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Abstract—Designing optimal and light weight networks to
fit in resource-limited platforms like mobiles, DSPs or GPUs
is a challenging problem with a wide range of interesting
applications, e.g. in embedded systems for autonomous driving.
While most approaches are based on manual hyperparameter
tuning, there exist a new line of research, the so-called NAS
(Neural Architecture Search) methods, that aim to optimize
several metrics during the design process, including memory
requirements of the network, number of FLOPs, number of
MACs (Multiply-ACcumulate operations) or inference latency.
However, while NAS methods have shown very promising results,
they are still significantly time and cost consuming.

In this work we introduce E-DNAS, a differentiable archi-
tecture search method, which improves the efficiency of NAS
methods in designing light-weight networks for the task of image
classification. Concretely, E-DNAS computes, in a differentiable
manner, the optimal size of a number of meta-kernels that
capture patterns of the input data at different resolutions. We
also leverage on the additive property of convolution operations
to merge several kernels with different compatible sizes into a
single one, reducing thus the number of operations and the time
required to estimate the optimal configuration. We evaluate our
approach on several datasets to perform classification. We report
results in terms of the SoC (System on Chips) metric, typically
used in the Texas Instruments TDA2x families for autonomous
driving applications. The results show that our approach allows
designing low latency architectures significantly faster than state-
of-the-art.

Index Terms—Deep Learning, Neural Architecture Search,
Convolutional Meta Kernels.

I. INTRODUCTION

Designing light Deep Neural Networks (DNNs) and doing
it in an efficient manner, are two of the main challenges faced
in industries like the automotive, which typically need to deal
with resource-constrained platforms. This has been addressed
in recent works, like SqueezeNet [1] or MNet [2], focused
on optimizing the design of neural networks to alleviate their
computational cost without losing performance. Most these
studies, however, are based on the optimization of "indirect
metrics", such as the number of Multiply-ACcumulate opera-
tions (MACs) or the number of architecture parameters, which
might not be good approximations to the "direct metrics" like
energy consumption or latency. As discussed in [3, 4], the
relationship between these direct and indirect metrics can be
highly non-linear and platform-dependent. Another drawback
of [1] and [2] is that they require manual approaches and

prior expertise, limiting thus their applicability and design
efficiency.

The design method has been automatized by the so-called
Neural Architecture Search (NAS) [5, 6, 7] approaches. These
techniques aim to automatically design light and accurate
DNNs by optimizing over a search space defined by all
possible operations of the target architecture. This optimization
is carried on using either reinforcement learning [5, 6] or
evolutionary computing [7].

While NAS-based approaches provide state-of-the-art re-
sults in classification tasks for small datasets like CIFAR,
they are very computationally and time demanding. There
have been attempts to speed up the search process using
weight prediction techniques or weight sharing across multiple
architectures [8]. Unfortunately, the improvement is still far
from providing solutions that can scale to large datasets like
ImageNet due to the prohibitive time and resources required.

In this paper we introduce E-DNAS, a differentiable NAS
approach that optimizes the direct metrics of an embedded
platform, yielding accurate and low-latency DNNs that can
be deployed in memory-constrained platforms. The presented
research builds upon three main ideas. First, we apply a
depth-aware convolution over the input image to compute
high-resolution feature maps. Second, we propose a parallel
architecture search pipeline that operates on these feature
maps and learns the optimal size and parameters of the
convolution kernels. This optimization process is ruled by
a multi-objective differentiable loss function that combines
classification accuracy and minimal latency, a direct metric.
And third, we boost the architecture search velocity through
a novel block that connects the learned meta-kernels during
training. This block is shown in Figure 1 and aims to update
the learned meta-kernel (from feature map 1) on each iteration
with the result of the weighted sum of that kernel and a second
one being learned in parallel (the one from feature map 2). We
show that this training information exchange on each iteration
speeds up the search for the optimal kernels.

We demonstrate remarkable results in terms of search-time
and classification accuracy compared to other state-of-the-art
NAS methods and comparable to other recent breakthroughs
like [9] or [10], which are more oriented for mobile devices
rather than to be integrated into embedded systems, that
typically have less flexible architectures.



