
Dynamic Cloth Manipulation with Deep Reinforcement Learning

Rishabh Jangir, Guillem Alenyà, Carme Torras

Abstract— In this paper we present a Deep Reinforcement
Learning approach to solve dynamic cloth manipulation tasks.
Differing from the case of rigid objects, we stress that the
followed trajectory (including speed and acceleration) has a
decisive influence on the final state of cloth, which can greatly
vary even if the positions reached by the grasped points are
the same. We explore how goal positions for non-grasped points
can be attained through learning adequate trajectories for the
grasped points. Our approach uses few demonstrations to im-
prove control policy learning, and a sparse reward approach to
avoid engineering complex reward functions. Since perception
of textiles is challenging, we also study different state represen-
tations to assess the minimum observation space required for
learning to succeed. Finally, we compare different combinations
of control policy encodings, demonstrations, and sparse reward
learning techniques, and show that our proposed approach can
learn dynamic cloth manipulation in an efficient way, i.e., using
a reduced observation space, a few demonstrations, and a sparse
reward.

I. INTRODUCTION

Day to day tasks of a household robotic assistant would
involve manipulating deformable objects (cloth folding [1],
bed making [2], getting dressed [3], [4]). But the majority of
state-of-the-art robotic manipulation work focuses on rigid
objects. Progress towards deformable object manipulation
has been scarce, because manipulating deformable objects
poses additional challenges over rigid objects. The shape
of deformables varies largely along and between trajectories
with the same end points and it is difficult to characterize
due to their high-dimensional configuration spaces.

Deformable object manipulation can be achieved by static
or dynamic manipulations. In dynamic manipulation, forces
due to acceleration play a relevant role along with kine-
matics, static and quasi-static forces. Dynamic movement
permits controlling non-grasped points as well, increasing in
a way the dexterity of manipulation process at the expense of
the increased complexity of underactuation. Recent research
in deformable object manipulation ([5], [6], [7]) mostly
considers only static manipulation tasks. The majority focus
on explicit physics-based modeling of deformable behavior
in simulation and they attempt to find an optimal trajectory
to guarantee the desired outcome. Some studies have tried
dynamic manipulations of flexible objects ([8], [9], [10])
such as (dynamic) cloth folding, rope knotting, etc. with

*This work has been supported by the ERC project Clothilde (ERC-2016-
ADG-741930), the HuMoUR project TIN2017-90086-R (AEI/FEDER, UE)
and by the AEI through the María de Maeztu Seal of Excellence to IRI
(MDM-2016-0656).

The authors are with Institut de Robòtica i Informàtica Industrial,
CSIC-UPC, Llorens i Artigas 4-6, 08028 Barcelona, Spain. {rjangir,
galenya, torras}@iri.upc.edu

Fig. 1: Frames from rollouts of the learned policy are shown
above for three tasks. The agent (red sphere) interacts with
the cloth to move selected vertice/s to their target positions.
These are complex, under-actuated dynamic tasks where, to
succeed, the agent needs to learn to successfully manipulate
parts of cloth which are not in its direct control.

physics-based modeling ([11]). A downside of these ap-
proaches and some other approaches that rely on visuomotor
servoing ([12], [13], [14]) is the requirement of significant
engineering specific to the manipulation task. Additionally,
even while only considering static manipulation these models
tend to be very sensitive to the deformation parameters of the
object. It is then safe to say that these approaches would fail
when considering dynamic manipulation tasks where the task
performance heavily relies on the deformation parameters.

Alternative approaches that employ trial-and-error-based
machine learning methods ([15], [16], [17], [18], [19], [20])
to map observations directly to actions have shown interest-
ing results on robotic manipulation of deformable objects,
but they restrict themselves to static manipulation as well.
Regarding dynamic manipulation, [21] developed a control
method to realize a target state by calculating an optimized
time-series joint torque command, but they mainly consider
only a 2D actuation that allows only simple manipulation
tasks and [22] considers only quasi-static movements.

