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Abstract Forty years ago the notion of con-
figuration space (C–space) revolutionised ro-
bot motion planning for rigid and articulated
objects. Despite great progress, handling de-
formable materials has remained elusive be-
cause of their infinite–dimensional shape–state
space. Finding low–complexity representations
has become a pressing research goal. This
work tries to make a tiny step in this direc-
tion by proposing a state representation for
textiles relying on the C–space of some dis-
tinctive points. A stratification of the con-
figuration space for n points in the cloth is
derived from that of the flag manifold, and
topological techniques to determine adjacen-
cies in manipulation–centred state graphs are
developed. Their algorithmic implementation
permits obtaining cloth state–space represent-
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ations of di↵erent granularities and tailored to
particular purposes. An example of their us-
age to distinguish between cloth states having
di↵erent manipulation a↵ordances is provided.
Suggestions on how the proposed state graphs
can serve as a common ground to link the per-
ception, planning and manipulation of textiles
are also made.

Keywords Configuration space · Deform-
able objects · Cloth state · Topological
representation · Stratification

1 Introduction

Robot manipulation in human environments
is an important research field that in recent
years has experienced tremendous progress.
Impressive results have been obtained among
the many open problems pinpointed a dec-
ade ago (Kemp et al., 2007), such as hu-
manoid whole–body reaching, mobile manip-
ulation and human–robot collaboration. Re-
search has focused on core capabilities as
grasping everyday objects, carrying and pla-
cing them, as well as robot hand–over to or
by a person. An important limitation is that
the target objects have been —almost exclus-
ively— rigid ones.
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Indeed, non–rigid objects —textile items in
particular— pose many additional challenges
with respect to rigid object manipulation, such
as di�cult perception, complexity in modelling
the object and predicting its behaviour, and
the many uncertainties hindering motion plan-
ning to reach a desired outcome. Despite these
di�culties, the manipulation of clothing items
is nowadays gaining attention in the robot-
ics community due to the rise of assistive and
service robotics (Torras, 2016). As clothing
items pervade human environments, automat-
ing their versatile manipulation would have
a large impact on society, in sectors ranging
from healthcare to clothing industry. The key
problem underlying all these di�culties is that,
whereas handling a rigid object only changes
its pose, namely 6 parameters (the configura-
tion space is the well–known R3 ⇥ SO(3)), the
manipulation of a textile object takes place
in a shape–state space which is potentially
infinite–dimensional. This huge dimensional-
ity jump prevents the extension of the tech-
niques developed for rigid objects (for percep-
tion, planning, learning and manipulation) to
textile ones, and calls for a radically di↵erent
approach.

2 Related work

The extension of available techniques con-
sists of modelling cloth as a finite element
mesh and applying both physics simulation
and motion planning algorithms for closed–
loop multi–articulated objects. This is appro-
priate for rendering where realistic appearance
is sought, and impressive advances have taken
place recently in the computer vision and com-
puter graphics communities (Pumarola et al.,
2018, Bai et al., 2016), but robot manipulation
has not benefited so far from them, because
of its substantially di↵erent final aims. In the
graphics context, the goal can be among others
to render the dressing of a human body, rep-
resenting with accuracy the clothing as o↵sets
from the body (Ma et al., 2019, Guan et al.,

2012, Pons-Moll et al., 2017), as well as to es-
timate with precision the clothing pose based
on generative models for 3D shapes using to-
pology (Hilaga et al., 2001).

For these approaches, rendering precision is
important, while for robot manipulation, local
details such as wrinkles and accurate position
can be overlooked in favour of properly de-
termining the macro–state the cloth is in. By
macro–state we mean a set of cloth configura-
tions that can be manipulated in the same way,
i.e., that have similar grasping a↵ordances.

In the robot manipulation community there
is a long–standing general agreement that “low
complexity representations for the deformable
objects should be the objective” (Smith et al.,
2012) and some attempts to use topological
constructs to this end have been made, using
writhe matrices, winding numbers and Lapla-
cian coordinates for topology-based represent-
ations (Ivan et al., 2013, Yuan et al., 2019), as
well as loops detection (Pokorny et al., 2013)
and topology coordinates for representing hu-
man pose as captured by a motion capture
system (Koganti et al., 2017), but also in com-
bination with deep learning approaches (Yan
et al., 2020).

