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IRI (MDM–2016–0656).

Abstract: Given a rectangular piece of cloth on a planar surface, we aim to charac-
terise its states based on the robot manipulations they would require. Considering the
cloth as a set of n points in R2, we study its configuration space, Confn(R2). We derive

a stratification of Conf4(R2) using that of Flag(3), and we present some techniques that

can be used to determine the adjacencies of Confn(R2) and some group actions we can
define on it.

1 Introduction

Given a rectangular cloth on a planar surface, we could consider it as a surface embed-
ded in R3 with no self-intersection. Unfortunately considering the different states of such
surface and studying their space bears difficulties, as we have to impose, on the already
complex space of all possible surfaces with constant area and no self-intersections, con-
strains such as gravity force and cloth stiffness. In order to simplify, we consider instead
the cloth as a set of points on the real plane. Since our aim is to distinguish states based
on the types of robot manipulations they permit, we consider the configuration space of
n ordered points in R2, namely Confn(R2). This space belongs to the far more general
family of configuration spaces of points on manifolds,

Confk(X) =
{
p = (p1, . . . , pk) ∈ Xk | pi 6= pj , for i 6= j

}
.

Such spaces are interesting topological objects and their (co)homology type has been
studied by several authors. In [Arn69] some results regarding the homotopy type of
Confn(X) are obtained, assuming X is of dimension 2, while the real homotopy type of
Confn(X), when X is a smooth projective variety, were independently computed by Kriz
[Kri94] and Totaro [Tot96]. Assuming X = Rn, Cohen et al. computed the cohomology
of Confn(X), and in particular, they proved that Confn(Rn) is the classifying space of
the n-strand pure braid group [CLM76]. The action of Sn on Confn(Rn) is also studied
in [CLM76] and, in particular, the quotient of this action gives the configuration space
of n unordered points, which is the classifying space of the n-strand braid group. Our
interest lays mostly on the adjacency relations between the highest dimensional cells of
Confn(R2), when we regard it as a CW-complex. Such cells are “clusters” of similar
point configurations and their adjacency information permits navigating between them.
A state will then be a set of different cells, each one containing configurations of points,
that permits similar types of robot manipulations.
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2 Configuration space of a textile rectangle

In Section 2 we consider n = 4, for the 4 corner points of the rectangular cloth, and

present a stratification of Conf4(R2) using that of Flag(3). We then move in Section 3

to the general case of Confn(R2) and show some techniques to derive the adjacency
structure of the space together with some group actions that are naturally defined on
Confn(R2).

2 Configuration space of a textile rectangle using 4 points

In order to study the configuration space of the 4 corner points of the rectangular cloth

we will make use of the flag manifold of RP2, Flag(3). If we consider the configuration

p = (p1, p2, p3, p4) with pi ∈ R2, we can embed them in RP2, mapping a point p = (x, y)

to p̃ = [x : y : 1]. The stratification of Flag(3) induces another on Conf4(R2), see
Figure 1.
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Figure 1. We can stratify Flag(3) with respect
to two flags, V = {v, l} and V ∗ = {v∗, l∗}, using
their incidence, indicated by - in the figure, see
[Hil82, Mon59].

If we consider V = {p1, p1p2} and V ∗ = {p3, p3p4}, then the condition v − l∗ corre-
sponds to the alignment of the three points {p1, p3, p4}. Any alignment of three points
pi, pj , pk, with i < j < k can be seen as a pure algebraic condition on the points coor-
dinates, given by the singularity of the determinant di,j,k = |p̃i p̃j p̃k|. The sign of di,j,k
depends on the clockwise or counter-clockwise position of the ordered triple (pi, pj , pk).
As the determinant is a continuous map onto R, if two configurations p and q differ by
one determinant sign, say di,j,k, then we know they belong to different cells. So any
continuous path from p to q has to cross the singularity loci of di,j,k. We identify then
a cell σ with the sequence of determinant signs of all triples of points belonging to any
configuration p in σ. For us, the determinants signs are, in order, of d1,2,3, d1,2,4, d1,3,4

and as last d2,3,4. Moreover, an odd number of negative determinants tells us that one
point lays inside the triangle spanned by the others. In such cases we call the configura-
tion internal, otherwise external. One can prove easily that d1,2,3 +d1,3,4 = d1,2,4 +d2,3,4,
which means that not all sign sequences are admissible, as we can see in Figure 2.
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Figure 2. We show the adjacency relations of Conf4(R2) using the strat-
ification of the affine flag manifold [Hil82] and as flags V1 = {p1, p1, p2},
V ∗
1 = {p3, p3, p4} and V2 = {p2, p2, p1}, V ∗

2 = {p4, p4, p3}.