Currently, training these model-free learning-based ap-
proaches is highly sample inefficient. Fortunately, simu-
lations provide an efficient way to train control policies.
However, accurate simulation of deformable objects is chal-
lenging. Previous approaches have investigated the usage of
several simulators for deformable objects ([23], [24]) but
none of them have proved to be a benchmark for textile



object simulation (like Mujoco [25] for rigid objects).
Large configuration spaces can possibly be tackled by

using RGB observation data. However, this would increase
the computing cost by a large amount and, in addition,
it is challenging to learn directly in the high-dimensional
input state-space, which can also be redundant given the
aim of the task. Moreover, current learning algorithms that
use RGB information to solve cloth manipulation tasks [18]
note the need of auxiliary inputs for the learning to succeed
anyway. Nevertheless, they restrict themselves to solving
static manipulations tasks only.

In order to address these problems, in this work we employ
a model-free deep reinforcement learning (RL) method to
learn dynamic manipulation of textile objects. Our method
involves minimal task engineering as we take advantage of
very few demonstrations and sparse rewards. This has been
extensively studied in the context of rigid object manipu-
lation [26], [27], [28], [29], and a few studies on static
deformable object manipulation [18], [30], but to the best
of our knowledge no study has previously investigated the
applicability of deep RL methods to dynamic deformable
object manipulation tasks. We use the SOFA simulator [31]
to define 3 textile manipulation tasks (Fig. 1): one static
manipulation task of folding a napkin diagonally, and two
dynamic manipulation tasks of folding a napkin sideways
and placing a napkin on a table. We provide a single sparse
reward on task completion in all the tasks. Due to the
challenging nature of the dynamic tasks being considered, we
omit RGB information and directly work on the simplified
clothing state consisting of a few distinguished points.

Through our experiments, we (a) demonstrate the basic
difference between static and dynamic manipulations and
show that the simulator is capable of capturing these differ-
ences. (b) Investigate the trade-off between complexity and
effectiveness to find an accurate textile state representation
for our tasks. (c) Show that our method can learn valid dy-
namic manipulation behaviors using a low-fidelity simulation
platform and test different combinations of the components
of the algorithm to show their individual effect.

II. BACKGROUND

We consider a standard RL problem where an agent
interacts with an environment according to a policy in order
to maximize rewards over discrete timesteps. The framework
considers partially observable environments that are modeled
as continuous state partially observable Markov decision
processes (POMDPs) defined as a tuple (S,A,P ,r, O, ρ0,γ),
where S is a set of full states of the environment, A is
a set of continuous actions, P : S × A × S → R is
the transition probability distribution, r : S × A → R is
the reward function, ρ0 is the initial state distribution, and
γ ∈ (0, 1] is the discount factor. The decision process is
partially observable and the agent receives observations o
from the set of observations O.

The goal of the agent is to maximize the multi-step return
Rt =

∑T
t′=t γ

t′−trt′ , where T is the fixed horizon of each
episode. The objective during learning is to find an optimal

policy π∗ : O → A that maximizes the expected return of
the agent J(π)

π∗ = argmax
π

J(π). (1)

lternatively, the expected return upon taking an action at
in state st can be measured by a Q function Q(st, at) =
E[Rt|st, at]. In terms of Q function the objective can be
written as,

π∗ = argmax
π

Q(st, π(ot)). (2)

The transition probability distribution P determines the con-
sequences of the agent’s actions and is dependent on the
dynamics of the environment. The dynamics is therefore
of crucial importance, as it determines the behaviors that
can be realized. Deformable objects introduce an additional
component in the environment dynamics which is lacking for
rigid objects, making it more difficult to learn valid behaviors
without direct access to the environment dynamics.

A. Deep Deterministic Policy Gradients

DDPG [32] is a policy gradient algorithm for learning
control policies in continuous action domain. It uses off-
policy data and the Bellman equation to concurrently learn
the Q-function and a policy. It uses an actor neural network
(policy network), parameterized by a set of parameters θπ ,
that maps observations to actions π(θ) : O → A and tries to
maximize Q(st, πθ(ot)) at each time-step t. However, the Q
function is not known and DDPG employs a critic neural
network, parameterized by parameters θQ, to estimate Q
values of actions at each time-step t.

