,… , k + ℎp − 1} as

�(r+1)i,l = �(r)i,l + �i i,l ,

where  i,l = uci,l|k +
∑

j∈i
Gijucj,l|k and 0 < �i < 1.

7: r← r + 1
8: while

|

|

|

|

|

|

|

|

[

 ⊤
i,k ⋯  ⊤

i,k+ℎp−1

]

|

|

|

|

|

|

|

|2
> �i
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FIGURE 2 An attack received by Agent 4 from Agent 3, which is adversarial.

R2-2

2.3 Adversary Model
It is considered that some of the agents (microgrids) might perform adversarial actions. Definition 1 classifies the regular and
the adversarial agents in the network.

Definition 1. An agent i is regular if it always implements its control input ui,k according to the decision obtained from the
DMPC strategy, i.e., ui,k = u⋆i,k|k, for all k ≥ 0. Otherwise, agent i is adversarial. □

Furthermore, denote the set of regular agents by and the set of adversarial agents by. We consider the f -local model of
adversaries that is stated in Definition 213.

Definition 2. Given f ∈ ℤ≥1, the set of adversarial agents is f -local if | ∩i| ≤ f , for all i ∈ . □

Based on Definition 1, an attack is defined as follows.

Definition 3. An attack is an event at which an adversarial agent i ∈  implements a control input that is different than the
decision obtained from the distributed strategy, i.e., ui,k ≠ u⋆i,k|k for some k. □

We assume that the attacks occur in a probabilistic manner at each time k and thus consider the following assumption.

Assumption 1. The probability of an attack to occur at each time step k, for each i ∈ , can be time-varying with a uniform
lower bound, denoted by pai > 0. □

By performing an attack defined in Definition 3, an adversarial agent might gain benefit from its neighbors. For instance, an
adversarial agent may produce an energy quantity smaller than the amount that has been decided from the distributed algorithm.
It then asks its neighbor to compensate the deficiency of power. This attack is possible since these agents are connected and the
power balance equations must be met. In this circumstance, the economic cost of the adversarial agent might be less than what
it was supposed to be, but its neighbors must pay an extra cost to produce and deliver the energy compensation. An illustration
of an attack in the 4-microgrid system is given in Figure 2 . We assume that if an adversarial agent attacks, it attacks all of its
neighbors equally at the same time. Clearly, different distribution schemes can also be considered, but the study of how each
adversarial agent attacks is out of the scope of this paper and is left for future work. The proposed methods presented in Sections
3 and 4 can deal with this issue and for this reason we choose this simple assumption without loss of generality. In the next
sections, we propose a distributed strategy to deal with such attacks.

3 TWO-STEP STOCHASTIC APPROACH

The optimization problem (10) considers the power balance constraint (1) over the prediction horizon ℎp. However, the power
disturbances of each microgrid, �di,l , for all l ∈ {k,… , k + ℎp − 1}, cannot be known in advance. Therefore, we can only
consider the forecast of �di,l , for all l ∈ {k,… , k+ℎp −1}, and assume the difference between the forecast and the actual value
as an uncertain variable. In this regard, denote the forecast of the power disturbance of microgrid i at time k by �̂di,k and let the
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uncertain variable wd
i,k ∈ ℝ be defined as

wd
i,k = �

d
i,k − �̂

d
i,k. (12)

Furthermore, we denote the amount of attack that agent i receives by wa
i,k ∈ ℝ and consider it as another source of uncertainty.

Hence, the uncertainties of microgrid i can be denoted by wi,k = [wd
i,k w

a
i,k]

⊤ and we introduce Assumption 2 on the uncertain
vector wi,k. Assumption 2 is necessary for a randomization-based method and commonly considered23,24. Note that we do not
need any assumption on the distribution function of wi,k, although any type of distribution could be considered as well.

Assumption 2. Let Ωi ⊆ ℝ2, for each i ∈  , be an uncertain set that is endowed with a Borel �-algebra. For each microgrid
i ∈ and for any k ∈ ℤ≥0, wi,k ∈ Ωi is a random process that is independent and identically distributed (i.i.d.). □

The energy storage units can help not only to deal with the intermittency issue of renewable energy sources but also to deal
with the uncertain disturbance, which is due to the forecast mismatch or an attack from adversarial agents, by providing power
reserves25. In other words, if there is unforeseen extra load, i.e., the disturbance is positive, it is met by the power taken from the
storage units or if there is unforeseen extra power generated, i.e., the disturbance is negative, it is stored to the storage units. In
this regard, we assume that each storage unit has a low-level control, which acts similarly as an automatic generation control20,24,
to balance the mismatches. We consider this strategy in order to have less reliance on the main grid. In order to take into account
this strategy, as well as the disturbance, the formulation of the dynamic economic dispatch problem in Section 2.1 is adjusted
as follows. Let �̂sti,k denote the nominal power delivered to/from the storage unit and consider that

�sti,k = �̂
st
i,k + 1

⊤wi,k, ∀i ∈ . (13)

By introducing wa
i,k in (1) and from (12) and (13), we obtain the local power balance equation as follows:

�̂di,k − �̂
st
i,k − �

g
i,k − �

im
i,k −

∑

j∈i

�tji,k = 0. (14)

By considering (13) as additional constraints, as well as (14) instead of (1), we specify how the disturbance affects the system.
In particular, it can be seen that the satisfaction of constraints (4)-(5) depends on the disturbance.
Hence, in order to take into account the disturbance, we reformulate Problem (10) as a chance-constrained problem as follows:

minimize
{{ui,l|k}i∈ }

k+ℎp−1
l=k

∑

i∈

k+ℎp−1
∑

l=k
Ji,l(ui,l|k) (15a)

subject to
ℙ(F iui,l|k + F w,iwi,l ≤ f i,l|wi,l ∈ Ωi, ∀l ∈ {k,… , k + ℎp − 1}) ≥ 1 − "i, ∀i ∈ , (15b)
uci,l|k +

∑

j∈i

Gijucj,l|k = 0, ∀l ∈ {k,… , k + ℎp − 1}, ∀i ∈ , (15c)

where ui = [�̂sti,k �
g
i,k �

im
i,k u

c⊤
i,k]

⊤ ∈ ℝ3+|i|; the inequality F iui,l|k + F w,iwi,l ≤ f i,l is a compact form of the local constraints
(3)-(8), (13), and (14), with appropriate F i and F w,i matrices and f i,l vector; (15b) are the chance constraints where "i ∈ (0, 1)
is the maximum level of violation; and (15c) is the coupled constraints as in (10c). By having a chance-constrained problem, we
allow small probability of violation of the local constraints F iui,l|k + F w,iwi,l ≤ f i,l . Violation, with small probability, in this
control level is tolerable since it will only imply suboptimality of the performance. Any solution of Problem (15) is referred to
as an "-level feasible solution, where " =