Further along this line, we propose to char-
acterise cloth macro–states, called just ’states’
in what follows, using combinatorial topology
techniques. Inspired by previous works on the
topological representation of robot configura-
tion spaces (Canny, 1988, Torras et al., 2006),
we consider a set of significant points in the
cloth and rely on the process of stratification to
decompose the configuration space (C–space)
of such points into manipulation–wise mean-
ingful states, as well as to derive their adja-
cencies.

The outcome is a succinct manipulation–
oriented cloth state representation in the form
of a graph that permits encoding actions as
probabilistic state transitions and then apply-
ing the powerful probabilistic task planning
machinery developed within the AI community
(Geißer et al., 2019, Canal et al., 2019). An-
other potential advantage is the simplification
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Topological representation of cloth state for robot manipulation 3

of perception, since states can be recognised
without accurately recovering the cloth con-
figuration, and only local features relevant for
grasping need to be located.

The paper is structured as follows. In Sec-
tion 3 we use the notion of stratification to
study the topological space of configurations of
points, focussing first on the case of 4 points.
We investigate how such stratification can be
obtained using the algebraic condition given
by the alignment of three points. This al-
lows us to assign to each configuration of n
points a concise “label” and ensure that those
with di↵erent label are e↵ectively separated by
the stratification in di↵erent strata. We also
provide an explicit algorithm to construct such
stratification for the case n < 7. We proceed
then, in Section 4, to investigate the complex-
ity of the stratification and how to simplify
it. This can be e�ciently done using its topo-
logical properties and the action of the sym-
metric group Sn, defining the state of a con-
figuration of points as a collection of one or
more strata. Thanks to such states, we can in-
vestigate how the points of a mesh are dis-
tributed with respect to some fixed ones (for
example the corner ones in a rectangular tex-
tile) and compare di↵erent mesh poses based
on the state-distribution of their points.

3 Configuration space of a textile

rectangle using n points

Given a rectangular cloth on a planar sur-
face, we could consider it as a surface embed-
ded in R3 with no self–intersection. Unfortu-
nately, considering the di↵erent configurations
of such surface and studying their space bears
di�culties. On the already complex space of
all possible surfaces with same area and no
self–intersections, we need to impose also con-
straints such as gravity force and cloth sti↵-
ness. In order to simplify, we consider instead
the cloth as a set of n points on the real plane
R2 and the space of all possible configurations
of them, Confn(R2). This space belongs to the

far more general family of configuration spaces
of points on manifolds,

Confn(X) = {(p1, . . . , pn) 2 Xn | pi 6= pj for i 6= j} .

Such spaces are interesting topological objects
and both their homotopy type and homolo-
gical properties have been studied by several
authors. In Arnold (1969) some results regard-
ing the homotopy type of Confn(X) are ob-
tained, assuming X is of dimension 2, while
the real homotopy type of Confn(X), when X
is a smooth projective variety, was independ-
ently computed by Kriz (1994) and Totaro
(1996). In Cohen et al. (1976) under the as-
sumptionX = Rn, the homology of Confn(X)
is computed and, in particular, it is proved
that Confn(Rn) is the classifying space of the
n–strand pure braid group.

Since our aim is to distinguish states based
on the types of robot manipulations they per-
mit, we will investigate how such space can be
subdivided into meaningful regions, each one
formed by several configurations of n points.
The procedure introduced here allows us to
assign to any configuration of points a binary
vector, whose length depends on the number
of points considered. In this way we can group
together configurations with the same vector
representation and in addition we will be able
to plan which regions of C–space we need to
“visit” if we want to move from one state to
another.

To obtain such structure for Confn(R2) we
will employ the notion of stratification of a to-
pological space. The idea behind such notion
is to decompose topological spaces of dimen-
sion m into smooth parts of dimension m, such
that the boundary between any two of them is
a subspace of dimension m�1. As we can iter-
ate such process at each dimension 0  k  m,
the stratification assumes the form of a filtra-
tion, ; ✓ X1 ✓ X2 ✓ · · · ✓ Xm = Confn(R2),
where each Xi is the union of disconnected
smooth parts, called strata of dimension i and
the boundary, called singularity of dimension
i�1, between two strata belongs to Xi�1. The
structure of a stratification can be quite com-
plex, however for simple cases one can visualise

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 Fabio Strazzeri, Carme Torras

it clearly. Consider 4 points in the plane, as in
Figure 1, such that p1 and p2 are fixed and
||p4 � p1||  d.

d p2p1

p4 p3

Figure 1 The points p1 and p2 are fixed, while p4
has to be inside the grey circle, of radius d.