During training, the agent acts in the environment accord-
ing to noisy policy at = π(ot)+N(0, σ). The Gaussian noise
facilitates exploration. Each transition the agent generates
is stored in a replay buffer R from where it is sampled
in batches of N tuples to train the networks. Sampling
from a replay buffer stabilizes training by removing tem-
poral correlations and therefore reduces the changes in the
distributions the networks are trying to learn. DDPG also
employs target networks Q∗ and π∗ to reduce the risk of Q
value estimates oscillating or diverging due to the recursive
Q value definition in the Bellman equation.

B. Universal Policy

A universal policy [33] is a simple extension where the
goal g ∈ G is provided as an additional input to the policy
π(a|o, g). The reward is then also dispensed according to
the goal r(st, at, g). In our framework, a different goal
will be randomly sampled at the start of each episode, and
held fixed over the course of the episode. For the cloth
manipulation tasks, the goal specifies target location for the
selected vertices as discussed later.

C. Hindsight Experience Replay

Learning from a sparse binary reward is known to be
challenging for most modern RL algorithms. We will there-
fore leverage a recent innovation, Hindsight Experience
Replay (HER) [34], to train policies using sparse rewards.
In this work, we consider sparse binary rewards of the



form, r(s, g) = 0 if g is satisfied in s, and r(s, g) =
−1 otherwise. Consider an episode with trajectory τ ∈
(s0, a0, ..., aT−1, sT ), where the goal g was not satisfied
over the course of the trajectory. Since the goal was not
satisfied, the reward will be -1 at every timestep, providing
little information to the agent.

But suppose that we are provided with a mapping m : S →
G, that maps a state to the corresponding goal satisfied in
the given state. For example, m(sT ) = g′ represents the goal
that is satisfied in the final state of the trajectory. Rewards
are then recomputed under the new goal g′. The trajectory
will be successful under the new goal as g′ is satisfied in s.
By replaying past experiences with HER, the agent can be
trained with more successful examples than those available
in the original recorded trajectories. We have considered
replaying 4 goals from the future states of a trajectory, but
HER is also amenable to other replay strategies.

D. Learning from demonstrations

Exploration in continuous state-space environments is an-
other existing challenge for deep RL algorithms. Moreover,
the exploration problem is magnified when we consider de-
formable object environments due to their large configuration
spaces. We combine DDPG algorithm with several practical
extensions as introduced in ([27], [35]), namely an additional
buffer to store demonstration data, a modified loss that uses
behavior cloning loss as an auxiliary loss, and a filter on the
Q values which accounts for sub-optimal demonstrations.

III. METHOD

A. Simulation

Development towards finding effective deformable object
simulators has been scarce. This is because of the difficulty
of efficiently simulating deformations and the large diversity
observed in case of deformable objects. Although there have
been efforts towards using existing simulators that support
deformable objects for deep RL research ([23], [24]) there
have been no benchmark simulations or tasks. An important
case of deformable objects is textile/clothing. Matas et al.[18]
used PyBullet [23] for simulating towel manipulation tasks,
but they reported issues with the simulator codebase such
as instability as it only implements some rudimentary and
experimental functionality. Instead, for this work we use the
SOFA simulation framework [31]. SOFA provides us with
more realistic and intricate deformations of the clothing. In
comparison with PyBullet we found that SOFA was much
more stable and flexible. Although the simulator still does not
support self-collisions in the cloth, it provides functionalities
to define the physical properties associated with the kind of
deformation required.