∑

"i.
To solve Problem (15), we follow a two-step stochastic approach26. The methodology consists of two steps: first, we compute

a probabilistic bound of the disturbance and then, we solve a robust programming problem that takes into account the bound
that we compute in the first step. The solutions obtained using this approach are feasible solutions of the corresponding chance-
constrained problem with certain confidence26. One of the advantages of applying this approach, compared to the standard
scenario approach27, is that since the dimension of the uncertain vectorwi,k is smaller than the dimension of the decision vector
ui,k, the number of scenarios that must be generated is smaller when applying this approach than when directly applying the
scenario approach to Problem (15)26. Furthermore, since the local constraints are convex, the second step of this approach is
tractable. The steps of this approach are explained in Sections 3.1 and 3.2.
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3.1 Computing Probabilistic Bounds
In this step, we solve a randomized program in which a number of scenarios of the disturbance is generated and considered in
the constraints of the problem, to compute a set that probabilistically bounds the uncertainty of the chance-constrained problem.
Since in Problem (15), each microgrid has a sequence of uncertain variables, i.e.,wi,l , for all l ∈ {k,… , k+ℎp−1}, let the set
that bounds a portion of the probability mass of [w⊤

i,k ⋯w⊤
i,k+ℎp−1

]⊤ be denoted by⋆
i,k. We define⋆

i,k to be a polyhedral set, i.e.,

⋆
i,k =

∏k+ℎp−1
l=k {� ∈ ℝ2 ∶ �⋆i,l|k ≤ � ≤ �⋆i,l|k}, where the inequality relations are component-wise, and �⋆i,l|k, �

⋆
i,l|k ∈ ℝ2 denote

the lower and upper bounds ofwi,l , respectively, and consist of two components since there are two sources of uncertainty, i.e.,
the system disturbance, wd

i,k, and the attack, w
a
i,k.

In order to compute ⋆
i,k, we pose a chance-constrained problem for each microgrid, i ∈ , as follows:

minimize
{� i,l|k,� i,l|k}

k+ℎp−1
l=k

k+ℎp−1
∑

l=k
1⊤

(

� i,l|k − � i,l|k
)

subject to

ℙ
(

wi,l ∈ [� i,l|k, � i,l|k]|wi,l ∈ Ωi, ∀l ∈ {k,… , k + ℎp − 1}
)

≥ 1 − "i.

(16)

Now, we are in a position to solve (16) with the scenario approach, which can be stated as follows:

minimize
{� i,l|k,� i,l|k}

k+ℎp−1
l=k

k+ℎp−1
∑

l=k
1⊤

(

� i,l|k − � i,l|k
)

subject to
w(s)
i,l ∈ [� i,l|k, � i,l|k], s = 1,… , ns,i, ∀l ∈ {k,… , k + ℎp − 1},

(17)

where w(s)
i,l denote a scenario of wi,l , generated according to the probability measure for wi,l in an i.i.d. manner, and ns,i is the

number of scenarios, which satisfies26

ns,i ≥
e

"i(e − 1)

(

4ℎp − 1 + ln
1
�i

)

, (18)

where �i ∈ (0, 1) indicates the desired level of confidence and e is the Euler constant. With some abuse of notation, let the set
⋆
i,k be constructed from the solution of Problem (17). This set is a feasible solution of (16) with probability at least 1 − �i.

Remark 4. The level of violation ("i) and the level of confidence (�i) are predefined variables that determine the number of
scenarios needed to be generated. □

3.2 Robust Reformulation
Upon obtaining the bounds ⋆

i,k, for all i ∈  , we can derive a robust counterpart of Problem (15). Since the local constraints
are convex, we can apply the vertex enumeration method, i.e., substituting the uncertain variablewi,l with the vertices of⋆

i,k
26.

The robust formulation associated to Problem (15) is stated as follows:

minimize
{{ui,l|k}i∈ }

k+ℎp−1
l=k

∑

i∈

k+ℎp−1
∑

l=k
Ji,l(ui,l|k) (19a)

subject to
F iui,l|k + F w,iwi,l|k ≤ f i,l , (19b)
wi,l|k ∈ (⋆

i,k,l), (19c)

uci,l|k +
∑

j∈i

Gijucj,l|k = 0, (19d)

for all l ∈ {k,… , k + ℎp − 1} and i ∈  , where (⋆
i,k,l) = {�⋆i,l|k, �

⋆
i,l|k} is the vertex set computed in the previous step

(Section 3.1). Problem (19) is convex, with a strictly convex cost function and local non-empty compact polyhedral constraint
sets. Therefore, based on Lemma 1, we can obtain the optimal solution of Problem (19) using the distributed approach presented
in Algorithm 1, where i,k is defined by constraints (19b)-(19c).
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xi;k+1

x̂i;k+1

δi;k 1
bi

−

+
(21) holds?

yes

no

d
a
i;k = 0

d
a
i;k = 1

FIGURE 3 The attack detection scheme. The predicted SoC, x̂i,k+1, is computed based on (3).

4 ATTACK IDENTIFICATION AND MITIGATION

Besides employing the stochastic approach outlined in Section 3, we also propose an active methodology to identify the adversar-
ial agents andmitigate the attacks. The identificationmethodology is a hypothesis testing using Bayesian inference. Furthermore,
the identification method requires regular agents to actively disconnect the links with their neighbors. To decide from which
neighbors an agent should disconnect, a local mixed-integer optimization problem is solved.

4.1 Attack Detection
In order to identify the adversarial neighbors, a regular agent (microgrid) must be able to detect an attack in the first place. To
this end, a regular agent uses its SoC, which is assumed to be measurable, and compares the measured value with the predicted
value using its nominal dynamics to compute the total disturbance, denoted by �i,k, as follows:

�i,k = xi,k+1 −
(

xi,k + b⊤i ui,k|k
)

, ∀k ∈ ℤ≥0, (20)

where bi = [bi 0⊤2+|i|
]⊤. Note that, by definition, �i,k = bi1⊤wi,k. The probabilistic bound ⋆

i,k can now be used as the threshold
to define whether an attack occurs. Recall that �⋆i,k|k = [�d⋆i,k|k �

a⋆
i,k|k]

⊤, where �d⋆i,k|k and �a⋆i,k|k denote the lower bounds of the
disturbance associated to the load and to an attack, respectively, and similarly �⋆i,k|k = [�d⋆i,k|k �

a⋆
i,k|k]

⊤, where �d⋆i,k|k and �a⋆i,k|k
denote the corresponding upper bounds. Then, the attack detection is defined as follows.

Definition 4. Let dai,k ∈ {0, 1}, for each regular agent i ∈  and k ∈ ℤ≥0, be the indicator that detects attacks. If

�d⋆i,k|k ≤ �i,k∕bi ≤ �d⋆i,k|k, (21)

then there is no attack detected and dai,k = 0. Otherwise, d
a
i,k = 1, implying an attack is detected. □

The attack detection scheme based on Definition 4 is given in Figure 3 . Based on Definition 4, the following definitions of
an undetectable attack and a false attack detection are given.
R2-1

Furthermore, we also consider Assumption 3.