FIG. 1: General overview of E-DNAS. Our approach has two main
building blocks: a depth-aware convolution with a high resolution
11 × 11 kernel followed by pairwise learning of meta-kernels with
loopy flow of information on each iteration between training paths.

II. RELATED WORK

Deep Learning is revolutionizing many technological areas,
but it has some important constraints or limitations that need
to be overcome in order to obtain its full potential. Some of
these are the large amount of hardware resources (memory
e.g.) needed to run some deep learning applications and also
the manual network and parameter configuration traditionally
done by experts to obtain an optimal DNN for a particular
application.

In this direction, some works have focused on reducing the
network size and optimizing its hyperparameter by pruning
weights from DNNs, like [11] or [12]. Although these ap-
proaches could be effective for some applications, manually
selecting the redundant weights and using unstructured sparse
filters does not necessarily mean a real advantage in real
platforms. Based on a similar idea, some recently published
papers propose a method to design networks that can evolve
during the design process based on some feedback in order
to obtain the optimal number and type of layers for a specific
application. These so called NAS (neural architecture search)
approaches have recently achieved better performance than
hand-crafted models by automating the architecture design.

Some NAS approaches like [5, 6, 13] apply the concept of
reinforcement learning for finding the best neural architecture.
These approaches propose a framework with a recurrent neural
network (RNN) as a controller from which child architectures
will be extracted and trained to get their accuracy. Based
on this accuracy, the reward signal for the controller will
be calculated and fed back to it, so that on next iteration
the controller will give higher probabilities to architectures
that receive higher accuracies (controller learns to improve
its search over time), [6], [5]. Although this reward-based
approaches showed really good results in providing efficient
network architectures to be executed on mobile platforms, it
still had one big disadvantage, which is the extremely long
training time needed (e.g. [5] requires 2000 GPU days in the

ImageNet or CIFAR-10 dataset or approach proposed in [7]
takes 3150 GPU days).

Lately, a faster version of the NAS has appeared, which can
get to an optimal network design quicker by using gradient-
based optimizations, like DARTS[9]. The differentiable neural
architectural search (DNAS) propose to relax the search space
to be continuous so that the architecture can be optimized with
respect to its validation set through gradient descent. These
techniques achieve a big efficiency improvement reducing
drastically the cost of architecture finding in comparison to
the non-differentiable approaches (NAS).

Although methods like DARTS have given good results in
terms of accuracy and searching time compared to NAS, they
still face some weak points, such as the still relatively long
time needed for the architecture finding. Together with this,
DNAS approaches such as DARTS [9] have proofed not to be
practical to be used in large datasets. State-of-the-art works
such as [10] or [14] have also exploited a similar approach
as the one proposed in this work, making use of the additive
property of the convolution to merge the searched operations
and reduce the number of parameters in the DNN architecture.
The main contribution of this work is the reduction of the
search time through the self-designed feedback block defined
in Section III-A2. Moreover, this work extends the DNAS
method not only to general-purpose computing platforms like
mobile devices but also to embedded platforms such as DSP,
which, as above commented, are more restrictive and less
flexible and are designed for single pre-defined functions.

III. METHOD

In this work we propose a methodology for automatic neural
architecture design to be executed on embedded platforms. We
demonstrate state-of-the-art results on feature extraction and
object detection tasks, as presented in Table I. We present a
DNAS approach that aims to find optimal neural architecture
with low latency to be executed on memory-constrained sys-
tem on chips (SoCs), such as the one used for the experiments
in this work.

The presented pipeline has two main steps:
• High resolution feature extraction through depthwise con-

volution using big dimension convolutional kernels.
• Pairwise neural architecture cross-search for the calcu-

lated feature maps on previous step.
In this work we regard network MACs and FLOPs as the proxy
of the computation consumption.

A. Formulation

1) Convolutional filters: As it was demonstrated in AlexNet
[15], each convolutional kernel is responsible to capture a
local image pattern. The larger the convolutional kernel is,
the higher resolution patterns it tends to detect at the cost of
more parameters and computations.