B. Cloth manipulation environments

We designed and implemented 3 environments using Ope-
nAI gym [36] API for solving manipulation tasks involving
a square cloth of fixed shape and size placed on or around a
rigid table. The cloth is modeled as a mesh of triangles joined
together by their vertices. We call these vertices nodes in the

cloth mesh, mass of the cloth is uniformly spread among all
nodes. A rigid ball is used as a manipulator which can attach
itself to a node on the cloth. The central aim of this work is to
study dynamic manipulation of textiles, thus we bypass the
need to model a physical grasp in the simulation. Instead,
we use a fake grasp implemented as a binary point grasp
to manipulate the textile. Creation of the grasp constraint
is subject to the manipulator being in close proximity to a
cloth node. Other forces acting on the clothing apart from
the manipulator are gravity and interaction forces with the
table such as friction.

C. Tasks

Fig. 2 shows the textile manipulation tasks we consider
in the environments defined above. Each task runs for a
fixed number of simulation steps T (different for different
tasks) before it automatically gets reset to the initial state.
At the start of each episode, the manipulator is initialized
to a default pose near the vertex to be manipulated, and
the cloth is placed randomly within a fixed bound on the
table or around it depending on the task. There are no
deformations/wrinkles in the cloth at the start of an episode.
Goal state g varies for each task depending on the aim
and definition of tasks which we discuss later. For dynamic
manipulation tasks the motion of manipulator is constrained
within a predefined workspace in order to demonstrate the
emergence of dynamic behaviors. The 3 environments are,

Diagonal (Static) Folding: This task involves diagonally
folding a piece of cloth lying on a table. Goal state is
achieved if the vertex being manipulated is within a threshold
distance (δ=10 units) of the goal location. The goal location
is randomly sampled along the diagonal in close proximity
to the opposite vertex. No restrictions on the workspace of
the manipulator in this task.

Sideways (Dynamic) Folding: This task involves side-
ways folding a piece of cloth lying on a table. Goal state
is achieved if both pairs of adjacent vertices are within a
threshold distance (δ=10 units) of goal location. The goal
locations are randomly sampled close to the destination
vertices. The manipulator workspace is constrained in such a
way that it cannot reach the other half of the cloth. The only
way to manipulate the vertex in the other half of the cloth
then is to rely on the fabric connection between the vertices
and swing the other vertex to its goal location.

(Dynamic) Placing on a table: This task involves partially
placing a piece of cloth on a table. The cloth hangs parallel
to an edge of the table outside the table space. Two vertices
of the cloth are grasped by two rigid ball manipulators at
all times and the other two vertices are freely hanging. Goal
state is achieved when both hanging vertices are within a
threshold distance (δ=20 units) of goal locations. Two goals
are randomly sampled such that the line connecting them is
parallel to the edge of the table. Similar actions are applied
to both the manipulator and action space for this task is 3D.
The manipulator workspace is constrained and thus it cannot
go beyond the edge of the table. The only way to reach the



Diagonal Folding (T=200 steps) Sideways Folding (T=300 steps) Placing on a table (T=500 steps)

Fig. 2: Task definition diagrams are shown for each task. The goal state is reached when selected vertice/s are within a certain
threshold of their target positions. The target spheres (green) do not interact with the environment. In the last two tasks
the agent’s workspace is restricted as shown by a green plane and thus dynamic manipulations are required to successfully
reach the goal state in these tasks.

goal state is to swing the cloth such that the hanging vertices
land on the goal locations.

D. State and Action

The state is represented using positions and velocities of
selected nodes on the cloth, position and velocity of the
manipulator, position of the goal/s, as well as grasp state
of the manipulator. The combined features result in a state
space ranging from 34D to 85D depending on the number
of nodes selected on the cloth and the task. Actions from
the policy specify target velocities for the manipulator in
x, y and z directions as well as a boolean gripping action.
Manipulator rotation is not necessary for the tasks and is
therefore kept fixed. This yields a 4D action space for the
first two tasks and 3D action space for the last task where
gripping action is not used.

