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Abstract— This work presents a distributed model predictive
control strategy as an alternative to conventional centralized ap-
proaches, which often suffer from implementation issues when
applied to large-scale systems. The overall system is partitioned
into minimally coupled subsystems based on its structural
properties. Then, the coordination among the subproblems is
achieved by means of a communication protocol, which allows
each local controller to broadcast its solution to the rest of
controllers with a coupled variable. The proposed approach is
tested on the quadruple-tank process, and its effectiveness is
proved by comparing the obtained results to those documented
in an existing benchmark.

[. INTRODUCTION

The current complex technological processes lead to the
concept of large-scale systems, which usually involve the
transmission of matter and energy. Moreover, they are often
spatially distributed and cover large areas. Typical examples
include water networks, electrical grids and chemical and
refining plants, among others. Thus, the control of these
systems requires the use of advanced strategies.

Model predictive control (MPC) has found an overwhelm-
ing success due to its ease of understanding and application.
The underlying principle of this approach consists in using
a prediction of the system response, characterized by a
dynamical representation of the process, to solve an online
finite-horizon optimization problem at each sampling instant.
Moreover, multiple performance objectives and physical and
operational constraints can be dealt with in a natural manner.
An exhaustive list of industrial applications using MPC is
presented in [1], whereas other challenging applications of
varied nature are addressed in [2].

Despite the adequacy of MPC to regulate the behavior
of complex systems, centralized implementations are often
impractical due to a number of reasons, e.g., spatial distribu-
tion, multi-time scales and non-scalability. Indeed, the large
dimensionality of the centralized model often renders such
representation impractical to reconfigure [3]. Moreover, the
centralization of decisions in a single controller might affect
the reliability of the network [4]. All these reasons foster the
development of non-centralized strategies, which divide the
system into a set of smaller subsystems, aiming at reducing
the control design complexity and the computational demand.
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Two main types of strategies can be distinguished: decen-
tralized approaches, which ignore the interactions between
subsystems; and distributed approaches, which explicitly take
into account the interactions in the control design, and thus
usually offer a better performance with respect to the former
approach. Extensive surveys on distributed MPC (DMPC)
have been carried out in [5], [6]. Furthermore, a number of
relevant works on the topic have been gathered in [7].

Summary of the paper and contribution

This work presents a DMPC strategy applicable to large-
scale systems. The design comprises two steps: first, the
centralized problem is divided into smaller subproblems,
thus distributing the computational burden among local
controllers. System partitioning often leads to a set of
subsystems which are not completely decoupled from one
another, and thus a coordination mechanism among the
local controllers is desirable. Several methods based on the
decomposition of the Lagrangian relaxation (LR) can be
found in the literature, but these are not well suited in
the case of large-scale systems. Indeed, these approaches
address the coordination of the subproblems by updating
the Lagrange multipliers to achieve convergence, which is
not trivial in the case of large-scale systems. Instead, the
proposed coordination strategy consists in a communication
protocol that allows the controllers to exchange information
with one another regarding the coupled variables. Thus, the
proposed approach does not require to compute and update
the multipliers at each sampling instant.

The rest of the paper is organized as follows: Section II
states the control problem to be solved and identifies the nec-
essary steps to arrive at the final solution. Then, the system
partitioning is proposed in Section III, and a communication-
based DMPC is derived in Section IV. Section V tests the
approach on the quadruple-tank process, which allows to
draw conclusions in Section VI.

Notation

Throughout this paper, let Z>o, R™ and R"*™ denote
the set of natural non-negative scalars and the spaces of n-
dimensional column vectors and n-by-m matrices with real
entries, respectively. Scalars are denoted by either lowercase
or uppercase letters; vectors, by bold lowercase letters;
matrices, by bold uppercase letters; and sets, by calligraphic
symbols. Set inclusion is denoted with the symbol C; trans-
position, with the superscript T; and element-wise relations
of vectors, with the operators <, <, =, > and >.



II. PROBLEM STATEMENT

Consider the following general linear discrete-time state-
space representation:

(1a)
(1b)

Xpt1 = Axy + Buyg,
v = Cxi + Duy,

where k € Z>( denotes the discrete-time instant. Moreover,
the vectors x; € X C R"™, up, € U C R™ and y; €
Y C RR™ represent the system states, control inputs and
system outputs, respectively, while A, B, C and D are the
system matrices. Furthermore, X, U/ and ) define, using set
membership, the feasible sets according to the physical and
operational constraints [8].

