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Abstract

In this paper we present a new algebraic analysis of
the closure equation obtained for arbitrary single loop
spatial kinematic chains, which allows us to design an
efficient interval method for solving their inverse kine-
matics.

The solution of a kinematic equation can be factored
into a solution of both its rotational and its transla-
tional components. We have obtained general and sim-
ple expressions for these equations and their deriva-
tives that are used to perform Newton cuts. A branch
and prune strategy is used to get a set of bozes as small
as desired containing the solutions. If the kinematic
chain is redundant, this approach can also provide a
discretized version of the solution set.

The mathematics of the proposed approach are quite
simple and much more intuitive than continuation or
elimination methods. Yet it seems to open a promising
field for further developments.

1 Introduction

Solving loops of kinematic constraints [12] is a ba-
sic requirement when dealing with inverse kinematics,
task-level robot programming, assembly planning, or
constraint-based modelling problems.

The problem of solving a loop of kinematic con-
straints can be easily proved to be equivalent to solve
the following matrix equation:
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where ¢ = (¢1,...,6n)" and d = (di,...,dn)" are
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called the vector of rotations and translations, respec-
tively [13]. In general, some of the elements of these
vectors are fixed and then the problem consists in fin-
ding which values for the remaining elements — within
certain given ranges — satisfy the equation. This pro-
blem is difficult due to its inherent, computational com-
plexity (i.e., it is NP-complete) and due to the nu-
merical issues involved to guarantee correctness and
to ensure termination.

Two basic approaches have been used for solving
this problem: continuation and elimination methods
[11, 8]. The former is based upon homotopy techniques
to solve a system of polynomial equations [16]. They
compute the solutions of the algebraic system by fol-
lowing paths in the complex space. They are robust
but slow. The latter approach is based on an alge-
braic formulation, eliminating variables from a system
of equations, and is used along with algorithms for
finding roots of univariate polynomials [10]. They can
be slow because of symbolic expansion and usually do
not work for kinematic chains with special geometries.

Recently, interval methods for solving systems of
non-linear equations have attracted much attention
and have been explored by a variety of authors [5].
They have already been used to solve some instances
of the above problem, proving to be robust but some-
times slow compared to continuation methods [6]. In
our case, an interval method would receive a box, i.e.
two interval tuples <Ig,, ..., Iq,>and <Iy ,..., I, >
specifying the initial range of the elements in d and
¢, respectively, and it would return a set of boxes of
specified accuracy containing all solutions. When the
kinematic chain is redundant, this method would also
be able to provide a discretized version, up to a given
resolution, of the underlying self-motion manifold (i.e.,
the set of all solutions [1]).

For example, solving the inverse kinematic problem
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for a PUMA 560 would be done by applying an inter-
val method to equation (1) with n = 15,
d=<[0][0][0][0][431.8][0][20.32][149.09][0}[433.07][0]
[0][d13][d14][d15] > and

$=<[180][20, 340][90][—43, 223][180][—232, 52][90]
[—~104, 46][—90][80, 280}[90][0, 360][¢15][$14][¢$15]>,
where the last three bars are used to close the chain
from the end effector to the first bar.

Interval methods manipulate upper and lower
bounds on variables and have been explored by a va-
riety of authors. The heart of most of these methods
consists in improving the known bounds using a set
of inference rules called interval cuts [6], so that the
global efficiency heavily depends on how these cuts are
computed.

The purpose of this paper is to present a novel al-
gebraic analysis of equation (1) that allows the im-
plementation of an interval-based method able to effi-
ciently generate a particular set of cuts called Newton
cuts.

This paper is organized as follows. Section 2 briefly
reviews some basic facts on equation (1) used to in-
troduce our novel results. Section 3 explains how
these results are relevant for implementing an inter-
val method. Section 4 describes the adopted branch
and prune strategy and, finally, Section 5 contains the
conclusions.

2 Background

Any closed kinematic chain can be described as a cir-
cular list of screws X1, X2, ..., X,, each one being or-
thogonal to the next one, so that its configuration is
determined by the angles ¢; around X; and the offsets
d; along X;. Then, its associated loop equation can be
expressed as

H T(d;)R(¢:)Z =1, (2)

where T(d;) stands for a translation along the z-axis,
R(¢:), a rotation around the z-axis and Z, a rota-
tion of 7/2 radians around the z-axis. This equation,
equivalent to (1), corresponds to the loop equation of
what in [13] is called the n-bar mechanism (Fig. I).

If we rename a(;_1)2 = ¢ + 7 and ag_1)/2 = d;
when 7 is odd and 85 = ¢; + 7 and t;/5 = d; when
iis even, oy, a;, 0; and t; are the Denavit-Hartenberg
parameters of the mechanism, where the odd bars cor-
respond to links and the even bars to joints [3]. There-
fore, any single loop mechanism with n/2 links can
be represented by an n-bar mechanism by restricting
some of its degrees of freedom.