E. Learning behaviors from demonstrations algorithm

During initial exploration we found that DDPG alone was
not successful in solving any of the proposed tasks. We
suspected the failure was due to the additional complexity
that deformable objects bring to the environment with their
infinite configuration spaces. So we investigated possible
improvements ([27], [35]) alongside vanilla DDPG. This
led us towards employing demonstrations to aid the agent
in faster exploration. Firstly, an additional buffer RD was
initialized to contain demonstration data, at training time we
draw an extra ND samples from this demonstration buffer
along with environment interaction data from main buffer
in batches. Secondly, behavior cloning loss LBC was used
as an auxiliary loss to train the actor network only on the
demonstration samples in the data defined as,

LBC =

ND∑
i=1

(π(oi, Qπ)− ai)21Q(si,ai)>Q(si,π(oi)). (3)

In DDPG, a critic network is trained to predict Q values of
the actions taken by the actor. The final part in Equation 3

corresponds to a filter on the Q value update, that allows
update only if the demonstrated action had a better Q value
than the action output by the policy network. This results in
the following loss functions, Lπ for the actor

Lπ = λ1∇θπJ − λ2∇θπLBC (4)

where λ1 and λ2 are hyper-parameters corresponding to the
weight shared between the two loss terms in Lπ , and LQ for
critic network,

LQ =
1

N

∑
i

((ri + γQ(si+1, π(oi+1))−Q(si, ai|θQ))2 .

(5)
Training the agent with demonstrations aided in exploration
and it was able to solve the Diagonally folding task, still it
failed in the two tasks involving dynamic manipulation. This
can be attributed to the complex nature of the dynamic tasks
and only sparse rewards being provided upon success. We
further employed HER to handle the sparse nature of our
data. HER augments the original training data with more
successful examples by replaying trajectories with modified
goals. HER only works with stationary goals and thus we
designed tasks in such a way that the goal locations are
fixed throughout the episode. We study the performance of
individual components of the algorithm in Section IV.

F. Capturing dynamics in a simulation

The basic difference in dynamic manipulation as compared
to static one is the manipulator being able to control non-
grasped vertices. For example, in the Sideways Folding task
the manipulator relies on the connection between grasped
vertex (no.3) and the vertex to be manipulated (no.2) to
successfully achieve the goal state. Effectively, the manip-
ulator is being able to control parts of the object outside
its workspace. The manipulating agent’s ability should thus
encompass learning deformation behavior as well as the
effects of manipulator’s velocity and path on the outcome
of the task. Consequently, the simulator must be able to



Diagonal Sideways Placing
Randomization Folding Folding on table

(Static) (Dynamic) (Dynamic)
None 1.0± 0.00 0.99± 0.01 0.52± 0.04
Speed 0.99± 0.01 0.41± 0.07 0.41± 0.06

Trajectory 1.0± 0.00 0.12± 0.03 0.09± 0.05
Speed+Trajectory 1.0± 0.0 0.08± 0.04 0.14± 0.02

TABLE I: Success rate comparisons for all three tasks
under different randomization. Note that randomization has
negligible effect on success rate for static tasks.

capture these differences in our chosen tasks. In Section
IV we present experimental results to show the relevance of
manipulator trajectory, velocity and acceleration in the case
of dynamic manipulation tasks and the simulator’s ability to
differentiate between task-relevant motion features.

G. Generating demonstrations

The demonstrations for all the tasks are generated by a
hard-coded python script. The actuator follows points in the
cloth reference frame that are pre-selected by a human in just
one instance of the tasks. A uniform Gaussian noise of 10%
is added to introduce randomness in the demonstration data.
The generated demonstrations are imperfect and we use 20
episodes of demonstration data to train our agent.

IV. EXPERIMENTS

We have performed three sets of experiments to study
the effectiveness of reinforcement learning in solving dy-
namic deformable object manipulation tasks. The first set
aims to unravel the basic difference between dynamic and
static manipulation. The second is intended to assess the
influence of state representation on performance. And the
third tries to solve a difficult dynamic manipulation problem
on deformable environments that had not yet been studied
in the RL community, also we study the effect of individual
components of the algorithm.