Consider that a centralized MPC (CMPC) has been de-
signed for (1) to achieve the desired control objectives. The
following optimization problem must be solved:

min J (u“k,xi‘k) (2a)
RIS AP R TS
subject to:
Xi+1|k :Axi|k+Bui|k7 7 € {k,...,k+Hp—1}, (2b)
w, €U, i€{k,...k+ H,—1}, (2¢)
X € X, jelk, ... k+ Hy}, (2d)
Xg|k = Xk (2e)
k+H,—1

with {ug}, £ {Wppps W 1> -+ 5 Wb, — 1k }» and
X)), 1s defined in the same manner. Constraint (2b) represents
the state equation given by (la), (2c) and (2d) define the
feasible input and state sets, respectively, and (2e) sets the
initial condition of the system.

The CMPC yields the optimal sequence of inputs (with
respect to the chosen criteria) to be applied to the system,
provided that (2) is feasible. However, only uy,; is applied
to the system and the rest of components are disregarded,
according to the receding philosophy

w7 S uy, (3)
which is repeated at the next time instant.

Assuming that (2) is designed in such a way that stability
and feasibility can be guaranteed, the problem at stake is that
of deriving a non-centralized approach applicable to large-
scale systems. To this end, consider that the overall system
described by (1) can be divided into M subsystems, where
the model that represents the [-th subsystem is as follows:

0y = AR+ B @)
M
3 (A(m)ngm) + B(m)uim)) ;
ml
vy = cOx 4 DOW? 4 (4b)
M
ml

where the summation terms in (4a) and (4b) represent the
couplings between the [-th and m-th subsystems.

Then, the main idea consists in dividing the centralized
control problem into several parts, where each of them is
taken care of by a local controller. It is desirable that the
local controllers exchange information with one another in
order to account for the interactions among subsystems. In
this regard, and taking into account the differences between
the two main classes of non-centralized strategies described
in Section I, a distributed control approach is preferred.

The overall system partitioning and the design of dis-
tributed controllers will be tackled in the next sections.

III. SYSTEM PARTITIONING

The proposed partitioning strategy makes use of the adja-
cency matrix of the graph associated to (1). Once this matrix
is obtained, it is then manipulated to identify the subsystems
into which the overall system can be decomposed. The
partitioning is performed offline, prior to solving the DMPC.

A. Building the adjacency matrix

The adjacency matrix of a system defines its structural
properties in a compact manner. The same information can be
retrieved from the graph representation, where each variable
is assigned to a vertex of the graph, and an edge connects a
pair of variables whenever the corresponding coefficient in
the system matrix is different from zero. This matrix can be
built as follows [9]:

A B o0
E=|0 0 of, 5)
C 0 0

where the matrices A = (a;;) € R™ ", B = (bij) €
R™*™e and C = (¢;;) € R"v*™= are defined as

_ Lai; #0, - 1, b # 0,
07 aij = 07 07 bU = O’

G — 1, Cij # 0,
Y 07 Cij = 01

(6)

and the dimensions of the several O blocks are as given in
[9] so that E is a square matrix.

However, note that (5) needs to be adapted in order to deal
with the general model (1). Indeed, the original formulation
does not represent systems with a nonzero feedforward
matrix D. Thus, the definition of E is extended as follows:

~ [A B o
E=|0 o of, @)
C D o
where A = (dij)’ :B = (lN)ij), C = (5”) and f) = (CL])

are given by
~ 17 Qi 7& 07 l~7 o 17 blj 7é 07
i =0 0 ij = ~
y Qij = 07 07 bl] - 07 (8)
1 1j 07 1 17 di’ 07
5ij_{7cj7_é dlj_{ j#

0, di; = 0.



Algorithm 1 System partitioning based on the structural
properties
Require: system matrices A, B, C, D

1: Compute A.B,C,D using (8)

2: Build E using A B, C, D as indicated in (7)

3: Apply the Cuthill-McKee ordering algorithm to E

4: Identify blocks within Ey; with minimal couplings

5: Obtain the partitioned system (4) from each block

B. The reordering Cuthill-McKee algorithm

Once the adjacency matrix has been obtained, the next
step consists in determining possible configurations for the
subsystems. The definition of configuration in this framework
is that of a set of groups of variables and model equations,
where each group defines a subproblem. The chosen ap-
proach consists in manipulating E such that a block-diagonal
structure is attained. A number of methods can be employed,
although not all of them are well suited for this task. For
instance, some approaches compromise the coupling infor-
mation due to the elimination of some matrix coefficients.
In this regard, the Cuthill-McKee ordering algorithm [10]
is chosen, which consists in performing row and column
permutations to yield a reordered matrix with all its nonzero
entries closer to the diagonal.