Definition 5. An attack is detectable if wa
i,k ≠ 0 such that (21) does not hold. On the other hand, an attack is undetectable if

wa
i,k ≠ 0 such that (21) holds. □

Assumption 3. The probability of the undetectable attacks that are received by agent i ∈ , denoted by puai , is less than 1. □

Definition 6. A false attack detection occurs when wa
i,k = 0 and d

a
i,k = 1, i.e., if w

d
i,k < �

d⋆
i,k|k or w

d
i,k > �

d⋆
i,k|k when w

a
i,k = 0. □

When an attack is undetectable, the regular agent i cannot distinguish the attack from the load disturbance. Such an attack
is tolerable since the total disturbance is within the bounds of the power disturbance, wd

i,k. For systems without disturbances,
undetectable attacks are also defined similarly12. Furthermore, Assumption 3 implies that some attacks are detectable by agent i,
which is necessary in order to identify the adversarial neighbor. On the other hand, a false detection occurs when the disturbance
wd
i,k is outside of the computed bounds. It is worth mentioning that the detection scheme is similar to the passive fault detection

method28.

4.2 Identification and Mitigation Method
A regular agent that has more than one neighbor is not able to identify which ones are adversarial although it could detect an
attack based on Definition 4. Therefore, a hypothesis testing scheme that is based on Bayesian inference is formulated as the
method to identify the adversarial neighbors. In this method, we assume that regular agents do not have prior knowledge of
the occurrence of the attacks, but each agent i ∈  has an initial expectation on the probability of attacks received, denoted
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by p̂ai . The parameter p̂ai is a positive constant smaller than one that is used to update the hypothesis probability as shown in
(22)-(23) below. It does not need to reflect the actual probability of the received attacks and only affects the convergence of the
identification process as we will see in Section 5.
Based on the f -local adversary model, each regular agent, i ∈ , where |i| ≥ f , considers all the sets that are the

elements of the power set of i and have the cardinality f . Let these sets be denoted by Θmi ⊆ i, for m = 1, 2,… , nHi , where

nHi =
(

|i|

f

)

. Note that Θm1i ≠ Θm2i if m1 ≠ m2. Now, consider a set of hypotheses, i = {Hm
i ∶ m = 0, 1,… , nHi }, where the

hypotheses are defined as follows:

• H0
i : There is no adversarial neighbor,

• Hm
i : The set Θmi contains all the adversarial neighbors,

form = 1,… , nHi . Hence, we associate each setΘ
m
i to one hypothesis. Furthermore, recall the attack indicator variable dai,k, which

is defined in Definition 4. The Bayesian inference is used as the model to update the probability of the hypothesis as follows:

ℙk+1(Hm
i ) =

ℙk(Hm
i )ℙk(d

a
i,k|H

m
i )

ℙk(dai,k)
, ∀Hm

i ∈ i, (22)

where ℙk+1(Hm
i ) is the a posteriori probability of Hm

i given the event dai,k, i.e., ℙk+1(H
m
i ) = ℙ(Hm

i |d
a
i,k); ℙk(H

m
i ) denotes the

probability of hypothesis Hm
i at time instant k; ℙk(dai,k) denotes the marginal likelihood of dai,k; and ℙk(dai,k|H

m
i ) denotes the

probability of observing dai,k given hypothesis H
m
i . The probability ℙk(d

a
i,k|H

j
i ) is formulated as follows:

ℙk(dai,k = 0|H
m
i ) =

{

1, for m = 0,
1 −

(

maxj∈Θmi v
j
i,k

)

p̂ai , for m = 1,… , nHi ,

ℙk(dai,k = 1|H
m
i ) =

{

0, for m = 0,
(

maxj∈Θmi v
j
i,k

)

p̂ai , for m = 1,… , nHi ,

(23)

where vji,k ∈ {0, 1}, for all j ∈ i, denote the decision whether agent i both connects to and negotiates with neighbor j, i.e.,
vji,k = 1 implies agent i connects to neighbor j, whereas vji,k = 0 implies agent i does not connect to neighbor j. Additionally,
the initial probabilities of all hypotheses are defined as

ℙ0(Hm
i ) =

{

1 − p̂ai , for m = 0,
p̂ai∕n

H
i for m = 1,… , nHi ,

(24)

implying that agent i initially considers each neighbor has an equal chance of attacking. Note that p̂ai does not need to be equal
to any paj , for j ∈i ∩. In addition, for agent i ∈ , where |i| < f , two hypotheses are considered, i.e., H0

i and H
1
i , where

Θ1i =i.
In order to compute vji,k, for all j ∈ i, i.e., the decision to connect with neighbor j, agent i solves a local mixed-integer

optimization problem as follows:

minimize
vi,k,{ui,l|k}

k+ℎp−1
l=k

k+ℎp−1
∑

l=k
Ji,l(ui,l|k) + J vi (vi,k) (25a)

subject to
F iui,l|k + F w,iwi,l|k + F v,ivi,k ≤ f lci,l , (25b)
wi,l|k ∈ (⋆

i,k,l), (25c)

vi,k ∈ {1|i|
} ∪ {v ∈ {0, 1}|i| ∶ 1⊤v = |i| − f}, (25d)

for all l ∈ {k,… , k + ℎp − 1}, where vi,k = [vji,k]
⊤
j∈i

∈ {0, 1}|i|. The cost function J vi (vi,k) ∶ ℝ|i| → ℝ penalizes the
decision of having a connection with the neighbors, i.e.,

J vi (vi,k) = 
in
a
i,k

∑

j∈i

cji,kv
j
i,k, (26)

where cji,k =
∑

mj∈{m∶j∈Θmi }
ℙk(H

mj
i ), for each j ∈i, denotes the individual weight associated to v

j
i,k, 
i ∈ ℝ>0 denotes a weight

that must be predefined and nai,k denotes the number of attacks that agent i has detected, i.e., nai,k =
∑k
l=0 d

a
i,l . By having nai,k
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as a weight, establishing a connection with a neighbor is penalized more if the number of attacks detected increases. Moreover,
(25b) is obtained from (3)-(7), (13), (14) and from the following expression:

−�t,maxi vji,k ≤ �tji,l ≤ �t,maxi vji,k, ∀j ∈i, (27)

for all l ∈ {k,… , k+ℎp−1}, whereas, the constraint (25d) implies that agent i can either connect to all neighbors or disconnect
from any f neighbors. It can be seen that Problem (25) considers the same local constraints of Problem (19), except that (8) is
replaced by (27), which includes the Boolean variables.
Problem (25) is a mixed-integer quadratic program (MIQP). Notice that we penalize the Boolean variable vji,k, for each

j ∈ i, by adding weight cji,k, proportionally to the sum of probability measures of the hypotheses associated to neighbor j.
Furthermore, having constraint (25d) means that there are only nHi + 1 possible solutions of vi,k. Therefore, if n

H
i is relatively

small, agent i might solve nHi + 1 convex problems, i.e., Problem (25) without (25d) and a fixed vi,k that satisfies (25d), and
then obtain the minimizers, i.e., all vi,k, that provide the minimum cost (25a). Another way to solve Problem (25) is by directly
employing a mixed-integer optimization method such as the branch-and-bound algorithm. Finally, let ⋆

i,k ∈ {0, 1}|i| be the
set of minimizers of Problem (25) and suppose that the decision v⋆i,k = [vj⋆i,k]

⊤
j∈i

is chosen from ⋆
i,k, i.e., v

⋆
i,k ∈ ⋆

i,k. Hence,
in order to include the connection decision in the robust problem (19), the local constraints (19b) are switched by (25b) with
vi,k = v⋆i,k, for all i ∈ .