A. Capturing dynamics in a simulation

In order to assess the importance of task-relevant motion
features, we introduce randomization in the speed and the
trajectory of manipulator while keeping initial and final
positions intact in our hard-coded demonstration generation
script. In Table I we report success rates under different
randomization for all three tasks averaged over 3 epochs of
100 episodes each.

Success rates for dynamic tasks drop significantly under
all types of randomization whereas negligible effect on the
success rate of the static task is observed. This can be
attributed to the fact that in the Diagonal Folding task the
vertex in consideration is always grasped by the manipulator
throughout the trajectory, so only final position of the manip-
ulator matters for task success. Thus we can conclude that,
in dynamic tasks speed and trajectory play an important role
in deciding task success. Additionally the results suggest that
the simulator is capable of capturing the dynamic information
in the proposed tasks.

Fig. 3: Positions of selected points on the cloth. The 3 input
observation spaces considered are: (1) 4 yellow points, (2) 4
yellow and 4 blue points, (3) 4 yellow and 8 white points.

B. Textile state representation

To investigate the effectiveness of different textile state
representations, we compare agents trained with 3 different
configurations of observation spaces as defined in Fig. 3. The
main difference between the three alternatives is the size of
observation space which increases from 4 to 12. We train
our best performing "DDPG+Demo+HER" agent (as defined
in Sec. IV-C) with 3 random seeds for each configuration.
Learning curves comparing the performance of each input
space can be seen in Fig. 4.

We observe that 4 points is an insufficient state repre-
sentation for solving the proposed tasks. A sudden drop in
performance can be observed for this case which is possibly
due to the algorithm learning a sub-optimal policy given how
little deformation information is captured by only 4 vertex
points. All the tasks show an improvement in performance
(higher success rate, stable learning curves) as we increase
the observation space to 8 points. Further increment in the
observation space size does not affect the performance in
Diagonal Folding and Sideways Folding tasks as can be seen
by the overlapping orange and green curves. Whereas for the
same change, decrement in performance for Placing on table
task is observed. Note that, increasing the observation space
size increases training time of the algorithm. Therefore we
can conclude 8 points are the best choice of observation
space for the tasks considered in this work.

C. Dynamic manipulation of deformable objects

We train 3 agents on our proposed tasks in simulation
and do performance comparisons to study the importance of
individual components. All 3 agents use DDPG as their base
algorithm with 4 layered actor and critic networks. Also, they
share the same configuration of all hyperparameters except
the replay buffer data which also includes demonstration data
(ND=1/8 × Total sampled data) and modified actor loss Lπ
to λ1 = 0.001, λ2 = 0.0078 from λ1 = 1.0, λ2 = 0.0 in the
case of learning from demonstrations. We consider HER and



Diagonal Folding Sideways Folding Placing on a table

Fig. 4: Learning curves comparing performance of different observation space inputs. We use 3 random seeds per method
and report average success rate. The median of the runs is shown in bold and each training run is plotted in a lighter color.

Diagonal Folding Sideways Folding Placing on a table

Fig. 5: Learning curves comparing training with and without demonstrations and HER along with DDPG. We use 3 random
seeds per method and report average success rate. Note that the "DDPG+Demo" method without HER is always at around
0% success rate. As the difficulty of the task increases demonstrations become essential for good performance.

training with demonstrations (Demo) as improvements and
thus the 3 agent combinations are "DDPG+Demo+HER",
"DDPG+HER" and "DDPG+Demo". We use 8 points for
input space as determined in the previous experiment. At
training time, each epoch consists of 20 episodes of training
followed by 10 episodes of policy testing. The success
rate at each epoch is measured as the average over 10
test episodes. We train each agent with 3 random seeds.
Qualitative performance of the learned policies for the three
tasks can be seen in the attached video where different
executions of the learned policy are demonstrated and in
Fig. 1, whereas learning curves comparing the performance
of each agent can be seen in Fig. 5.