Their C–space is a solid torus, product of a
disk, encoding the position of p4, and a circle,
encoding the angle of p1 p2 and p3 p4, and it
is clearly contained in Conf4(R2). Its stratific-
ation can be seen in Figure 2 , where we use
alignment between points to define singularit-
ies.

Figure 2 On the top we can see four disconnec-
ted 3D strata of the C–space, obtained by cutting
the torus with the 2D singularities. These are two
disks (in purple on the bottom), which correspond
to p3 2 p1 p2, and one annullus (in light green on
the bottom), corresponding to p4 2 p1 p2. On the
bottom picture we show also the 1D singularities
(in black) and two 0D singularities (in yellow). The
former correspond to p1 = p4 (a circle) and p3 p4 =
p1 p2 (two segments). The latter correponds to the
case when both p4 = p1 and p3 p4 = p1 p2.

Our first step towards the construction of
a stratification for Confn(R2) is to investigate
the simplest non–trivial case of n = 4, which
will prove to be essential in the treatment of
the general case. For both this case and the
general one the main idea consist in identify
as singularity a subspace of Confn(R2), where
three points are aligned, so that, in the highest
dimensional strata no triple of point can be
aligned. We will show that such alignment is
defined by an algebraic condition (a null de-
terminant) and it provides us with a concise
way to encode the di↵erent strata (as vectors of
signs of determinants). This property allows us
to determine easily the corresponding stratum
(or singularity) of any point configuration. We
also introduce a constructive way, Algorithm 1,
to build such stratification when n < 7 in a fi-
nite number of steps.

3.1 C–space of a textile rectangle using 4
points

For the case n = 4 we will rely on the strati-
fication of the flag manifold of RP2, Flag(3).
The elements of Flag(3) are the sets {v, l}
with v a point and l a line in RP2 such that
v 2 l. If we fix a flag {v⇤, l⇤}, call it reference
flag, we are able to construct a stratification
of Flag(3) that encodes the possible pose of
any flag with respect to the reference one. The
strata corresponding to such stratification are
Bruhat cells, as shown in Hiller (1982), Monk
(1959). The resulting stratification can be seen
in Figure 3, we refer the reader to Milnor and
Stashe↵ (1975) for a more detailed description.

;

v � l⇤

l � v⇤

l � l⇤

v � v⇤

l � l⇤

v � v⇤

Figure 3 Stratification of Flag(3) into Bruhat
cells, where a link indicates that one is in the bound-
ary of the other. The label of each stratum describes
if and how any of its flags V intersects with V ⇤, e.g.
for any flag in v � l⇤ it is true that v \ l⇤ 6= ;.
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Topological representation of cloth state for robot manipulation 5

Consider the points p1, p2, p3 and p4 in R2

as points in the projective plane, by adding 1
as last projective coordinate. We define V ⇤ =
{p1, p1p2} as reference flag and consider the
flag V = {p3, p3p4}. Note that, in an abuse of
language, we are denoting pi both the point
in RP2 and the one in R2. Each stratum in
Figure 3 of dimension at most 2 corresponds
to some point alignment. For example if V
is in the stratum v � l⇤ then {p1, p2, p3} are
aligned, both in R2 and RP2. This means that
we can induce a stratification of Confn(R2) us-
ing the one ofFlag(3). In particular, any align-
ment of pi, pj , pk can be seen as a pure algeb-
raic condition on the points coordinates, given
by the singularity of the determinant di,j,k =
|pi pj pk|. The sign of such determinant will de-
pend on the clockwise or counter–clockwise po-
sition of the ordered triple (pi, pj , pk). Because
the determinant is a continuous map onto R,
if two configurations p and q di↵er by one and
only one determinant sign, say di,j,k, then we
know that any continuous path from one con-
figuration to the other has to cross the singu-
larity loci of di,j,k.

The stratification in Figure 2 can be inter-
preted using the Flag(3) stratification. Con-
sidering the reference flag V ⇤ = {p1, p1 p2}
and V = {p4, p4 p3}, we have that the annu-
lus, singularity of dimension 2, corresponds to
v � l⇤. Inside it we have v � v⇤, which is the
singularity of dimension 1, displayed as a black
circle. Finally, the singularities of dimension 0,
displayed as yellow points, are v�v⇤, l�l⇤. Ac-
tually, there are 2 determinants that we are not
considering, namely d1,3,4 and d2,3,4. The sin-
gularity surfaces are more di�cult to visualize
and would lead to a much finer stratification.