Equation (2) can be factored into the following two
equations [13]:

F(¢)=][R(s:)Z =T (3)
i=1
and
= OF ()
VF(¢)-d= —=d; =0, 4
=1 a¢é ( )

which are called the rotational and translational matriz
equations, respectively.

Figure 1: The n-bar mechanism.

Next, the solution to both equations is discussed.
Some properties are given without proof, but the
reader is addressed to proper references.

2.1 The rotational matrix equation

The rotational matrix equation (3) can be derived by
simply removing all translations from (2). Note that
it corresponds to the loop equation of an orthogonal
spherical mechanism. Then, its solution can be seen as
a subset of the configuration space of this mechanism,
which is formed by the n-fold product of the variables
of rotation, that is, a torus of dimension n (T™).

A spherical mechanism becomes redundant for n>3.
Then, its inverse kinematic solution can be described
as an (n-3)-dimensional algebraic set or self-motion set
(SS™~3) embedded in T" [15]. This self-motion set,
however, is not a (n-3)-manifold, but rather a pseudo-
manifold or a punched manifold because of the pre-
sence of singular points.

Singular points correspond to those situations in
which the mechanism becomes planar, that is, when
all axes of rotation lie on the same plane. Then,
from a topological point of view, removing all these
points yields a (n-3)-manifold, the self-motion man-
ifold (SM™=3). Thus, SS"~2 can be obtained from
SM"~3 by pinching it at certain points.
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Since an orthogonal spherical mechanism can dege-
nerate to planar only when n is even, we conclude that
there are no singularities when n is odd. It is also easy
to see that, when n is even, the number of singularities
is 2°~2 and it can be proved that, when n>4, the
self-motion set remains connected after removing its
singular points [15].

SM™=3 is an (n-3)-dimensional manifold of class
C. Among all possible parameterizations, we can
take n-3 coordinates of the surrounding space, T", as
local coordinates in the neighborhood of each point
¢y € SM™3. Actually, this is the implicit function
theorem formulated in convenient terms, whose proof
can be found in any textbook on differential geometry.

Let us take n-3 consecutive variables as pa-
rameters.  Without loss of generality, let ¥ =
{¢1,¢2,...,¢n_3} , ’l,bi = (]5,' (l = 1,...,n - 3), be
the set of parameters. Hence, the rotational matrix
equation can be expressed as

R(¢n—2) Z R(¢n—1) zZ R(¢n) = A(d’) s

which has a solution for any proper orthogonal matrix
A (1) encompassing all the parameters. This equation
has the following two discrete solutions

Pn_2 atan2(+as, Fazi)
$n-1 = Facos(—aiy) (5)
én atan2(Faiz, Faiaz) ,

where a;; denotes the element (i) of A(¢). These
three equations will be called the rotational equations.

When a11==1, there appear infinite solutions. The
points of SM™~3 where this happens are called sin-
gularities of the parameterization and it can be shown
that they correspond to those situations in which the
last three bars are coplanar.

It is worth mentioning that SS™~3 is highly sym-
metrical. There are symmetrical points with respect
to any singularity of the parameterization, which cor-
respond to the two solutions of (5). For instance,
given a point ¢, = (é1,...,6s) on SS*3, points
¢i = (¢17 B _¢i—1; ¢i+7ra _¢i+17 cy ¢n) are also on
it. The proof is straightforward by analyzing (5). It
can be easily seen that the effect over the translations
is a change of sign of d;. The iterative computation of
all these symmetries lead to 2" symmetric points for
any point on SS™~3 [15].

2.2 The translational matrix equation

Equation (4) can be derived from (2) using the fact
that OF(¢)/0¢:, when ¢ is restricted to SM™~3, can
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be expressed as:

0 —n; n;
BF 12 Yy
—a(d)) = niy 0 —Nig = Ni,
¢z ¢ESS"‘3 —"iy niz‘ 0

(6)
where n; = (niz, Niy, ni;) is a unit vector pointing in
the positive direction of the #** bar with respect to the
first one of the n-bar mechanism [13].

The most important consequence of this formula-
tion is that the solution of the translational equation
is the tangent bundle of the solution of the rotational
equation, as graphically shown in Fig. 2.

Figure 2: d must be in the tangent space of SM™~3 of
the corresponding spherical mechanism.

Since the tangent space is a linear space of dimen-
sion 7 = n — 3, we can find r vectors as a basis of
this space. Using the parameterization described in
the previous subsection, this basis can be obtained by

computing g—%, where i = 1,...,r. If the first r rota-
tions are taken as parameters, most of these derivatives
are straightforwardly computed as

Od; 0¢;

— =1 and ——— =0, t#)
59, oy '
fori,j=1,...,r.