The "DDPG+Demo+HER" agent is able to solve all of
the proposed tasks and successfully learn valid dynamic
manipulation behaviors for the Sideways Folding and Placing
on a table tasks. Looking at the learning curves, we observe
that training without HER is unable to solve any of the tasks.
Moreover, training without demonstrations is able to achieve
comparable success only for the static task but the learning is
highly unstable. This can be attributed to insufficient explo-
ration and reaching sub-optimal minima without the presence
of demonstrations to guide the agent towards good behaviors.
An example of a sub-optimal behavior we observed while
training for the diagonal folding task is the agent learning
to grasp the cloth around midpoint of the line joining goal

position and vertex and trying to swing the vertex to goal.
The importance of demonstrations is magnified in the case of
dynamic tasks where performance of "DDPG+HER" agent
is significantly lower. But demonstrations are of little use for
the above tasks when training without HER as observed with
the "DDPG+Demo" agent.

V. CONCLUSIONS
Building upon recent work in end-to-end learning for

rigid object manipulation, we extended the ideas to dynamic
cloth manipulation. We demonstrated the importance of
speed and trajectory in the case of dynamic manipulations
and investigated the effectiveness of different textile state
representations. By restricting the manipulator workspace we
showed the emergence of dynamic manipulation behaviors
and successfully solved 3 long horizon tasks: Diagonal Fold-
ing, Sideways Folding and Placing on a table, using a deep
RL method which bypasses the need to explicitly model cloth
behavior and does not require reward shaping to converge.
Also, we studied the importance of individual components
of our algorithm which highlighted the importance of HER
and demonstrations. We think these preliminary results hold
promise that versatile cloth manipulation by robots is within
reach of current machine learning techniques. In the future,
we plan to extend our work to real robots by training image
to action policies in simulation and transferring the learned
policy with domain randomization.



REFERENCES

[1] S. Miller, J. Van Den Berg, M. Fritz, T. Darrell, K. Goldberg, and
P. Abbeel, “A geometric approach to robotic laundry folding,” The
International Journal of Robotics Research, vol. 31, no. 2, pp. 249–
267, 2012.

[2] D. Seita, N. Jamali, M. Laskey, R. Berenstein, A. K. Tanwani,
P. Baskaran, S. Iba, J. Canny, and K. Goldberg, “Deep Transfer Learn-
ing of Pick Points on Fabric for Robot Bed-Making,” in International
Symposium on Robotics Research (ISRR), 2019.

[3] Y. Gao, H. J. Chang, and Y. Demiris, “Iterative path optimisation for
personalised dressing assistance using vision and force information,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2016, pp. 4398–4403.

[4] G. Canal, E. Pignat, G. Alenyà, S. Calinon, and C. Torras, “Joining
high-level symbolic planning with low-level motion primitives in
adaptive hri: Application to dressing assistance,” in IEEE International
Conference on Robotics and Automation, 2018, pp. 3273–3278.

[5] Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. K. Allen, “Folding
deformable objects using predictive simulation and trajectory opti-
mization,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2015, pp. 6000–6006.

[6] M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and
P. Abbeel, “Bringing clothing into desired configurations with lim-
ited perception,” in IEEE International Conference on Robotics and
Automation, 2011, pp. 3893–3900.

[7] P. Jiménez, “Survey on model-based manipulation planning of de-
formable objects,” Robotics and computer-integrated manufacturing,
vol. 28, no. 2, pp. 154–163, 2012.

[8] A. Colomé and C. Torras, “Dimensionality reduction for dynamic
movement primitives and application to bimanual manipulation of
clothes,” IEEE Transactions on Robotics, vol. 34, no. 3, pp. 602–615,
2018.

[9] A. Colomé, A. Planells, and C. Torras, “A friction-model-based
framework for reinforcement learning of robotic tasks in non-rigid
environments,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2015, pp. 5649–5654.

[10] F. Ruggiero, V. Lippiello, and B. Siciliano, “Nonprehensile dynamic
manipulation: A survey,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1711–1718, 2018.