3 Configuration space of an n-points textile rectangle

Regarding n > 4, if we want to recover the stratification of Confn(R2), similarly to
Section 2, we would not consider more flags, as they will make less clear the description
of the singularity loci. We have that singularities are given by the alignment of three
points and again any cell can be identified by a sequence of

(
n
3

)
determinant signs. In

the general case, we do not know exactly which sign sequences are admissible, that is,
how many cells are in Confn(R2). Consider the arrangement of lines spanned by pairs of
n−1 points, we could deduce the cells of Confn(R2) from the regions they divide R2 into.
Line arrangements, both in the real and projective planes, have been studied extensively
in various contexts [Grü72] and references therein. Several authors have worked on
how to bound the number of regions, triangles or polygons [Rou86, Str77, Sim73]. In
[ABH+18], the authors consider the problem of characterising geometric graphs using
the order type of their vertex set. Using the notion of minimal representation of a
graph, they identify which edges prevent the order type from changing via continuous
deformations of the graph. Even if this approach is the closest to ours, to our knowledge
in the literature there is not a detailed study of the adjacency relations of Confn(R2).
We present here two theorems that allow us to determine if and how we can move
continuously a point (or more if needed) to change only one determinant sign. Due
to lack of space and proof technicality, we give here only sketches of the proofs. The
following theorem gives us a way to discern when an adjacency cannot exist.

Figure 3. Given any triple of points (not
aligned), the lines they span divide the plane
in 7 regions, that can be seen as three cou-
ples of dual regions, formed by external and
internal configurations, which are coloured
identically, and a self-dual internal region.

Theorem 1 Consider any configuration p ∈ Confn(R2) and a triple {pi, pj , pk} ⊂ p.
If there exists either a point pu ∈ p in the self-dual region of {pi, pj , pk}, or two points
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ps, pr in two regions not dual w.r.t. {pi, pj , pk}, then there does not exist a continuous
movement of p that crosses only the singularity loci di,j,k = 0.

Proof. If di,j,k is nullified via a continuous map, the 6 outer regions in Figure 3 degenerate
into 2 regions, corresponding to a pair of dual regions, depending on the map used, while
the other ones degenerate to the line pi, pj . In other words, if a point pu ∈ p is inside the
self-dual region then any continuous map that crosses the singularity loci di,j,k = 0 has
to nullify at least one among di,j,u, di,k,u and dj,k,u. Similarly, if two points ps, pr ∈ p are
in regions not dual w.r.t. {pi, pj , pk}, then any continuous map crossing di,j,k would also
cross either di,j,s or di,j,r. �

The following result tells us when instead it is possible to change sign.

Theorem 2 Consider any configuration p ∈ Confn(R2) and a triple of points {pi, pj , pk} ⊂
p, such that they belong either to the same region or to two distinct and dual regions. If
there exists a point pu 6∈ {pi, pj , pk}, such that for any pair ps, pr 6∈ {pi, pj , pk, pu} in the
same region, resp. dual regions, and for any pair pa, pb ∈ {pi, pj , pk} the configuration of
{pa, pb, ps, pr} is external, resp. internal, then the singularity loci can be crossed uniquely
at di,j,k = 0.

Proof. If such point pu exists, then the line pu pv, with v = i, j, k, intersects any other
line spanned by another two points outside the self-dual region. So we can move pu along
pu pv till di,j,k changes sign, without crossing any other singularity. �

Note that Theorems 1 and 2 do not cover all cell adjacencies for n > 6. If n ≤ 6 we can
compute the exact number of cells. Such number is expected to rise quadratically [Str77],
thus we want to group cells entailing similar robotic manipulations to form states. We
consider also the action of the symmetric group Sn. In terms of our stratification, such
action induces an identification between cells whose determinant signs coincide after a
permutation of the point labels, {1, . . . , n}. For n = 4, 5 and 6, we obtain in total 2, 3
and 6 states, respectively, which are a lot fewer than we would hope for. In other words,
such action induces an over-coarsened partition of the configuration space and we prefer
to use instead the following refined partition. Let σ be a cell, i.e. a sign sequence, we
define

τ1 ∼σ τ2 ⇐⇒ ∃g ∈ Sn, g · τ1 = τ2 and d(σ, τ1) = d(σ, τ2),

where d(σ, τi) for i = 1, 2 is the number of different signs between cells σ and τi. Let
Yσ be the partition of the configuration space induced by the equivalence relation ∼σ,
which is a refinement of the one obtained via Sn. That is, any equivalence class defined
by ∼σ belongs to one and only one Sn-equivalence class. The distance d(σ, ·) is constant
inside each class of Yσ. We always have a unique state, −σ, which is ∼σ-equivalent only
to itself, and that realises the maximum distance from σ. When we consider Gσ, the
Hesse diagram of Yσ induced by the adjacency relation of Confn(R2), we have that there
exists an automorphism of Gσ, that maps σ to −σ.

In conclusion, given a configuration of n points, we are able to determine in which state
τ is and how far it is from another (fixed) state σ. In addition, using Gσ, thanks to
Theorems 1 and 2 and the stratification of Confn(R2), we could be able to plan how to
change state from one given state to either σ or −σ.
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