In order to obtain the remaining derivatives let us

define

Qan—2(¢) = ¢n—2y <Pn—1('¢’) = an—l; (pn('ll’) = ¢n

when F(¢) =1.
By the implicit function theorem, we can differenti-
ate F(1)) with respect to any v; as follows:

OF(p) _ OF(¢)  OF($) Opn-2(¥) | OF($) Ipn-1(¥)

B 06 On_s i 0fn 0%
OF(¢) dgn(¥) _
a¢n 6¢1 -



In other words, using (6),
Opn—2(t)
I

Solving this linear system using Cramer’s rule, we
get

Opn-1(9) +N,, Opn () - _N;

Ny-2 +Npn-1

8¢n_2 _ _ _NiD._, D,
61/;.' - |nn—2 Np.1 N,
9¢p-1 _  _ |D._pn;N, (7)
adh' N, 20, nn]
B¢n - _ N, N, n,
LR Mp_2 Npoy Ny °

As a consequence, the solution of the translational
equation can be expressed as [2]:

1
d=KA, YA=(A,..,\) €R, (8)
where
1 : 0 1
0 .. 1
K — - nl nn—l nn _ nr nn—l nn
- Np2Ny_y N, Mpeg Npo; Ny
—_ nn—z nl nn — nn—2 nr nn
nn—? nn—l nn nn—2 nn—l nn
_Mpez N Ty _Ny_2z2N,_; N,
| N,_.n,_,n, Np_2N,-; N, |
Or simply,
_ X . nin,_, N,
dp-2 = Ciz1Gm, oo n,
_ r . n.--n,n,
dn-1 = Zi:l d; N,.zN,_ 1N, (9)
5T n._2mn,_, N
dn - Zi:l dz N,_z2N,_; N}’

which will be called the translational equations. This is
an important result because of its simplicity (compare
it to the development in [4] using spherical trigono-
metry).

Equation (9) is valid for points away from the sin-
gularities of the chosen parameterization (i.e., when
| np—2 np_1 n, |# 0, or equivalently, sin ¢,_;1 # 0).
This is not a problem because it is always possible to
find three consecutive bars not contained in a plane,
provided that all n bars are non-coplanar.

We can conclude that the system of equations com-
posed of the three rotational equations (5) and the
three translational equations (9) are equivalent to the
original matrix equation (2) for a proper parameteri-
zation. For reasons that will become clear in Section 4,
a key point for obtaining an efficient interval method
relies on the existence of explicit expressions for the
partial derivatives of these equations with respect to
the parameters. This is accomplished in the following
section.
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3 Partial derivatives in terms of
rotations

Let us take three consecutive bars of the n-bar me-
chanism. It is easy to show (Fig. 3) that

|ne_1ngngy | = sing,
Ng_1-Nagy; = —COS ba
Ny = —cosPa_1Ng_2 +8iNdg_1(Ng_2 X Ng_y)

(10)

Figure 3: ¢, in terms of the directions of the bars
Ng.1, Dy and Dayg.

Let us also consider the following two relations:

(axb)-(cxd)=(a-¢c)(b-d)—(a-d)(b-c)
l]abellade|—|abd|lace/+|abellacd|=0
(11)

While the former is a classic vectorial relation, the
latter is a reduced form of the Grassmann-Pliicker re-
lations [14].

Using equations (10) and (11), we can express any
determinant of the type |n; n,_; ng,|, |n,—3z n; n,| or
jnp_2 n,_; n;| in terms of the parameters. To this
end, if we define

4

v = |m;ng_1 ng
'll)i — [Ne-2 N, D _ Ne—2n; N,
a - na—2 na—l nc' - Sin ¢¢—1 ?

the following two recursive expressions can be ob-
tained:
vy = Vgo1c08¢s1 + We_1 Sin Ga—1 (12)
o= vh_,singg.z wh_gcosPg_s
i (i apt o iy :
Now, let 2}, = (v} wh v;,_, w_;)*. Then, we can write
(12) in matrix form:

i _ i
z, = M,_1z,_,,

where
cos Pg SIndg 0 0
_ 0 0 SN g1 —COSPg1
M, = 1 0 0 0
0 1 0 0
Since zi,, =(0 1 0 0)’ it is clear that
0

a—t—1

. 1

zi = ( 11 Ma_k) o |- (13)
k=1 0



Now, the partial derivatives of (5) can be written as
follows
a¢n—2

%y | = L2 (14)

where

L= 0 -1 0

- sin ¢n— 1

SO

Note that sin ¢, -1 # 0, because it is assumed that we
are using a proper parameterization.