Remark 5. One might set 
i large enough such that 1|i|
∈ ⋆

i,k only if n
a
i,k = 0. In this case, once an attack is detected, some of

the neighbors are always disconnected. □

5 ANALYSIS OF THE OVERALL APPROACH

The methodologies to robustify the control inputs with respect to uncertain attacks (Section 3) and to identify the adversarial
agents (Section 4) are summarized in Algorithm 2. First, each regular agent i ∈  computes the probabilistic bounds of the
disturbance and decides the connections with the neighbors. Then, it performs the distributed algorithm to compute the decisions.
After the decisions are applied, the agent detects the occurrence of an attack and performs the identification method. Note
that ℙ(Hm̂

i ) in step 9 is associated to the set Θm̂i = {j ∈ i ∶ v
j⋆
i,k = 0}. Related to step 12 of Algorithm 2, in particular

the part of implementing v⋆i,k, we consider that any agent can temporarily disconnect the physical link between itself and its
neighbors, respecting the decision of v⋆i,k. Note that two agents, i and j, where (i, j) ∈  , can only exchange energy if and only
if vj⋆i,k = vi⋆j,k = 1. Therefore, although there exists a connection between agents i and j, either of them can block the influence
by closing the connection. Furthermore, due to constraints (27), when one of two neighboring agents decides to disconnect,
the negotiation of the power transferred is forced towards a common solution �tij,k = �tji,k = 0 (see Remark 1). Although this
assumption is not suitable in a conventional power network, considering the framework of microgrids, which can work in the
island mode, disconnecting two neighboring microgrids can be done. In addition, two neighboring agents must also be able to
exchange information in order to apply the distributed algorithm. The analysis of the algorithm, in terms of the characteristics
of the obtained solution and the result of the identification method, is presented next in Sections 5.1 and 5.2, respectively.

Remark 6. In our problem setting, for simplicity, the probability distribution of the uncertainties wi,k remains the same over
time under Assumption 2. In this case, to reduce the computational effort at each iteration in Algorithm 2, steps 3 and 4 can
actually be carried out only once offline23. In this case, suppose that the probabilistic bounds that are computed by solving (17)
in an offline manner are denoted by⋆

i , for all i ∈ . Then, at each time instant k, we have that⋆
i,k = ⋆

i . In general, however,
the distribution ofwi,k can be time-varying, and with sufficient computational resources and knowledge regarding the variables,
steps 3 and 4 can be executed online.

Remark 7. Recall that the disturbance wi,k is compensated by the storage unit. However, a different strategy to deal with that
disturbance can also be implemented, for instance, by using the dispatchable generation unit. In this case, the distribution of
the compensation between the storage and the dispatchable unit must be determined. Additionally, the low-level controller
might need to use the droop method20,25. Then, in the robust reformulation (Section 3), the distribution must be taken into
account, i.e., (13) becomes �sti,k = �̂sti,k + �1

⊤wi,k, where � denotes the proportion of the disturbance that is handled by the
storage unit. Additionally, re-denote the nominal decision of the dispatchable generation unit by �̂sti,k, then we must also include
�gi,k = �̂gi,k + (1 − �)1

⊤wi,k in the chance-constrained problem (15c). Furthermore, in the attack detection scheme, we need to



W. Ananduta ET AL 13

Algorithm 2 Resilient distributed algorithm, for i ∈ 
1: Initialize the hypothesis probabilities according to (24).
2: for k = 0, 1, 2,… do
3: Choose ns,i according to (18).
4: Compute the probabilistic bound ⋆

i,k by solving (17).
5: Compute ⋆

i,k by solving (25).
6: if 1

|i|
∈ ⋆

i,k then
7: Choose v⋆i,k = 1

|i|
.

8: else
9: Choose randomly v⋆i,k ∈ ⋆

i,k such that ℙ(H
m̂
i ) ≠ 0.

10: end if
11: Compute u⋆i,k|k using Algorithm 1, consideringi is formed by the constraints defined in (25b)-(25c), where vji,k = v

j⋆
i,k .

12: Implement u⋆i,k|k and v
⋆
i,k.

13: Measure xi,k+1.
14: Compute dai,k based on Definition 4.
15: Update the probability values of the hypotheses according to (22).
16: end for

evaluate not only the SoC as in (21) but also the difference between the nominal set point of the dispatchable generation and the
actual one to determine the indicator of attack signal, dai,k.

5.1 Analysis of the Solutions
Prior to stating the outcome of Algorithm 2, we establish the following assumption.

Assumption 4. The set of feasible solutions of Problem (19) is nonempty. Furthermore, this set contains a subset in which
�tij,l = �

t
ji,l = 0, for all l ∈ {k,… , k + ℎp − 1}, and (i, j) ∈  .

The existence of nonempty feasible region in Problem (19) depends on the scenario realization, which determines the con-
struction of the probabilistic bounds. Therefore, each agent can compute the bounds such that Assumption 4 holds. Furthermore,
the second part of Assumption 4 follows from the consideration that each microgrid can operate in the island mode. Based on
this assumption, we can state the feasibility of Problem (25), which is solved in step 5, as follows.

Proposition 1. Suppose that Assumption 4 holds. Then, Problem (25) has feasible solutions. □

Proof. The existence of nonempty feasible region of Problem (19) (Assumption 4) implies the feasibility of Problem (25) for
the case vi,k = 1

|i|
since constraint (25b) is also a constraint in Problem (19). When some of the neighbors are disconnected,

i.e., vi,k ∈ {v ∈ {0, 1}|i| ∶ 1⊤v = |i|−f}, there exist some vectors {ui,l|k}
k+ℎp−1
l=k , where �tji,l = 0, for j only if v

j
i,k = 0 and

all l ∈ {k,… , k+ℎp−1}, that satisfy (27) and are also feasible solutions of Problem (19) due to the second part of Assumption
4.

The characteristics of the decision implemented by each regular agent i ∈  are stated in Proposition 2.

Proposition 2. Suppose that Assumptions 2 and 4 hold. Furthermore, suppose that each agent i ∈  applies steps 4, 5, and
11 of Algorithm 2 to compute u⋆i,k|k. Then, the implemented decision, u⋆i,k|k, for each i ∈ , is an "-level feasible solution of
Problem (15), with level of inexactness �i and probability at least 1 − �, where " =

∑

i∈ "i and � =
∑

i∈ �i. □

Proof. Consider the following minimization problem:

minimize
{{ui,l|k}i∈ }

k+ℎp−1
l=k

∑

i∈

k+ℎp−1
∑

l=k
Ji,l(ui,l|k)

subject to (25b), (25c), (19d), ∀l ∈ {k,… , k + ℎp − 1}, ∀i ∈ .