In particular, there is an important idea proposed in Mix-
Conv work [14] that we exploit here and consists in having
multiple kernels with different sizes in a single convolution
operation to allow the network to capture different types of



features from the input images. Based on this, we present a
two-step pipeline in which: first a large convolutional kernel
is applied over the input image to capture high resolution
patterns, and second several learnable kernels with different
sizes are applied on the calculated feature maps to learn
different of patterns on the input data.

In order to reduce the number of operations and, hence, the
resulting network size, there are two considerations that shall
be taken into account:

• The first step proposed in this paper suggests a separable
depthwise convolution with a 11 × 11 kernel applied
on the input image that leads to a reduced parameter
size and computational cost, compared to the traditional
convolution operation, [2, 14, 16, 17].

• The filters applied on resulting feature maps after a first
11 × 11 convolution are a sum of 3 × 3, 5 × 5 and
7 × 7 filters. This work exploits the additivity property
of convolution: if several 2D kernels with compatible
sizes operate on the same input with the same stride
to produce outputs of the same resolution, and their
outputs are summed up, these kernels are finally added on
the corresponding position to obtain the equivalent filter
which will produce the same output, [18].

The main difference between the traditional convolution
operation and the mentioned separable depthwise convolution
over an input image (or tensor) is the number of steps in which
this operation is applied.

In this context, the additivity property is applicable because
the sizes of the filter or kernels are compatible, which means,
smaller ones can be "contained" in bigger ones (with same
center). That is:

I ∗K1 + I ∗K2 = I ∗ (K1 ⊕K2), (1)

where I is the input feature map, K1 and K2 are two 2D
kernels with compatible sizes, and ⊕ is the element-wise
addition of the kernel or filter parameters on the corresponding
positions, [10, 18].

The application of the additivity property is also valid for
the following batch normalization (BN) so that each single
BN applied after each convolution from Eq. (1) produces the
same output, as the summation of each single convolution and
BN with added bias, [18]:

O = I ∗ (
γ1
σ1

K3×3 ⊕
γ2
σ2

K3×1 ⊕
γ3
σ3

K1×3) + b, (2)

where O represents the output feature map, I is the input
data or feature map generated by the previous layer, σ is
batch standard deviation and γ and b are the BN parameters to
be learned. The input I may need to be appropriately padded
depending on the resolutions.

2) Feedback-block: One of the contributions of this paper
is the addition of one feedback-block into the training pipeline
of each feature map to update the learned convolutional filters
or kernels on each iteration, see Figure 2. The implementation

FIG. 2: Example of a summed convolutional kernel (E), resulting of
summing 1 × 1 kernel (A), 3 × 3 (B), 5 × 5 (C) and 7 × 7 kernel
(D).

of this feedback-block is just the weighted sum of the learned
meta-kernels being trained in parallel:

K1
′ = K2

′ = β1 ∗K1 + β2 ∗K2, (3)

where K′1 and K′2 are the two meta-kernels candidates being
learned, K1 and K2 are the kernels before the update and β1
and β2 are the weights for these kernels. These weights are
calculated according to the loss calculated on each training
"path".

We next compute the weights, in such a way that they will
be close to one for small losses in the forward pass:

β1 =
tanh 1

L1

tanh 1
L1

+ tanh 1
L2

β2 =
tanh 1

L2

tanh 1
L1

+ tanh 1
L2

with β1 + β2 = 1.

(4)

where L1 and L2 represent the value of the loss function on
two parallel network candidates being searched (illustrated in
Fig. 1). Through this implementation, on each iteration the
closer kernel to the "expected" one has more influence.

After training of each image, all learned kernels are encoded
into one, following a similar approach as detailed in Eq. (4):

K =

j=N∑
j=1

Γj ∗Kj

with Γj =
βj∑
i βi

.