The steps to be followed in order to perform the partition-
ing of the system into a set of subsystems are detailed in
Algorithm 1.

IV. DMPC STRATEGY

Section III presented a methodology to decompose a
system into a set of subsystems by identifying blocks within
matrix E. Since the identified subsystems are seldom com-
pletely decoupled from one another, the control strategy must
ensure the coordination of the local controllers [11].

A. Motivation

The coordination strategy proposed in this paper is based
on a modification of the classical Lagrangian relaxation
(LR) problem. This methodology approximates a constrained
optimization problem by a simpler one by relaxing some
conditions, thus providing approximate solutions to the orig-
inal problem. The main idea consists in moving complicating
constraints, i.e., constraints that hinder the solution of the
optimization problem, to the objective function, penalizing
their violation by means of Lagrange multipliers [12].

Several decomposition methods have been derived based
on the LR problem, aiming at obtaining smaller subproblems
that are easier to solve. For instance, the optimality condition
decomposition (OCD) approach presented in [13] solves the
decomposed LR problem by fixing some variables in the
complicating constraints at each iteration, and then updating
the multipliers. It is precisely the update of the multipli-
ers which allows to coordinate the several subproblems.
Nevertheless, the performance of the OCD is demonstrated
only for small numerical problems, for which it is rather

straightforward to obtain and update the values of the mul-
tipliers. This is not the case when dealing with large-scale
systems. Thus, the proposed approach does not lean on the
computation and update of the multipliers. Rather, it bounds
the differences of the solutions obtained for the coupled
variables in the different subproblems. The several local
controllers exchange information with one another regarding
the coupled variables, aiming at converging to the same
value. This protocol leads to a distributed control strategy.

B. Control design

The structure of the distributed controllers is based on
the CMPC formulated in (2), which has been designed to
guarantee stability and feasibility, as well as to perform
according to the specifications. Since the local controllers
are based on the centralized scheme, the communication-
based DMPC approach is expected to provide a performance
similar to the CMPC. Note that all the local control problems
have the same structure. Thus, the controller assigned to the
l-th subsystem solves the following problem:

min JO (9a)
u® k+HT’_1 ) k+H1>
Yilk ’{xl\k
Gy sy
subject to:
x® l l) HINO)
Xie = AU+ BOwg, (9b)
ic{k, .. k+ Hp -1},
ul) €UV, i€ k.. k+H,—1}, 9¢)
<‘) e XV, je{k, ...k+H,}, (9d)
I(cl\)k = Xk, (%e)
) ~ (l) (m) ()
Yk S W T W S Vo (9f)
ie{k,...k+H,—1}, Vm|u DA™ £ g,
A =0, i€ {ky ok + H, 1}, 99)
O] O _ (m (1)
~ 0k < Xk <8 (9h)
Je {k,...,k+Hp}7 vm | xW nx™ £ g,
5513{3 >0, je{k,....k+H,} (9i)

Constraints (9b)—(9e) are equivalent to those in the central-
ized problem (2). However, the formulation of the DMPC is
extended with respect to the CMPC by means of coordinating
constraints for the coupled inputs and states, given by the
pairs (9f)—(9g) and (9h)—(9i), respectively. The coordination
is performed with all subsystems with a coupled input and
state with respect to the [-th subsystem. The terms with a
superscript (™) are certainly not decision variables to be
optimized by the [-th but by the m-th controller, which are
then transmitted to the [-th subsystem.

Aside from accounting for the communication between
subsystems, constraints (9f)—(9i) guarantee that the differ-
ences between the solutions remain within the specified

bounds. These bounds, denoted by 'y(l and 6(| ;> are defined



Algorithm 2 Communication-based DMPC implementation

Require: all parameters for the M subproblems
1: Initialize the subsystem states as x(()l), withl=1,.... M
2: for k=0:1%g,, —1do
3:  Solve the M control subproblems defined in (9)
4:  while any difference between local solutions exceeds
the threshold or any local solution does not converge

do
5: Update the transmitted information as: ul(.l) = ug‘ll)c,
0 _ @
Xi = Xk
6: Repeat step 3
: end while
8:  Set uQMDC B 2 u,(fl)k and apply it to the [-th subsys-

tem, for [ =1,.... M
9:  Measure/estimate the state x,ilil, with [ =1,.... M
10: end for

here as decision variables to avoid infeasibility problems in
the first iterations at each time instant, but must be monitored
to ensure that significant differences in the solutions are not
allowed.