(28)
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It can be seen that the decision u⋆i,k|k is computed in step 11 of Algorithm 2, where all agents, i ∈ , cooperatively solve Problem
(28), which has the same property as Problem (19), i.e., convex with strictly convex cost. The set of feasible solutions of Problem
(28) is a nonempty subset of that of Problem (19) since Assumption 4 holds (see the proof of Proposition 1). Furthermore, the
dual-ascent algorithm (Algorithm 1) is applied to solve Problem (28). Based on Lemma 1, the solution of Algorithm 1 converges
to the optimal solution of Problem (28), i.e.,
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→ 0, for all i ∈  , as r → ∞. Since Algorithm 1 is

stopped prematurely, i.e., when the condition
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≤ �i is satisfied, the solution obtained, u⋆i,k|k, is inexact

with the level of inexactness �i. On the other hand, since Assumption 2 holds and since the bound sets ⋆
i,k, for all i ∈  , are

generated by solving (17), where the number of generated scenarios satisfies (18), the optimal solution of Problem (28) is an
"-level feasible solution of Problem (15), with probability at least 1 − � 26, Proposition 1.

Remark 8. Since u⋆i,k|k, for each i ∈ , is an "-level feasible solution of Problem (15), it might happen, with small probability
", that one of the constraints imposed on the SoC level is violated after implementing u⋆i,k|k. Then, this fact might lead to an
infeasibility issue when computing u⋆i,k+1|k+1 at the next time instant. When it is not feasible for agent i to improve its SoC level
such that it is within the bounds at one time instant, agent imight relax the corresponding constraint such that its SoC level will
be back within the original bounds after several time instants. Furthermore, in general, when the storage unit cannot handle the
disturbances because of its physical limitation, the low level controller of the dispatchable generation unit might respond when
there is a local imbalance in the microgrid.

5.2 Analysis of the Identification Method
In this section, we show how each regular agent can correctly identify the adversarial agent in the case f = 1 and, in general,
for any f -local adversary model, can block the influence of all adversarial neighbors by employing Algorithm 2. Note that in
this model, the total number of adversarial agents in the network might be more than f . The analysis is divided into two parts,
for the case f = 1 and for the case f > 1. Firstly, it is worth to note that the identification method works inseparably with the
robustification method, as shown in Proposition 1. Secondly, we establish the following lemmas, which are useful in the analysis.

Lemma 2. Suppose that Assumptions 1-3 hold. If a regular agent, i ∈ , is connected to any adversarial neighbor, then the
probability that infinitely many detectable attacks are received by agent i is 1. □

Proof. Since Assumptions 1 and 3 hold, the probability that detectable attacks occur is a positive scalar that is lower bounded
by minj∈i∩ p

a
j(1 − p

ua
i ) > 0. Furthermore, the connection between agent i and an adversarial neighbor implies that agent

i can receive an attack from the adversarial neighbor. As a result, based on the Borel-Cantelli lemma29, Section 8.2.3 and since
Assumption 2 holds, the claimed statement follows.

Lemma 3. Let Assumption 4 hold. Suppose that at time step �, the minimizer v⋆i,� chosen from the set of minimizers ⋆
i,�

of Problem (25) is such that some of the neighbors are disconnected, i.e., there exists some j⋆ ∈ Θm̂i = {j ∈ i ∶ v
j⋆
i,k =

0}, |Θm̂i | = f . Furthermore, suppose that for k ≥ �, 1
|i|

∉ ⋆
i,k. If d

a
i,� = 0, then 

⋆
i,�+1 = {v

⋆
i,�}.

Proof. The decision about which neighbors should be disconnected by agent i is based on the weight of vji,k in (26). For the case
f = 1, the weight depends on the probability measure of each hypothesis, i.e., cji,� = ℙ�(H

mj
i ), where H

mj
i , for each j ∈ i, is

associated to Θmji = {j} (see (26)). Therefore, vj
⋆

i,� = 0 implies that ℙ�(H
mj⋆
i ) ∈ argmaxj∈i

(ℙ�(H
mj
i )). Observe that ℙk(d

a
i,k) =

1 only if ℙ�(H
mj⋆
i ) = 1, implying ℙ�(H

mj
i ) = 0 for j ≠ j⋆. Thus in this case the claimed statement follows immediately. Now

consider the case where ℙ�(H
mj⋆
i ) < 1. Since dai,� = 0 and ℙk(dai,k) ∈ (0, 1), by applying (22), we obtain that ℙ�+1(H

mj⋆
i ) >

ℙ�(H
mj⋆
i ) and ℙ�+1(H

mj
i ) ≤ ℙ�(H

mj
i ) ≤ ℙ�(H

mj⋆
i ), for any j ∈ i∖{j⋆}. Therefore, ℙ�+1(H

mj⋆
i ) = argmaxj∈i

(ℙ�+1(H
mj
i ))

and the claimed statement follows.
For the case f > 1, let Θm̂i,� be the set of all neighbors that are disconnected from agent i at time k = �, i.e., Θm̂i,� = {j ∈i ∶

vj⋆i,� = 0}. Note that there is a hypothesis that is associated toΘ
m̂
i,� , denoted byH

m̂
i , and the probability measure of this hypothesis

is denoted by ℙk(Hm̂
i ). Consider any j

⋆ ∈ Θm̂i,� and j ∈i∖Θm̂i,� . Since j
⋆ ∈ Θm̂i,� are disconnected at k = �, we have c

j⋆
i,� ≥ cji,� .

Now, we will show that cj
⋆

i,�+1 > cji,�+1 by updating ℙ�+1(Hm
i ) for all H

m
i ∈ i with (22) when dai,� = 0. Similarly to the case

f = 1, if for any j ∈ i∖Θm̂i,� , c
j
i,� = 0, we have that c

j⋆
i,�+1 > c

j
i,�+1 = c

j
i,� = 0. In the case that cji,� > 0, for some j ∈ i∖Θm̂i,� ,

we also have cj
⋆

i,�+1 > c
j
i,�+1, which is shown as follows.
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From the fact that cj
⋆

i,� ≥ cji,� , we observe that

cj
⋆

i,� ≥ cji,� ⇔ ℙ�(Hm̂
i ) +

∑

m∈∖{m̂}
ℙ�(Hm

i ) +
∑

m∈̂

ℙ�(Hm
i ) ≥

∑

m∈′

ℙ�(Hm
i ) +

∑

m∈̂

ℙ�(Hm
i )

⇔ ℙ�(Hm̂
i ) +

∑

m∈∖{m̂}
ℙ�(Hm

i ) −
∑

m∈′

ℙ�(Hm
i ) ≥ 0, (29)

where  = {m ∶ j⋆ ∈ Θmi , j ∉ Θmi }, 
′ = {m ∶ j ∈ Θmi , j

⋆ ∉ Θmi }, and ̂ = {m ∶ j ∈ Θmi , j
⋆ ∈ Θmi }. The second

inequality is obtained directly from the definition of the weight cji,k. Furthermore, observing at k = � + 1, we have that

cj
⋆

i,�+1 − c
j
i,�+1 = ℙ�+1(Hm̂

i ) +
∑

m∈∖{m̂}
ℙ�+1(Hm

i ) −
∑

m∈′

ℙ�+1(Hm
i )

= �1ℙ�(Hm̂
i ) + �2

∑

m∈∖{m̂}
ℙ�(Hm

i ) − �2
∑

m∈′

ℙ�(Hm
i )

= �2

(

�1
�2

ℙ�(Hm̂
i ) +

∑

m∈∖{m̂}
ℙ�(Hm

i ) −
∑

m∈′

ℙ�(Hm
i )

)

> 0,

where �1 = 1∕ℙk(dai,k) and �2 = (1 − p̂
a
i )∕ℙk(d

a
i,k). The last inequality follows from the fact that �1 > �2 and (29) holds.