(5)

B. Search space

Following [9], we define the search space of each output
x(j) (e.g. feature map in convolutional networks) as the com-
bination of operations o(i,j) applied on inputs x(i), assuming the
inputs as the outputs of the previous two layers:

x(j) =
∑
i<j

o(i,j)(x(i)). (6)

The gradient-based NAS methodologies ([9], [19]) relax
the categorical choice to a softmax to make it continuous.
Let O be a set of candidate operations (e.g. max pooling,
convolutions) where each operation represents some function



o(−) to be applied on the input x(i), a particular operation can
be represented as:

o(i,j)(x) =
∑
o∈O

exp(αo
(i,j))∑

o′∈O exp(αo′
(i,j))

o(x). (7)

As demonstrated in [9], the task of architecture search
reduces to learning a set of continuous variables α = {α(i,j)}.

The relaxation of the categorical choice presented in Eq. (7)
can also be defined as follows, using the additivity property of
convolutions. Based on this, each operation can be calculated
as I ∗ K, where I is the input of the operation and K(i) is
the kernel to be learned:

o(x) = I ∗K(i). (8)

o(i,j)(x) =
∑
o∈O

exp(αo
(i,j))∑

o′∈O exp(αo′
(i,j))

(I ∗K(i)). (9)

After relaxation of the search space, the proposed search
network algorithm aims to learn jointly the architecture α and
the weights w.

C. Multi-objective loss function

Based on the equation (9), the goal of the presented DNAS
approach shall be calculating the weights w that minimize the
validation loss:

minα = Lval(w(α), α). (10)

These weights w are learned during forward- and backward-
pass and represent typical connection weights but include also
the β values defined in Eq.3 and Eq. 4, which aim to update
the kernel’s value after each training iteration to speed up
the search stage. In order to let this method generate models
adaptively depending on the target embedded platform, we
propose to include one more term to the global loss function
to be minimized during training that attends to the latency of
the network candidate.

The proposed loss function has a term to observe the latency
of the proposed architecture. As demonstrated in different
works such as [3] or [20], extracting indirect metrics like
MACs or number of weights might not be good proxies for the
resource consumption of a network since networks with fewer
number of MACs can be slower when executed on embedded
targets:

LLAT (α) =
∑
l

LAT (bl)
(α). (11)

where b
(α)
l denotes the block at layer-l from the network

architecture candidate α, [20].
In the proposed implementation, we use a latency look up

table model to estimate the global latency of the network
candidate based on the runtime of each operator, similar as
proposed in [20]. The latency lookup table has been created
by checking the runtime of multiple operators on the target
platform.

D. The search algorithm

The formulation of the network search problem that is
solved through the proposed method can be expressed as
follows:

max
ai

Accuracy(ai)

constrained by LAT (ai) <= Budget, a = 1, ..., N.
(12)

where ai is the sampled network from the search space,
LAT (ai) is the latency on the platform of the sampled network
and Budget is the predefined latency budget.

The problem presented in equation (12) is solved iteratively
by the presented method by minimizing on each iteration the
following loss function:

L(a,wa) = CE(a,wa) + βLLAT (a), (13)

where CE(a,wa) is the cross-entropy loss of the network
candidate a with weights wa and LAT (a) is the measured
latency of network candidate a in microseconds, [20]. Typical
NAS approaches like [5], [17] or [6] are based on the iter-
atively training of sampled architectures candidates from the
search space on a small proxy dataset through some epochs
to be then transferred to the target dataset after training. In
the end, the objective of these NAS methodologies is finding
the network weights w and optimizing the network candidate
a ∈ A (being A the search space), same as in the presented
work but the needed resources and time to train thousand
of network architectures before reaching the optimal solution
make them some times infeasible.

Motivated by this problem, DNAS like [9], [19], [20] or
[10] have become more popular lately. In this research we
adopt a different paradigm of solving the same problem based
on DNAS, as explained in Section (I).

In the presented work we relax the categorical choice
of a particular filter or kernel in the target architecture by
formulating the sampling process in the search stage, similar
as proposed in [21] and [20], and define the probability of
sampling the i-th kernel candidate Ki.