[11] Y. Yamakawa, A. Namiki, and M. Ishikawa, “Motion planning for
dynamic folding of a cloth with two high-speed robot hands and
two high-speed sliders,” in 2011 IEEE International Conference on
Robotics and Automation. IEEE, 2011, pp. 5486–5491.

[12] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth
grasp point detection based on multiple-view geometric cues with
application to robotic towel folding,” in 2010 IEEE International
Conference on Robotics and Automation. IEEE, 2010, pp. 2308–
2315.

[13] F. Osawa, H. Seki, and Y. Kamiya, “Unfolding of massive laundry
and classification types by dual manipulator,” Journal of Advanced
Computational Intelligence and Intelligent Informatics, vol. 11, no. 5,
pp. 457–463, 2007.

[14] C. Bersch, B. Pitzer, and S. Kammel, “Bimanual robotic cloth
manipulation for laundry folding,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2011, pp. 1413–
1419.

[15] E. Corona, G. Alenyà, T. Gabas, and C. Torras, “Active garment
recognition and target grasping point detection using deep learning,”
Pattern Recognition, vol. 74, pp. 629–641, 2018.

[16] A. X. Lee, A. Gupta, H. Lu, S. Levine, and P. Abbeel, “Learning
from multiple demonstrations using trajectory-aware non-rigid regis-
tration with applications to deformable object manipulation,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2015, pp. 5265–5272.

[17] B. Balaguer and S. Carpin, “Combining imitation and reinforcement
learning to fold deformable planar objects,” in 2011 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. IEEE, 2011,
pp. 1405–1412.

[18] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforce-
ment learning for deformable object manipulation,” arXiv preprint
arXiv:1806.07851, 2018.

[19] Z. Hu, P. Sun, and J. Pan, “Three-dimensional deformable object
manipulation using fast online gaussian process regression,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 979–986, 2018.

[20] A. Ramisa, G. Alenya, F. Moreno-Noguer, and C. Torras, “Finddd:
A fast 3d descriptor to characterize textiles for robot manipulation,”
in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2013, pp. 824–830.

[21] K. Kawaharazuka, T. Ogawa, J. Tamura, and C. Nabeshima, “Dynamic
manipulation of flexible objects with torque sequence using a deep
neural network,” arXiv preprint arXiv:1901.10142, 2019.

[22] P.-C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata,
“Repeatable folding task by humanoid robot worker using deep
learning,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
397–403, 2016.

[23] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” GitHub repository,
2016.

[24] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,
M. Stilman, and C. K. Liu, “Dart: Dynamic animation and robotics
toolkit.” J. Open Source Software, vol. 3, no. 22, p. 500, 2018.

[25] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[26] D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, and S. Levine,
“Deep reinforcement learning for vision-based robotic grasping: A
simulated comparative evaluation of off-policy methods,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 6284–6291.

[27] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 6292–6299.

[28] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

[29] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural networks, vol. 21, no. 4, pp. 682–697, 2008.

[30] A. X. Lee, H. Lu, A. Gupta, S. Levine, and P. Abbeel, “Learning force-
based manipulation of deformable objects from multiple demonstra-
tions,” in IEEE International Conference on Robotics and Automation,
2015.

[31] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau,
H. Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, and
S. Cotin, “SOFA: A Multi-Model Framework for Interactive Physical
Simulation,” in Soft Tissue Biomechanical Modeling for Computer
Assisted Surgery, ser. Studies in Mechanobiology, Tissue Engineering
and Biomaterials, Y. Payan, Ed. Springer, Jun. 2012, vol. 11, pp.
283–321. [Online]. Available: https://hal.inria.fr/hal-00681539

[32] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[33] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value
function approximators,” in International Conference on Machine
Learning, 2015, pp. 1312–1320.

[34] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. P. Abbeel, and W. Zaremba, “Hindsight
experience replay,” in Advances in Neural Information Processing
Systems, 2017, pp. 5048–5058.

[35] M. Večerík, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” arXiv preprint arXiv:1707.08817, 2017.

[36] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.