Lemma 2 indicates that when a regular agent is connected to an adversarial agent, a detectable attack will occur almost surely.
Meanwhile, Lemma 3 shows how a regular agent decides the connection under certain conditions. Both lemmas are used to
show how the attack identification and mitigation method works.

5.2.1 The Case where f = 1
When f = 1, there exist |i|+1 hypotheses, whereΘmi , form = 1,… , |i|, have one element. The outcome of the identification
method for f = 1 is characterized in Proposition 3 as follows.

Proposition 3. Suppose that Assumptions 1-4 hold, a regular agent i ∈  applies Algorithm 2 with f = 1, and there exists an
adversarial neighbor of agent i. If there is no false detection, then agent i correctly identifies the adversarial neighbor. □

Proof. A regular agent i ∈  identifies its adversarial neighbor by concluding from the probability measures of its hypotheses.
In particular, let the adversarial neighbor be denoted by ja ∈ i ∩  and the hypothesis associated to ja is denoted by Hma

i .
Then, we will show that ℙk(H

ma
i ) eventually becomes 1. Note that when one of the hypothesis probabilities equals 1, the others

equal 0 since
∑

|i|

m=0 ℙk(H
m
i ) = 1, for any k ∈ ℤ≥0.

Recall that ℙk(Hm
i ), for all H

m
i ∈ i, evolve based on Bayesian inference given in (22). From (23), the dynamics (22) can be

seen as hybrid dynamics since dai,k, v
j
i,k ∈ {0, 1}. Note that when d

a
i,k = 1, a detectable attack occurs, whereas, when dai,k = 0,

no attack is detected because the adversarial neighbor either does not attack or performs an undetectable attack. Furthermore,
recall also that vji,k = 0 implies agent j is blocked, so that if j = ja, it cannot attack. Otherwise, agent j is not blocked. At each
k, there is only at most one neighbor that is blocked due to constraint (25d) in Problem (25), which is solved to determine v⋆i,k
(step 10 of Algorithm 2).
We analyze the dynamics of all ℙk(Hm

i ) based on the decision v⋆i,k. During the period at which v⋆i,k = 1
|i|

, the adversarial
agent can attack. Note that the number of detectable attacks, nai,k, is unbounded due to Lemma 2. As a result, depending on the
weight 
i, for some k where nai,k is sufficiently large, 1

|i|
∉ ⋆

i,k, e.g., see Remark 5. Additionally, it is observed from (22)
and (23) that starting for the first time instant that dai,k = 1, ℙk+1(H

0
i ) = 0. If agent i only has one neighbor, a detectable attack

immediately leads to the identification that the neighbor is adversarial. In the following, we consider the case where |i| > 1.
We observe the dynamics of ℙk(Hm

i ), for which 1|i|
∉ ⋆

i,k. In particular, we consider two cases: (a) when the adversarial agent
is blocked and (b) when a regular neighbor is blocked.
In case (a), suppose that at time step k, the adversarial agent is blocked, i.e., vja⋆i,k = 0. Therefore, d

a
i,k = 0. Moreover, according

to Lemma 3, vja⋆i,k+1 = 0, implying dai,k+1 = 0. In fact, vja⋆i,k = 0 and dai,k = 0, for all k ≥ k. Hence, since dai,k and v
⋆
i,k, for k ≥ k,

are fixed, the dynamics (22) are smooth. By recursively applying (22), starting from k, and considering fixed dai,k and v
⋆
i,k, we
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have, for k > k,

ℙk(Hm
i ) =

(pHm
i
)k−k

|i|
∑

m=0
(pHm

i
)k−kℙk(Hm

i )

ℙk(Hm
i ), ∀H

m
i ∈ i,

where pHm
i
= ℙk(dai,k = 0|H

m
i ), i.e.,

pHm
i
=

{

1, for m ∈ {0, ma},
1 − p̂at , for all m ∉ {0, ma}.

Hence, for Hma
i ,

ℙk(H
ma
i ) =

1
ℙk(H

ma
i ) +

∑

m≠ma
(pHm

i
)k−kℙk(Hm

i )
ℙk(H

ma
i ).

Thus, we have limk→∞ ℙk(H
ma
i ) = 1, since pHm

i
< 1 for all m ≠ ma. Furthermore, we also have that limk→∞ ℙk(Hm

i ) = 0 for
m ≠ ma.
In case (b), suppose that at time step k, a regular neighbor j ∈i∖{ja} is blocked, i.e., v

j⋆
i,k = 0. According to Lemma 3 and

the dynamics (22) and (23), the neighbor j is blocked as long as dai,k = 0, for k ≥ k. However, consider that at some k ≥ k,
da
i,k
= 1. Then, based on (22) and (23), ℙk+1(H

mj
i ) = 0. Note that since ja is not blocked for k ≤ k ≤ k, a detectable attack

will occur almost surely (Lemma 2). Thus, if any regular neighbor j ∈ i∖{ja} is being blocked, its probability ℙk(H
mj
i ) will

eventually become 0. As a result, if another regular neighbor is blocked at k = k + 1, we have case (b) again, whereas if the
adversarial neighbor is blocked, we have case (a).

Remark 9. Based on Proposition 3, each regular agent that applies Algorithm 2 can identify its adversarial neighbor correctly for
the case f = 1 provided that there is no false detection. Based on Definition 6, a false detection occurs when the uncertainty from
the load,wd

i,k, is outside of the probabilistic bounds. Since the computed decision u⋆i,k|k is an "-level solution (Proposition 2), we
know that the probability ofwd

i,k being outside of the bounds is at most ", which can be set to be small. If false detections are made
during the operation, then all hypothesis probabilities will eventually become zero. When they are all zero, the identification
process can then be restarted. □

5.2.2 The Case where f > 1
In the case that f > 1, a regular agent might not be able to identify the adversarial neighbors. However, it can block all adversarial
neighbors, as presented in Proposition 4.