Remark 1. The general structure of (9) allows to consider
couplings in the inputs and states. However, the particular
system partitioning of each case study may override the need
for certain communication links. (]

Algorithm 2 illustrates the idea described in the previous
lines. The while loop within the main simulation loop is
only executed provided that the solution computed in the first
iteration does not comply with the specifications, expressed
in terms of convergence and accuracy of the local solutions.
When all the local solutions converge from one iteration
to the next one and the values of the coupled variables
computed by all the agents involved are similar enough, the
simulation can move on to the next time instant.

Remark 2. The only difference between consecutive itera-
tions lies in the fact that the information broadcast to the
rest of agents involved is updated to consider the most recent
computed values. The current state used in the computation
of the control law remains the same until the conditions are
met, and the simulation can move on to the next instant. [J

V. CASE STUDY: THE QUADRUPLE-TANK
PROCESS

In order to illustrate the system partitioning and the DMPC
strategies presented in Sections III and IV, the quadruple-
tank process depicted in Fig. 1 is considered. This multi-
variable zero location and direction laboratory process has
been reported in detail in [14], proving its suitability for
the purpose of control education. Furthermore, the four-
tank process has been considered in [15] as the benchmark
upon which several centralized and non-centralized control
algorithms are tested, aiming at assessing and comparing
their performances. A real prototype allows the authors to
test their approaches and draw conclusions from real data
collected by performing physical experiments.

IJ;\ \J\]I

Fig. 1. Schematic diagram of the quadruple-tank process, taken from [15]

Motivated by the latter reference, the DMPC proposed in
this work is also tested (in simulation) on the quadruple-
tank process. Even though the proposed distributed approach
was initially conceived for large-scale systems, it can still be
tested on smaller systems that can be decomposed into a set
of smaller subsystems, as is the case. First, the dynamical
model of the process is provided, as well as the experimental
design defined in [15], which allows to compare their results
with those obtained in this work. The implementation is
carried out in MATLAB®, using YALMIP [16] as parser.

A. Description of the process

The goal of the control problem consists in steering the
water levels of the two lower tanks to the desired values.
The voltages applied to two pumps allow to convey water to
the four tanks. Applying mass balances and Bernoulli’s law
to the system yields

dhl ai as Va
L= L 2ghy + 22 /2ghs + 2qa,
i g gny + 5 gns + Sq
dh

T2 = 2 faghy + 2 \/2gha + Lap,
dt S S S (10)
dhs _ 03 johe 4 L

dt - S gns S 4b,

dhy a4 — Ya

— = ——1/2gh s

a gVt g

where h; [m] and a; [m?2] are the water level and the
discharge constant of the i-th tank, respectively, with ¢ €
{1,2,3,4}, S [m?] is the cross section of the tanks, g;
[m3h~'] and ; (dimensionless) denote the flow and the ratio
of the three-way valve of the j-th pump, with j € {a,b},
respectively, and g [ms~2] is the gravitational acceleration.
The values of the parameters are taken from Table 1 in [15].
Equation (10) constitutes the simulation model.

In order to test the DMPC, a linear prediction model
is derived by linearizing (10) around an operating point,
which is defined by the equilibrium levels given in the
previously referenced table. This model is described by
deviation variables around the operating point as: x; =
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Fig. 2. Reference water levels for tanks 1 and 2

hi —h? i€ {1,2,3,4}, u1 = ¢o — ¢° and up = q, — ¢.
The linearized continuous-time state-space model reads as:

dx

= = Ax+B,
gt heX T Bt (11)
y= cha
with x = [z1 T2 23 74]7, u = [u1 us]", y = [z1 x2]" and
=L o L o
T1 1 T3 1
A=l0 = 0 =
’ 0 0 ;—31 01’
0 0 o0 a2)
o 0
0 2 1 00 0
B. = 3 > C.= ’
0 e {0 10 0}
= 0

where 7, = S/ (a“/Qh? / g) [s] is the time constant for
the i-th tank. In order to implement the DMPC, (11) is
discretized with a sampling time 75 = 5 s.

B. Experimental design

As stated before, the main objective consists in controlling
the water levels of tanks 1 and 2 so that they stay as close as
possible to the reference levels. A set of reference changes
are featured throughout the experiment designed in [15],
aiming at testing different equilibrium points that are far
from one another. The reference signals are depicted in Fig.
2. Note that the initial values correspond to the operating
points used in the linearization of (11).

In order to compare the proposed approach with those
tested in [15], the same performance index is considered:

N-1
7= 37 (1) = s(0)* + (hal) = sa(k)* +
k=0 (13)

0.01 (qa (k) — g3 ())” + 0.01 (5 (k) — g; (k))?),

where ¢; and ¢; are the values of the manipulable variables
computed for the setpoints s; and s, in steady-state condi-
tions. Besides, the performance index is not computed from
the start of the experiment, but from the moment when the
operating point is reached, i.e., at t = 2700 s.