P (K == Ki) = softmax(α(i)) =
exp(α(i))∑N
j=0 exp

(α(i)))
. (14)

where K is the sampled kernel during the search stage.
Following this we reformulate the equation (9) and focus on
making the Eq. (14) differentiable so that the loss function (13)
can be optimized through stochastic gradient descent (SGD)
approach, [22], [23], [20].

The objective function in Eq. (14) is already differentiable
with respect to the weigths of the kernels but not to the
architecture parameters α due to the sampling process. To
solve this, we follow a similar approach as in NAS related
works [17], [24], [19], [21]. We adopt the Gumbel Softmax
function [25] to rewrite the equation (14):

P (K == Ki) =
exp((log(θi) + gi)/τ)∑N
j=0 exp

((log(θi) + gi)/τ)
, (15)



where gi ∼ Gumbel(0,1) represents a white noise function
that follows the Gumbel distribution between zero and one, τ
represents the temperature parameter of the Gumbel Softmax
function, [25], which makes the discrete sampling probability
function in Eq. (14) become continuous as τ approximates to
one. Lastly θi represents the class probabilities calculated in
Eq. 14, [10].

Once the loss function is differentiable, the SGD method to
optimize function (13) is applied, so that on each iteration the
network architecture weights wi and probability parameters α
are updated based on the partial derivative of the loss function
with respect to w and α, respectively.

The search process is now equivalent to training the stochas-
tic network after generating all kernel candidates from the
11 × 11 meta kernel, similar to [10]. During training, the
value of the loss function L(a,wa) in Eq. (13) is calculated.
Together with it, ∂L/∂wa and ∂L/∂α are computed to up-
date weights and architecture probability parameters on each
iteration. Through this, we train each operator’s weight and
update the sampling probability for each operator, respectively,
so that when training finishes, we can obtain the optimal
network architectures with the best kernels from the learned
α parameters.

As will be shown in the experiment section, the proposed
approach works faster than RL and typical NAS methodolo-
gies and provides acceptable results for high resolution input
images.

Algorithm 1: The search architecture methodology
Result: Find weights wi and architecture probability

parameters α to optimize the global loss
function (13), given a defined search space
with a combination of operations o(i,j),
defined in Eq. (9), a latency budget and an
input dataset.

random initialization of α parameters
while not converge do

Similar to [10], we generate the kernel candidates.
Calculate Loss through Eq. (13).
Calculate ∂L/∂wa and ∂L/∂α .
Update weights and architecture probability
parameters α.
Update Kernels using Eq. 3 and Eq. 5.

end
Extract more optimal architecture from learned α

parameters.

IV. EXPERIMENTS

In this section we aim to demonstrate the performance
and efficiency of the proposed method comparing the results
obtained on different datasets.

We have conducted experiments on the commonly used Im-
ageNet benchmark [26] and PascalVOC [27] datasets applying
several important training techniques, as detailed in Section
IV-A.

These results can be seen in Table I. In this section, a
comparison of the proposed method with state-of-the-art is
also presented.

A. Implementation details

We have trained the models using 8 GPU NVIDIA Tesla
V100. As proposed in [35] we have applied several imple-
mentation tricks to improve the training process, such as the
following:
• Randomly sample an image and decode it into 32-bit

floating point raw pixel values in [0,255].
• Random crop of a rectangular region.
• Horizontal flip with 0.5 probability.
• Normalize RGB channels.
• Scale hue, saturation and brightness coefficients.
Due to the importance of the learning rate in the training

process, in the conducted experiments we have applied a
learning rate warm up (use small learning rate at the beginning
and then switch back to the initial learning rate when training
process is stable) followed by decaying cosine learning rate
to improve the training process, as commented in [35] and
proposed by [36].

In contrast to the typical exponentially decaying learning
rate used lr = lr0 ∗ e−Kt in this work we have applied the
following formula:

lr =
1

2
(1 + cos

bπ

B
)lr0

w∗ = w + lr
∂L

∂w
,

(16)

where B is the total number of batches, b is the actual batch
during training, w∗ the updated weight, w the weight before
update and lr0 is the initial learning rate (in our case 0.65).