Given any configuration of 4 points in R2

we can map it continuously to R4, assigning
to each coordinate the determinant value of
d1,2,3, d1,2,4, d1,3,4 and d2,3,4, respectively. The
singularity locus of a determinant can be seen
either as an alignment of three points, as a flag
intersection, or also as a hyperplane in R4 cor-
responding to one coordinate equal to 0. If we
consider R4 minus the coordinate hyperplanes,

xi = 0 for i = 1, . . . 4, we obtain 16 disconnec-
ted smooth regions, each one containing points
with same coordinates signs, that is, corres-
ponding to configurations of points with same
determinant signs. The reader should be aware
however that such mapping is not one-to-one
More than one configuration can be mapped
to the same point in R4, as the determinants
are invariant under R2-isometries.

The counter-image of these regions of R4

are the highest dimensional strata of the strat-
ification of Confn(R2) and they correspond to
the subsets of all configuration with identical
determinant signs. We can then uniquely as-
sociate to each stratum the label of the de-
terminant signs sequence of any configuration
of points in it, that is, a binary vector with 4
entries.

p1 p2

p3p4

p1 p2

p3

p4

p1 p2

p3p4

Figure 4 Three di↵erent configurations of the 4
corner points of a rectangular textile, where we col-
oured in grey the back side. All configurations be-
long to di↵erent strata, (+ + + +), (+ + � +)
and (� � � �), respectively, from left to rigth.

Note that each configuration in Figure 4
would require in principle di↵erent robot ma-
nipulations for a folding task, e.g., using the
taxonomy in Borràs et al. (2020), we would use
point-tableplane sliding for the spread out con-
figuration; point-point pick-up for the corner
in the middle of the cloth; point-gripperplane
sliding for the overfolded cloth, so as to turn
it out.

These labels will not only tell us how to
group “similar” configurations but also how
“di↵erent” two configurations are. For ex-
ample, we can count how many signs, resp.
singularities, a continuous path from one con-
figuration to another will change, resp. cross.
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The reader can now see that for n < 4 such ap-
proach would be trivial. In the case of n = 3 we
get only two strata, corresponding to p3 being
on the right/left of the line p1 p2. If n = 1, 2
then it is clear we cannot even define any de-
terminant.

In the case n = 4, the maximum number
of strata we could obtain is 24 = 16, however
using the determinants expressions, we derive
the following algebraic equation

d1,2,3 + d1,3,4 = d1,2,4 + d2,3,4.

It is straightforward to see that it is impossible
that either d1,2,3 and d1,3,4 are positive and
d1,2,4 and d2,3,4 are negative or vice versa. We
can verify it explicitly considering the regions
obtained assuming 3 points fixed, say p1, p2
and p3, and d1,2,3 either positive or negative.
The former case is showed in Figure 5.

p2 p3

p1

Figure 5 Let d1,2,3 be positive, as in the figure.
The region on the lower left corner (coloured in
green) is the only one in common between the re-
gions in which d1,2,4 is negative (left of p1 p2, col-
oured in yellow) and the ones in which d2,3,4 is neg-
ative (below p2 p3, coloured in blue). In this region
also d1,3,4 is negative.

Another consequence of such equation is
that, if a configuration of points belongs to a
stratum with odd number of minuses in its la-
bel, then there exists one point lying inside the
triangle spanned by the others. We will call
from now on such strata internal, otherwise
we call them external. A graph of the adjacen-
cies between the strata is shown in Figure 6.
We refer the reader to Appendix A for a thor-
ough study of such relationships with respect
to theFlag(3) stratification for the case n = 4.

++++

+��+

��++

++��

�++�

����

++�+

+�++

�+++

���+

+++�

+���

�+��

��+�

Figure 6 Representation of Conf4(R2), with
strata adjacencies indicated by links between di↵er-
ent sign sequences. We used cyan ellipses to denote
external strata and red rectangles for internal ones.

3.2 C–space of a textile rectangle using n
points

We can apply a similar procedure and obtain
a similar definition of stratum for the general
case of n points, however some issues regard-
ing the admissibility of sign sequences need to
be addressed.