Proposition 4. Suppose that Assumptions 1-4 hold, regular agent i ∈  applies Algorithm 2 with f > 1, and there exist at
most f adversarial neighbors of agent i. If there is no false detection, then the hypothesis probability associated to one of the
sets of neighbors that contain all adversarial neighbors converges to one and, when all hypothesis probabilities ℙk(Hm

i ) have
converged, agent i blocks all adversarial neighbors. □

Proof. The lines of proof are similar to those of Proposition 3. Let i denote the set of adversarial neighbors of agent i, i.e.,
i =i ∩. Note that by Definition 2, |i| ≤ f . We analyze the dynamics of ℙk(Hm

i ), for all H
m
i ∈ i, at k ≥ k0, for which

1
|i|

∉ ⋆
i,k. Firstly, observe that, if f ≥ |i|, then there are only two hypotheses. The assertion immediately holds since when

there is a detectable attack, ℙ(H0
i ) = 0. Furthermore, since 1

|i|
∉ ⋆

i,k, all neighbors are disconnected. Now we observe two
possible cases on the decision of v⋆i,k for f < |i|. The cases are similar to those that are explained in the proof of Proposition 3.
In case (a), we suppose that at k, agent i blocks all adversarial neighbors, j ∈ i, i.e., v

j⋆
i,k = 0 for all j ∈ i. Since agent

i is disconnected from all adversarial neighbors, at k = k, dai,k = 0. Furthermore, based on Lemma 3, the decision to block all
adversarial neighbors hold for k ≥ k. Therefore, ℙk(Hm

i ), for all m = 0, 1,… , nHi , evolve smoothly for k ≥ k. Let Θm̂i,k denotes
the set of neighbors that are disconnected by agent i at time k, i.e., Θm̂i,k = {j ∈ i ∶ v

j⋆
i,k = 0} and Hm̂

i denotes the hypothesis
associated to Θm̂i,k. Note that i ⊆ Θm̂i,k, where the equality holds if |i| = f . By evaluating the dynamics (22), it holds that
limk→∞ ℙk(Hm̂

i ) = 1 whereas the other hypothesis probabilities converge to 0.
In case (b), we suppose that at k, some adversarial neighbors are not blocked, i.e., the set {j ∈ i ∶ j ∉ Θm̂i,k} is nonempty.

As in the case f = 1, if there is no attack, due to Lemma 3, the set of neighbors Θm̂i,k will still be blocked at the next time step,
k = k + 1. Furthermore, since ℙk(Hm

i ) for all m = 1,… , nHi are initialized equally, only ℙk(Hm̂
i ) evolves differently, for k ≥ k.
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FIGURE 4 The PG&E 69-bus distribution network partitioned into a group of interconnected microgrids3. Squares indicate the
distributed generation units, i.e., filled squares,■, and empty squares,□, represent renewable generation units and dispatchable
generators, respectively, whereas crosses, ×, indicate the storage units.

The other probabilities, ℙk(Hm
i ), for m ≠ m̂ such that ℙk(Hm

i ) ≠ 0, are equal, for k ≥ k, since they are multiplied by the same
factor, which is either (1 − p̂ai )∕ℙ(d

a
i,k) when there is no attack, or p̂ai∕ℙ(d

a
i,k) when there is an attack. However, the occurrence

of the next attack is with probability 1 (Lemma 2). Suppose that the next attack occurs at k. Therefore, ℙk(H
m̂
i ) = 0, while

other hypotheses that have probability strictly larger than zero at k = k − 1, have an equal value at k = k, denoted by �k. Note
that the number of these hypotheses is 1∕�k. The decision v

⋆
i,k+1

depends on solving Problem (25) and step 9 in Algorithm 2.

Due to step 9 in Algorithm 2, a different set of neighbors, i.e., Θm̂
i,k+1

≠ Θm̂i,k, is disconnected at k = k + 1. If i ⊆ Θm̂i,k+1, we
have case (a), otherwise we have case (b). Note that, since the number of sets of disconnected neighbors that do not include
all adversarial agents is limited and such a set cannot be chosen twice, eventually a set of neighbors, Θmi , which includes all
adversarial neighbors, i.e.,i ⊆ Θmi , is disconnected. Thus, eventually we have case (a).

Remark 10. Proposition 4 shows that each regular agent that applies Algorithm 2 can eventually block all adversarial neighbors
for any f ≥ 1, provided that there is no false detection. Therefore, similar to the case f = 1, setting a small desired level of
violation " implies a high probability of blocking all adversarial neighbors. Furthermore, when false detections occur, then the
identification and mitigation process can be restarted after all hypothesis probabilities have become zero. □

6 CASE STUDY

In order to show the effectiveness of the proposed approach in mitigating attacks and identifying adversarial agents, we consider
the PG&E 69-bus distribution network with additional dispatchable generation, renewable generation, and storage units, which
is partitioned into eight microgrids (agents)3. The topology of this interconnected-microgrid system is shown in Figure 4 .
Furthermore, the parameter values of the components of each microgrid are given in Table 1 . We consider that there are two
types of load profiles, which are residential and industrial loads. We suppose that microgrids 1, 2, 5, and 6 have industrial load
profiles whereas the others have residential profiles. In addition, we consider that agents 2, 6, and 7 are adversarial.
Two simulation studies are carried out. The first study shows how the overall schemeworks in two scenarios, which correspond

to the conditions in Propositions 3 and 4, while the second study emphasizes on the attack detection scheme. The simulations are
carried out in MATLAB with YALMIP30 using a computer with 2.6 GHz Intel Core i7 CPU and 16 GB of RAM. In addition, it
is set that the sampling time is 15 minutes, the prediction horizon is four time steps and the level of inexactness for Algorithm
1 is �i = 5, for all i ∈ . We assume that there exist low-level local controllers at each microgrid that control the dispatchable
generation and storage units such that the set points computed are met at each time instant.

6.1 Performance of the Overall Scheme
In this simulation, where the simulation time is one day (96 steps), the adversarial agents, i = 2, 6, 7, attack with pai = 0.3.
The industrial and the residential load profiles are based on realistic data collected in a large-scale study31,32. Furthermore,
the network has solar-based energy sources, the profiles of which are also based on realistic data32. The attack strategy of the
adversarial agents is to reduce the production of their dispatchable generation units randomly. Here, we apply Algorithm 2 to
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TABLE 1 Parameters of the Microgrids

Parameters Value Unit Agent (i)

xmini , xmaxi , xi,0 30, 80, 50 % all
�chi , �

dh
i 300, 300 kW all

�g,mini , �g,maxi 0, 1000 kW 3, 4, 7, 8
0, 2000 1, 2, 5, 6

�t,maxi 110 kW all
�im,maxi 2000 kW 1

0 else
ecap,i 500 kWh 3, 4, 7, 8

1000 1, 2, 5, 6
ai 0.98 - all

csti , c
im
i , cti 1, 250, 0.1 - all
cgi 5 - 2, 4, 6, 7

10 1, 3, 5, 8
"i, �i 0.01, 0.05 - all
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FIGURE 5 The evolution of SoC of agent 1 (top plot) and the power exchanged between agent 1 and its adversarial neighbor,
agent 2 (bottom plot).

the previously described system. Two simulation scenarios are considered, where we consider that false detection never occurs.
In the first scenario, it is assumed that f = 1, whereas in the second scenario f = 2. Figures 5 –7 show some plots of the
simulation results. From the top plot of Figure 5 , it is observed that the SoC value of agent 1 stays in the limit for all time steps
in both scenarios, showing the robustness of the decisions with respect to the attacks and system disturbance. Figures 6 and 7
show how agent 1 manages to disconnect from its adversarial neighbor (agent 2). Particularly in Scenario 1, agent 1 identifies
that agent 2 is an adversarial agent. Moreover, once one of the hypothesis probability values converge to 1, the bottom plot of
Figure 5 shows that agent 1 stops exchanging power with agent 2.
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FIGURE 6 The evolution of each hypothesis probability of agent 1 (top plot) and the connection decision of agent 1 at each
time instant (bottom plot) in Scenario 1. Note that Θ11 = {2},Θ

2
1 = {3},Θ

3
1 = {4}.
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FIGURE 7 The evolution of each hypothesis probability of agent 1 (top plot) and the connection decision of agent 1 at each
time instant (bottom plot) in Scenario 1. Note that Θ11 = {2, 3},Θ

2
1 = {2, 4},Θ

3
1 = {3, 4}.