C. Results

First, the partitioning approach presented in Section III is
applied to (11). The adjacency matrix can be computed using
(5)-(6) instead of the general case given by (7)—(8), as (11)
does not feature a feedforward matrix. Its computation yields

ry1 T2 T3 T4 UL U2

M1 0 1 0 1 0 0 07
0 1 0 1 0 1 0 0
0 0 1 0 0 110 O
0 0 0 1 1 0[]0 O

E = . (14)

0 0 0 0 0 010 O
0 0 0 0 0 0 0 0
1 0 0 0 0 010 O

1 0 1 0 0 0 00 0]

Two possible partitionings can be identified from (14)
by analyzing the incidence of each variable (columns) in
the state and output equation (rows). Moreover, as the
structure of the model is rather simple, it is not necessary
to resort to the Cuthill-McKee algorithm in order to be able
to identify possible decompositions for the quadruple-tank
process. However, the partitioning of large-scale systems
usually requires the reordering step, given the complexity
and dimensionality of the centralized model.
e The first partitioning groups tanks 1 and 3 (rows 1, 3
and 7) in one subsystem, and tanks 2 and 4 (rows 2,
4 and 8) in the other one. This partitioning leads to a
coupling in the inputs, and is the one proposed in [15].

o The second partitioning gathers tanks 1 and 4 (rows 1,
4 and 7) in one subsystem, and tanks 2 and 3 (rows 2,
3 and 8) in the other one. This partitioning leads to a
coupling in the states.

Both partitionings result in two subsystems, each of them
comprising two tanks. Since the degree of coupling is the
same for both partitionings (two coupled inputs versus two
coupled states), the second partitioning is chosen in this work
due to its superior performance after trying both. However,
in the future it will be investigated how to include the
performance index in the partitioning algorithm.

Remark 3. The chosen partitioning overrides the need for
constraints (9f) and (9g) in the DMPC provided in Section
IV-B, being only necessary for the local controllers to share
information regarding the coupled states. (]

Therefore, the variables of each subsystem are as follows:
xM = {z1, 24}, u® = {u}, yO = {z}, x@ =
{xg,23}, u® = {uy} and y® = {a,}. Based on this
partitioning, matrices A(), B®) and C() can be obtained
from (12) by simple inspection, for [ = 1,2. Then, a DMPC
is designed for each subsystem, with local objective functions
based on (13). The results are depicted in Fig. 3, and show
that the proposed controller is able to steer the water levels
to the references with no significant error. Additionally, Fig.
3(c) depicts the controlled flows, whereas 3(d) shows the
evolution of the water levels of the upper tanks, which are
not forced to follow any reference signal.
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The performance index J, computed according to the indi-
cations given in Section V-B, equals 32.54. This performance
is similar to those provided by the several controllers tested
in [15], which allows to conclude that the performance of
the proposed DMPC is comparable to the rest of controllers
featured in the reference.

VI. CONCLUSIONS

This work has presented a DMPC approach for large-scale
systems as an alternative to centralized strategies, which
often encounter implementation problems. The proposed
approach is based on the partitioning of the system by
considering its structural properties, which leads to a set
of smaller subsystems with minimal couplings. Then, the
obtained subproblems are coordinated by means of a commu-
nication protocol, allowing the local controllers to exchange
information regarding the coupled variables. The proposed
methodology is tested on the quadruple-tank process, for
which an exhaustive benchmark exists. Although not strictly
a large-scale system, this system possesses a number of
interesting features that makes it a suitable case study. In the
light of the results, it can be stated that the proposed approach
performs satisfactorily, fulfilling the design objectives.

Despite the promising results, and following the statement
in Section V-C, an issue to be addressed in future works
consists in adding the cost function to the equations of the
model to perform the partitioning of the system. Indeed,
the current methodology is only based on the structural
properties of the system, and thus only takes into account
couplings in the dynamics. However, it is interesting to
note that, depending on the proposed partitioning, the cost
function might also be coupled. This consideration motivates
the extension of the system partitioning approach.

Finally, and although the goal of this paper is to design a
general methodology that can be applied to a large number
of cases, the proposed approach has been derived with
one particular system in mind: inland waterways. Indeed,
centralized control and state estimation techniques have been
successfully tested in [17] and [18], and even preliminary dis-
tributed control results have been obtained in [19]. However,
applying the presented strategy to such systems requires to

extend the approach with distributed state estimation, as the
states are not directly measurable. Thus, it remains as an
open problem that will be tackled in future works.
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