As n increases, the number of flags and
their position with respect to each other be-
comes more di�cult to encode and a descrip-
tion based on it would make less clear the
structure of the space. To avoid it we will em-
ploy only the determinants to detect changes
between configurations. We know that given
n points we have k =

�n
3

�
di↵erent triples of

points, that is, k possible determinants. We
can map any configuration of n points to a
point (x1, . . . , xk), where each xi corresponds
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Topological representation of cloth state for robot manipulation 7

to the determinant of a particular triple of
points. We know that each coordinate hyper-
plane, xi = 0 for i = 1, . . . , k, corresponds to
a singularity, that is, a determinant equal to
zero, and the determinants are again continu-
ous functions. We can then define a stratum
of Confn(R2) as the set of all configurations
of n points with the same determinant sign
sequence, and represent singularities between
strata by null determinants, or equivalently
by the alignments of three points. Such strata
will correspond to regions of Rk after remov-
ing all coordinate hyperplanes. From now on,
we consider the determinants ordered with lex-
icographic order on their indices with the con-
straint that for k = 3, . . . , n, the first

�k
3

�
ones

are those of {p1, . . . , pk}.

Even if we are able to encode each config-
uration of points as a sign sequence, we do not
have a priori a way to determine if a sign se-
quence is admissible. This is an essential step
of our study, because we want to be able, not
only to group “similar” configurations, but as
well navigate such stratification. For example
if we want to find the optimal way to move n
points from one configuration to another be-
longing to a di↵erent stratum, we might need
to know which are the allowable paths, that is,
which strata we can visit.

Suppose that n � 1 points are fixed and
we want to study the regions in which the ar-
rangement of lines spanned by pairs of these
points divide R2. Note that, these would rep-
resent strata of Confn(R2), with identical de-
terminant signs for the fixed n�1 points. This
approach together with the knowledge of the
stratification of Confn�1(R2) would allow to
construct the stratification of Confn(R2). Line
arrangements, both in the real and projective
planes, have been studied extensively in vari-
ous contexts, see Grünbaum (1972) and refer-
ences therein. Several authors have worked on
how to bound the number of regions, triangles
or polygons (Roudne↵, 1986, Strommer, 1977,
Simmons, 1973). In Aichholzer et al. (2018),
the authors consider the problem of charac-

terising geometric graphs using the order type
of their vertex set. Using the notion of min-
imal representation of a graph, they identify
which edges prevent the order type from chan-
ging via continuous deformations of the graph.
Even if this approach is the closest to ours, to
our knowledge in the literature there is not
a detailed study of the adjacency relations of
Confn(R2). In particular there is not a study
that tells us exactly which determinant signs
sequence is admissible and which is not. We
present here an iterative technique to con-
struct the stratification of Confn(R2).

The adjacency of two strata �, ⌧ can be
seen as the possibility of nullifying one and
only one determinant via continuous move-
ment of a configuration p in � to another q
in ⌧ . So if, given any stratum �, we are able to
detect with a deterministic test which determ-
inants can or cannot be nullified, we are e↵ect-
ively identifying which strata are adjacent to
�. We can iteratively apply such test to these
strata and, as Confn(R2) is connected (Cohen
et al., 1976), we would recover all the exist-
ing strata. For any n � 3 there exists always
a configuration p⇤ such that each determinant
sign of any triple of points is positive, namely
when the points are placed to form a convex n–
gon and they are in counter–clockwise order.
In other words, there is always a stratum �⇤

whose sign sequence is formed only by posit-
ive signs and that can be always used as start-
ing point in such iterative process to find the
strata of Confn(R2). We will now proceed to
explain how we can rigorously describe such
test.

We know that the symmetric group Sn acts
on Confn(R2) via point permutations. That
is, if we have p = {pi}ni=1, a configuration of
n points, then the induced action of g, call
it fg, is defined as fg(p) = {pg(i)}ni=1. Note
that fg is an automorphism of Confn(R2), as
f�1
g = fg�1 , furthermore it is also an auto-
morphism of the singularity loci, as the sin-
gularity of a matrix does not change when we
permute its rows. The action of g on the sign
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8 Fabio Strazzeri, Carme Torras

sequences can be easily deduced. Let � be the
stratum of p and g 2 Sn, then the sign of
dg(i),g(j),g(k) of the stratum ⌧ = g · � to which
g ·p belongs is the same, resp. opposite, of di,j,k
if the signature of (g(i), g(j), g(k)) is positive,
resp. negative. From now on, we will study the
adjacency between � and ⌧ that di↵ers by the
sign of d1,2,3, otherwise we can reduce to such
case via a permutation of Sn. In what follows,
we assume w.l.o.g. that � has d1,2,3 with pos-
itive sign. In other words, the adjacency test
for � is reduced, via a suitable permutation, to
establish if the determinant d1,2,3 can be nul-
lified. Such property is equivalent to the exist-
ence of the following map.