6.2 Performance of the Attack Detection Scheme
In the second simulation study, we performMonte Carlo simulations to observe the attack detection scheme.We suppose that the
adversarial agents i = 2, 6, 7 attack with pai = 0.5 and the regular agents do not apply the active strategy of disconnecting their
neighbors so that the regular agents are always subject to attacks. Note that the probability of attack is set to be quite high in order
to observe more attacks, particularly undetectable ones. For these simulations, load and renewable power generation profiles
from the first simulation study are perturbed. We carried out seven simulations, each of which is 96 time steps length. Therefore,
we observe 672 detection instants for each regular agent. Table 2 shows the summary of the attack detection outcomes whereas
Figure 8 shows the attack detection of agent 1 in some time steps of one simulation. Correct detection means that an agent
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FIGURE 8 Top plot shows the detection variable da1,k (dot-dashed blue plot with cross markers) and the actual event, i.e.,
whether there is an attack (1) or not (0) (dashed red plot with circle markers). Bottom plot shows the attack disturbance of agent
1, wa

1,k. These plots are taken from one simulation.

TABLE 2 Detection Results of the Regular Agents

Agent Correct Detection (%) Undetectable Attack (%) False Detection (%)

1 82.74 16.82 0.44
3 99.40 0.00 0.60
4 82.59 17.11 0.30
5 79.61 20.09 0.30
8 49.85 50.15 0.00

Total 78.84 20.83 0.33

TABLE 3 The Average Local Performance Change During the Attacks

Case Study Adversarial Agent Regular Agent
2 6 7 1 4 5 8

6.1 19.7% 1.5% 4.5% 0.0% −0.3% −0.1% −0.2%
6.2 35.2% 8.9% 53.3% −0.4% −1.1% −0.6% −3.7%

Note: Agent 3 does not have any adversarial neighbors.

correctly detects whether there is an attack or not. As expected from the stochastic method that we applied, the probability of
false detection is less than ". One can see a false detection in the top plot of Figure 8 at time step k = 7.
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6.3 Discussions
The local performance improvements obtained by each adversarial agent when performing successful attacks in both simulation
studies presented in Sections 6.1 and 6.2 are shown in Table 3 . Furthermore, as can be seen in Table 3 , the performance of
the regular agents are degraded by the attacks. The degradation is relatively low compared to the improvement obtained by the
adversarial agents since most of the attacks can still be handled by the storage unit, whose cost per unit is cheaper than using the
dispatchable generator, whereas the adversarial agents manage to reduce the power production of their generators by performing
the attacks. However, note that the available power in the storage unit of a regular agent is lower after an attack occurs. Therefore,
the performance of a regular agent after an attack might still deteriorate and this performance degradation is not captured in
Table 3 .
It is also worth mentioning that an adversarial agent might actually perform an undetectable attack. Although the performance

improvement obtained by an undetectable attack is less than a detectable one since undetectable attack is limited, it will make the
identification process to take longer time to finish. For instance, as can be seen in Table 2 , the probability of correct detections
of agent 8 is 49.85%, implying that the adversarial neighbor of agent 8 has successfully performed undetectable attacks half
of the time. Note that, in the case study of Section 6.2, the average performance improvements obtained by the adversarial
agents 2, 6, and 7 by performing undetectable attacks are lower than the total average shown in Table 3 (9.7%, 0.1%, and
52.61%, respectively). Similarly, the performance degradation of each regular agent by undetectable attacks is also quite low
(less than 0.6%). Nevertheless, in order to guarantee that the performed attack is undetectable, an adversarial agent will require
local information of its neighbors, which is not shared in the presented problem setting. Therefore, it might be difficult for the
adversarial agents to keep attacking without being detected.

7 CONCLUSION AND FUTUREWORK

A distributed approach for an economic dispatch problem of interconnected microgrids in the presence of adversaries has been
proposed. The adversarial actions are considered as uncertain disturbances and the economic dispatch problem is formulated as
a chance-constrained problem. Thus, we propose to apply a two-step stochastic approach so that the control inputs computed are
robustly feasible against the adversarial behavior. Furthermore, the proposed approach also includes a methodology to identify
the adversarial agents and mitigate the attacks from these agents. The methodology is based on hypothesis testing using Bayesian
inference and requires each regular agent to solve a local mixed-integer problem to decide the connection with its neighbors.
Therefore, our proposal is a combination of active and passive methods to deal with unexpected disturbances.
As future work, we will consider analyzing potential clever attacks from adversarial agents such that the attacks are hard to

be detected. In this regard, the interaction between regular and adversarial agents might also be analyzed from the perspective
of game theory. Moreover, we will also consider to improve the identification scheme by employing an information-sharing
scheme of the hypothesis probability among the agents. In addition, a more accurate model of the system should also be taken
into account in the future work. Since it will likely lead to a non-convex formulation, we will also investigate whether the present
results hold.
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APPENDIX

A LIST OF SYMBOLS

The symbols used in this paper are summarized in Table A1 .
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TABLE A1 The List of Symbols

Symbol Definition
 Graph representation of the system
 Set of nodes
 Set of edges
i Set of neighbors of agent i
 Set of adversarial agents
 Set of regular agents
�di,k Power disturbance (the difference between power load and power generated from non-dispatchable units) of agent i
�st Power delivered from/to the storage unit
�g Power generated by the dispatchable generators
�im Power imported from the main grid
�t Power transferred between two neighboring microgrids
�chi Maximum charging power of the storage unit
�dhi Maximum discharging power of the storage unit
�g,mini Minimum power can be generated by the dispatchable generator
�g,maxi Maximum power can be generated by the dispatchable generator
�im,maxi Maximum power can be imported from the main grid
�t,maxi Maximum power can be transferred
xi,k State of charge (SoC) of the storage unit
xmini Minimum level of SoC
xmaxi Maximum level of SoC
ai efficiency of the storage unit
csti Per-unit cost of using storage unit
cgi Per-unit cost of using the dispatchable generator
cimi Per-unit cost of importing power from the main grid
cti Per-unit cost of transferring power with neighboring microgrids
ℎp Prediction horizon
�i,k Lagrange multipliers associated to the coupling constraints
(r) Iteration in the distributed optimization algorithm
pai The probability of attacks performed by agent i
p̂ai The predicted probability of attacks received by agent i
wd
i,k Disturbance of the system due to the difference between forecast and actual power disturbance

wa
i,k Attack disturbance
"i Maximum level of violation
�i Level of confidence
i Probabilistic set that bounds the disturbances
� i Upper bound of the disturbances (parameter of hyper-rectangular i)
� i Lower bound of the disturbances (parameter of hyper-rectangular i)
dai,k Indicator of attack
nHi Number of attacks received
Hm
i The mth hypothesis of agent i

ℙk(Hm
i ) The probability of the mth hypothesis of agent i at time instance k

vji,k Indicator of connection between agent i and its neighbor j ∈i
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