Then, the translational equations (9) can be rewrit-
ten as

. 0
dn-Z n—3 fn-i-1 d:
dn—l =L Z ( Mn—k) ' . (15)

The derivatives of these equations with respect to

¥; (i=1,...,n — 3) are now straightforward:
341.—2 0
e & d
n— —_ 2
0¢; - =L Z Ry 0
% i=1
94; 0
where

)T v

k=j+1

ot
il
—-
3
|
kol
N
o!_o
coo~
cooco

4 Applying a branch and prune
strategy

We have seen how the system of equations (2) is equiv-
alent to three rotational equations (5) and three trans-
lational equations (15) using a valid parameterization.
Next, we describe an interval method to solve this set
of equations for a box of the variables of rotation and
translation. In general, this box is highly degenerate,
since usually most of the variables are fixed by the
mechanism’s geometry. Only the variables correspond-
ing to the degrees of freedom of the mechanism will
vary within a range delimited by design constraints
(just remember the example for the PUMA 560 in the
introduction).

The adopted algorithm is a propagation process
which iteratively improves the bounds on the variables
using interval cuts. An interval cut is a procedure
which operates on a set of constraints and a current
box, reducing this box by deriving a new bound on one
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of the variables. After reducing the box, three possi-
bilities arise. First, the pruning operation may have
resulted in an empty box, in which case we return fail-
ure. Second, it may be the case that the interval asso-
ciated with each variable has reached a width below a
specified accuracy. In this case we terminate and re-
turn the box. If the pruning operation results in a box
which is not of sufficient accuracy, then we split the
box and two branches are generated. Then, solutions
on each branch are recursively searched. This is what
in [6] is called a branch and prune strategy.

Besides the wide variety of heuristics for finding use-
ful cuts and for determining when to branch, the key
point is to efficiently generate the cuts to prune the
box. We will give a simplified idea of how one of these
cuts, the Newton cut [9], reduces the interval for one
variable.

e

evaluation of e
with x={c,c]

N .5 c y ]
a cm b cb_l

Figure 4: A Newton cui. Here the interval [a,b] will
be reduced to [a,c— p-].

A Newton cut is schematically represented in fig. 4.
Let ¢ = 0 be a constraint (for us one of the equations
of rotations or translations), B a given box for the
variables, z a variable appearing in e (the one we want
to reduce) and [a,b] be the interval of ¢ in B. We
choose ¢ in the interval [a, b].We evaluate e for a box
identical to B except that the variable x is set to ¢. Let
us assume that the lower bound, s, is positive. Now
we evaluate the derivative of e with respect to z in B
and denote the resulting interval [D;, D,]. Note that
the values of slopes D, and D; represent the fastest
possible rate of descent of the value of expression e.
We can ensure that there is no solution with « € [c, 8]
when either D; > 0 or D; < 0 and ¢ — DL, > b If
D; < 0 and ¢ — & < b, we can reduce interval [e, d]
to [c — 57, b]. L1kew1se there is no solution in [a, ¢] if
D, <Oor1fD >0and c—g5- <aandif Dy >0and
¢—p; > a, we can reduce 1nterval [a, ] to [e,c—5-]. It
can be shown that we can choose ¢ such that we always
achieve some reduction of the bounds. Although many
heuristics can be used to choose ¢, we will usually take



the middle point of the interval [a, b].

Applying cuts separately to the rotational equations
and the translational equations gives us an intuitive
idea of what the Newton cut is doing. When reducing
the box using one of the constraints imposed by the
rotational equations, we are actually adjusting the box
to the SM™~3. This is equivalent to eliminating some
values of a variable that will never close the spherical
mechanism for the intervals of the others variables. If
we cut a box by applying one of the constraints of the
translational equations, we are eliminating values of
some variable that will never close the spatial mecha-
nism.

In the end we get a set of boxes containing the so-
lutions: points if the mechanism is not redundant or
boxes containing the set of solutions if the mechanism
is redundant.

5 Conclusions

It is a well-known result that the solution of any kine-
matic equation can be factored into a solution of both
its rotational and translational components. Neverthe-
less, this factorization has been used with a very lim-
ited range of practical application in the past, since it
leads to inextricable formulae. Herein, some important
relationships between both components that greatly
simplify this factorization have been presented. This
has allowed us to obtain explicit expressions for the
partial derivatives of the involved equations in terms
of the chosen parameters. This result is of great rele-
vance when an interval method is applied: cuts can be
efficiently computed.

The mathematics behind the described approach
are quite straightforward and far less sophisticated
than those underlying continuation and elimination
me-thods. As a consequence, its implementation is
simpler. Actually, it has already been partially im-
plemented using PROFIL/BIAS interval libraries [7]
and all expressions given herein have been checked for
correctness.
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