Definition 1 (Crossing map) Let p be a
configuration in Confn(R2) and consider for
1  i  n the continuous map Hi : [0, 1] ! R2,
such that Hi(0) = pi. We call H =

Nn
i Hi a

crossing map for p, if

• H(t) 2 Confn(R2) for t 2 [0, 1] ;

• du,v,w(H(t)) 6= 0 for (u, v, w) 6= (1, 2, 3)
and t 2 [0, 1];

• d1,2,3(H(0)) · d1,2,3(H(1)) < 0;

• 9! t 2 (0, 1) such that d1,2,3(H(t)) = 0.

The existence of a crossing map for p 2 �, a
continuous path in Confn(R2), is equivalent
to the existence of ⌧ , a stratum with sign se-
quence identical to that of � but for the d1,2,3
sign. It is clear now that such existence for a
p 2 � is equivalent to the adjacency test for �
we were looking for. We present here two the-
orems that allow us to determine if and when
a crossing map exists. Such theorems are con-
structive, that is, we show also how we move
continuously a point (or more if needed) to
change only one determinant sign. We know
that any triple of not–aligned points in R2 di-
vide it in 7 open regions (Figure 7), which are
essential for the following discussion.

Figure 7 The lines spanned by a triple of non–
aligned points p1, p2, p3 divide R2 in 7 regions.
These can be split in three couples of dual regions
and a self–dual region, here visually divided by col-
our and pattern. Each dual couple is formed by an
external region and an internal one, as any point
belonging to the former, resp. the latter, together
with p1, p2, p3, forms an external, resp. internal,
sign sequence. The self–dual region consists of one
internal region.

We are now ready to state the following.

Theorem 1 Let p be a configuration of points
in Confn(R2), if there exists a point pi 2 p in
the self–dual region then there does not exist a
crossing map for p. Similarly, if there exist two
points pj , pk in two regions that are not dual,
such map does not exist either.

Proof See Appendix B.

The idea behind this theorem is that if we
want to nullify d1,2,3 we need to align p1, p2, p3,
without aligning any other triple in the pro-
cess. For example if a point pk is inside the tri-
angle spanned by these three points it is clear
that aligning them would result in aligning all
4 of them.

As the sign sequence is invariant among all
configurations of points in the same stratum
�, we have the following.

Corollary 1 Let � and ⌧ be two sign se-
quences that di↵er by only one sign, namely
that of d1,2,3, positive for � and negative for
⌧ . If there exists a k 6= 1, 2, 3 such that the
�–subsequence relative to indices (1, 2, 3, k) is
(++�+) then � and ⌧ are not adjacent. Sim-
ilarly, if there exists j, k 6= 1, 2, 3 such that
the �–subsequences relative to (1, 2, 3, j) and
(1, 2, 3, k) are di↵erent and not dual, then �
and ⌧ are not adjacent either.
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Topological representation of cloth state for robot manipulation 9

The following result tells us when instead it is
possible to change sign, that is when the adja-
cency exists.

Theorem 2 Consider p 2 Confn(R2) such
that Theorem 1 is not satisfied. Suppose that
for any pair 4 < i, j  n it is true that either pi
and pj belong to the same region and the tuple
(p1, p3, pi, pj) has an even number of minuses
or they are in a dual couple and the tuple
(p1, p3, pi, pj) has an odd number of minuses.
Then there exists a crossing map for p.

Proof See Appendix B.

When Theorem 2 is satisfied we can construct
explicitly a crossing map so that all points but
p2 are fixed and p2 moves along the line p4 p2.
In terms of strata adjacency we have the fol-
lowing corollary.

Corollary 2 Let �, ⌧ , be two sign sequences
that di↵er by only one sign, namely the one
of d1,2,3. Suppose that for any pair 4 < i < j
when the 4–tuples (1, 2, 3, i) and (1, 2, 3, j) are
equal, resp. dual, we have that the sign sub-
sequence relative to (1, 3, i, j) is external, resp.
internal. Then � and ⌧ are adjacent strata.

Note that, when two signs sequences di↵er
only by one sign, they need to be adjacent,
which means that, if they are not, either one
or both are not present as strata in Confn(R2).
It is true that Theorem 2 is a necessary and
su�cient condition for strata adjacency when
n < 7, but this is not true for higher n.
When n < 7 there is only one pair such that
4 < i < j  n, that is, i = 5 and j = 6. This
means that all points are involved: p1, p2 and
p3 determine the dual regions of the plane and
p4 determines the crossing map for p2, permit-
ted by the position of p5, p6. For the case n � 7
the conditions in Theorem 2 involve subsets of
p and not all of them. When it is not satisfied,
there might exist other ways to move p2 across
the line p1 p3, that is, a crossing map for p, for
example moving more than one point.