B. Target platform

The embedded platform targeted to check the effectiveness
of the proposed method is the TDA2 system on chip which
can accelerate deep neural network layers using the C66x DSP
cores together with the Texas Instruments Deep Learning suite
(TIDL) to convert the trained network from floating point to
fixed point and to enable the inference of the network on the
embedded platform.

The mentioned TDA2 hardware has ARM Cortex-A15
cores running at up to 1.5 gigahertz, a dual-core DSP C66x
processors that are capable of running deep learning inference,
together with one embedded vision engine subsystem (EVE).
It can run 16 times 16-bit (enough resolution for deep learning
applications) MAC operations per cycle reaching up to 20.8
GMACs/s, [37].

To check the effectiveness of the proposed method we have
mainly attended to MAC and FLOPs in order to compare
the results with the theoretical performance of the target
platform. To calculate this, based on the hadware specifications
mentioned above the SoC has two C66x DSP cores running
at 1000 GHz frequenz (2 ∗ 32GMACs), other one EVE core
running at 900 MHz (16 ∗ 900MMACs) and other 2 ARM



TABLE I: ImageNet classification performance compared with other state-of-the-art methods. The proposed approach in this paper
demonstrates a good Top-1 accuracy with less number of parameters and FLOPs. The number of parameters, FLOPs and Top-1 accuracy
metrics presented in this table for the rest of the methodologies have been directly extracted from their respective papers. As it can be seen,
the proposed method E-DNAS achieves similar accuracy results compared to other state-of-the-art methods, such as [10] and [14] in less
time, as presented in Figure 3.

Model Search Method Search Space Search Dataset # Params(M) FLOPs(M) acc(%)
MNetV2 [28] manual - - 3.4 300 72.0

CondenseNet(G=C=8) [29] manual - - 4.8 529 73.8
EfficientNet-B0 [30] manual - - 5.3 390 76.3

NASNet-A [5] RL cell CIFAR-10 5.3 564 74.0
PNASNet [31] SMBO cell CIFAR-10 5.1 588 74.2

DARTS [9] gradient cell CIFAR-10 4.7 574 73.3
PDARTS [32] gradient cell CIFAR-10 4.9 557 75.6

GDAS [21] gradient cell CIFAR-10 4.4 497 72.5
MnasNet [17] RL stage-wise ImageNet 3.9 312 75.2

Single-Path NAS [33] gradient layer-wise ImageNet 4.3 365 75.0
ProxylessNAS-R [24] RL layer-wise ImageNet 4.1 320 74.6
ProxylessNAS-G [24] gradient layer-wise ImageNet - - 74.2

FBNet [20] gradient layer-wise ImageNet 5.5 375 74.9
MNetV3 Large [34] RL layer-wise ImageNet 5.4 219 75.2
MNetV3 Small [34] RL layer-wise ImageNet 2.9 66 67.4

MixNet [14] RL kernel-wise ImageNet 5.0 360 77.0
MetaKernels [10] gradient kernel-wise ImageNet 7.2 357 77.0

Ours gradient parallel kernel-wise ImageNet 5.9 365 76.9

TABLE II: Comparison of the obtained results on the Pascal VOC2007 test set. As suggested by other works like [10], the VOC2007
trainval and VOC2012 trainval are combined as the training data and the PascalVOC2007 dataset is used as test-set. We demonstrate a better
classification accuracy than other similar methods such as [10] or [34].