The adjacency test between a stratum �
with positive sign d1,2,3 and ⌧ = H1,2,3(�), the

one with identical determinant signs but d1,2,3,
follows, where we denoted the duality relation-
ship by k and its negative by ,.

Algorithm 1: Adjacent
Input : Sign sequence �

Output : Boolean

foreach 4  j < k  n do

�
j

 signs of (p1, p2, p3, pj);
�
k

 signs of (p1, p2, p3, p
k

);
if �

j

= (+ +�+) then
return False

if �
k

= (+ +�+) then
return False

if (�
j

6= �
k

) ^ (�
j

, �
k

) then
return False

foreach 4 < j < k  n do

�
j

 signs of (p1, p2, p3, pj);
�
k

 signs of (p1, p2, p3, p
k

);
�
j,k

 signs of (p1, p3, pj , p
k

);
if (�

j

= �
k

) ^ (�
j,k

is external) then
return True

if (�
j

k �
k

) ^ (�
j,k

is internal) then
return True

return False

In the next section we will describe how to
e↵ectively compute the sign sequences admiss-
ible in Confn(R2) when n  6 and how this
structure can then be applied e↵ectively to de-
scribe the “state” of the cloth.

4 Implementation and Results

In this section we will demonstrate how The-
orem 1 and Theorem 2 can be implemented in
a finite algorithm that returns the stratifica-
tion of Confn(R2). We will show that the num-
ber of existing strata increases significantly
with the number of points, and to consider
such approach, as it is, for a mesh of hundreds
of points would be unfeasible, both for the con-
struction of the stratification and its practical
use. We propose here to group di↵erent strata
inmacro-states, called just states from now on,
using both symmetric relationships and topo-
logical properties of the stratification. We will

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 Fabio Strazzeri, Carme Torras

show that using this revised approach we can
assign to a mesh on hundreds of points a dis-
crete distribution over such states, allowing us
to distinguish between di↵erent cloth poses.

In Section 3 we showed that the combina-
tion of Theorem 1 and Theorem 2 can be used
to determine the existence of a crossing map.
Algorithm 1 assess the adjacency of a stratum
� with respect the singularity of d1,2,3. We
know that the action of Sn allows to swap any
triple (i, j, k) with (1, 2, 3), so this means that
existence of any adjacency with respect to a
given di,j,k can be determined after permuting
some indices.

We present now two further algorithms: Al-
gorithm 2 where we combine Algorithm 1 and
the action of Sn on Confn(R2) to determine
all adjacencies of a stratum, and Algorithm 3
where, from a chosen stratum �, we search ex-
isting adjacencies iteratively to obtain all ex-
isting strata in Confn(R2).

Algorithm 2: Reachable
Input : Sign sequence �

Output : Sign sequences adjacent to �

Y  ;;
foreach 1  i < j < k  n do

g  (i, 1) · (j, 2) · (k, 3);
↵ g · ↵;
if ↵ has d1,2,3 negative then

↵ (1, 2) · ↵;

if Adjacent (↵) then

Y  Y [ {H
i,j,k

(�)};

return Y

After applying Algorithm 2 to any � we ob-
tain a set of existing strata, to which we can
reapply Algorithm 2. This iterative application
of Algorithm 2 can be done a finite number of
times, as the number of all possible sign se-
quences is finite. Thanks to the connectedness
of Confn(R2), it is also true that we cannot
miss any existing strata, if we iterate enough
times. Algorithm 3 encodes such iterative pro-
cess, assuming that the starting stratum is �⇤,

with all positive determinant signs, obtained
placing n points as vertices of a convex n-gon
and in counter-clockwise order.

Algorithm 3: C–Space

Input : �⇤ stratum of Conf
n

(R2)
Output : Configuration space Conf

n

(R2)

i 0;
X

i

= {�⇤};
while X

i

6= ; do
X

i+1  [
�2X

i

Reachable(�)\
i

[
j=0

X
j

;

i i+ 1;

X =
i

[
j=0

X
j

;

return X

-

Thanks to Algorithm 3 we are able to recover
the structure of Confn(R2) and, with it, also
the number of strata, that is, sign sequences,
present. As we can see in Table 1, the number
of strata increases rapidly, and it is expected
to rise quadratically in terms of n (Strommer,
1977).

n Strata Adjacencies Degrees

3 2 1 (1)
4 14 24 (3, 4)
5 264 600 (4, 5)
6 11904 30240 (2, 3, 4, 5, 6, 7, 9, 10)

Table 1 The number of strata of Conf
n

(R2) is
displayed together with their topological properties
considering their adjacency graph.