Model mAP aero bike bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa
MNetV2 [28] 75.8 84.5 83.4 76.1 68.3 58.7 78.9 84.8 86.5 54.4 80.7 70.9 84.0 85.0 83.6 76.8 48.7 78.7 72.8

MNetV3-S [34] 69.3 77.4 76.9 67.0 62.0 43.7 76.3 79.1 82.1 47.2 75.4 65.2 78.4 81.0 79.7 72.5 39.4 68.7 67.1
MNetV3-L 76.7 84.1 84.1 77.0 69.9 75.9 84.8 85.1 88.1 56.3 84.8 64.8 84.3 87.9 84.7 77.9 46.3 80.5 73.9

metaKernel [10] 77.3 86.1 84.8 76.8 68.6 59.2 83.6 86.3 87.1 56.9 85.2 67.2 86.6 87.2 86.0 77.7 49.1 80.8 74.5
Ours 77.8 85.8 84.6 74.9 70.1 57.4 63.4 87.8 88.1 58.7 83.9 72.1 86.2 86.3 86.8 87.1 50.6 79.6 74.9

Cortex A15 cores running at 1500 MHz (2∗8∗1500MMACs).
This results in 105 GMACs as theoretical performance, which
means 210 GDLOPs, assuming DLOPs as 8-bit arithmetic
or conditional operation (Multiply/Add/Compare). It can be
assumed than 1MAC = 2DLOPS.

For the experiments done on the mentioned TI and presented
in Table III, the trained networks using the proposed method
in this paper and ImageNet benchmark were converted from
floating-point to fixed point to be then executed on the DSP
dual core of the above mentioned hardware. In the floating-
point to fixed-point conversion an accuracy loss of around 3
% could be extracted from the results.

C. Results
The experimental results and comparison with other state-

of-the-art methods are presented in Table I.It is there presented
that our method achieves a good Top-1 accuracy better than
several methods with a lower number of parameters and
FLOPs.

For the first variant of this method in which input data
passes first through a convolution with 11×11 kernel we find

that a better accuracy with a slight increment of the number
of FLOPs can be achieved by increasing the size of this first
filter to 13× 13 until 17× 17. Beyond that, the rate between
accuracy and number of parameters decreases. After several
tests, like showed in Table II, we have empirically seen that
the mentioned 11 × 11 kernel size gives the best trade-off
between accuracy, number of operations and simplicity in the
implementation.

Larger kernel sizes increase the model size with more
parameters and also more operations and for this reason, using
bigger kernels in the initial step of the pipeline would have
led to a bigger network, not so suitable for embedded targets.

With regard to the search process speed, the experiments
show that this proposal achieves an optimal architecture faster
than other DNAS works, as it can be seen in Figure 3.
Our experiment results are summarized in Table 3 where
we compare our method with state-of-the-art efficient models
both designed automatically and manually. In the case of the
MnasNet, this paper does not disclose the exact search cost
(in terms of GPU-hours or days) so in this paper we have



TABLE III: Results on ImageNet Benchmark comparing extracted
multiply-accumulate operations from different methods and ours. The
estimated inference latency on the described TI platform based on the
calculated MACs is 38ms.

Model # Params (M) MACs (M) Time (ms)
MNet [2] 4.2 569 75

NasNet-A [5] 5.3 564 183
Ours 5.9 535 38

assumed the prediction made for the search cost in MnasNet
by [24] and [10]. Our experiment results are summarized in
Table 3 where we compare our method with state-of-the-art
efficient models both designed automatically and manually. In
the case of the MnasNet, this paper does not disclose the exact
search cost (in terms of GPU-hours or days) so in this paper
we have assumed the prediction made for the search cost in
MnasNet by [24] and [10].

Our experiment results are summarized in Table 3 where
we compare our method with state-of-the-art efficient models
both designed automatically and manually. In the case of the
MnasNet, this paper does not disclose the exact search cost
(in terms of GPU-hours or days) so in this paper we have
assumed the prediction made for the search cost in MnasNet
by [24] and [10].

V. CONCLUSION

In this work we present a network search approach to
design light and optimal DNNs reducing the searching time.
We propose a two-step pipeline that learns different meta-
kernel sizes, able to treat different resolution patterns. We
propose a pairwise searching with circular feedback on each
iteration to speed up the process by updating the target weights
and network parameters iteratively with, not only the loss
calculated during its training, but also with the loss calculated
on the parallel kernel being learned.

We demonstrate that our method provides good results in
terms of accuracy and searching speed compared to other
methods like [17] or [9] under similar computation resource
constraints.
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