As we are aiming to deal with meshes with
hundreds of points, considering the strata as
representating cloth poses, it might be compu-
tationally challenging as their number grows
dramatically. To overcome such problem, we
will show how to group di↵erent strata, and
so configurations entailing similar robotic ma-
nipulations, in states. In Cohen et al. (1976)
the action of Sn on Confn(Rn) is studied and,
in particular, we obtain that the quotient of
this action gives us the unordered configura-
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Topological representation of cloth state for robot manipulation 11

tion space of n points. In terms of our strati-
fication, such action induces an identification
between configurations, and so between strata,
whose determinant signs coincide after a per-
mutation of the point labels, {1, . . . , n}. An
example of di↵erent configurations belonging
to the same Sn-state is displayed in Figure 8.

p1 p2

p3p4

p1 p2

p3

p4

p1 p2

p3p4

Figure 8 Three di↵erent configurations of the 4
corner points of a rectangular textile, where we col-
oured in grey the back side. All configurations be-
long to di↵erent strata, but they are the same with
respect to the S

n

action. These configuration re-
quire in principle di↵erent robot manipulations, for
example if the goal is folding or unfolding.

Such action however does not always pre-
serve faithfully the adjacency relationships, as
it can happen that two strata in the same Sn–
equivalence class are adjacent. From our point
of view, such possibility should be avoided, as
a general rule. It implies that there exists a
state containing a singularity loci, as two ad-
jacent strata belong to it. We acknowledge the
possibility that for a particular goal, the prac-
titioner might allow it, if that singularity loci
is not relevant for the particular task or goal
sought.

Each stratum is labelled with a binary vec-
tor of determinant signs and we can measure
the distance between two strata with the Ham-
ming distance. It measures how many di↵erent
determinant signs they have, or equivalently
the number of singularity loci to be crossed
to continuously move from one stratum to the
other. The following equivalence relation en-
sures that no pair of adjacent strata belongs
to the same state.

Definition 2 (⇠�-States)

Given a stratum of Confn(R2), call it �, we
say that two strata ⌧1 and ⌧2 belongs to the
same state if they are equally distant from �

w.r.t. the Hamming distance and they are in
the same Sn-state. We will denote such equi-
valence relation as ⌧1 ⇠� ⌧2.

It is easy to see that given two adjacent strata
it is impossible for them to be inside the same
state, as they will always have di↵erent sign
distances from �. It can be shown explicitly
that, for di↵erent �, the number of ⇠�-states
might change. To avoid confusion and be co-
herent in the choice of such � we will assume
from now on that � = �⇤, that is, the stratum
with correspondent sign sequence formed by
only positive signs. Table 2 shows the number
of Sn-states and ⇠�-states for n < 7.

n S
n

–states �⇤–states

3 1 2
4 2 5
5 3 23
6 20 150

Table 2 Number of S
n

-states and ⇠
�

-states in
Conf

n

(R2).

For any two states we can define a distance
between them as the minimum Hamming dis-
tance between two strata in each state, which
will always be greater than 0 if the states are
di↵erent. We will say then that two states are
adjacent if such distance is 1, as it implies that
there exists at least two adjacent strata, one in
each state.

As in each state we can have one or more
strata, to avoid confusion, from now on we la-
bel each state using the sign sequence of one of
them. As choice of label we consider the lowest
sign sequence in the lexicographic order, as-
suming + < �. In Figure 9 we can see the S5–
states of Conf5(R2), using the labelling just
explained, where we connected together states
that are adjacent.

++++++++++

+++++++++�

+++++++���

Figure 9 Adjacency graph of the S5–states using
lexicographic order for the choice of labels.
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12 Fabio Strazzeri, Carme Torras

As anticipated such states do not always
preserve adjacencies. Consider the sign se-
quence ⌧ = (+ +++++++��), which is
in Confn(R2). We know that ⌧ cannot be in
A = (+ + + + + + + + + � ��) otherwise
it would be its label and so it has to be in
B = (+++++++++�). This means that
in B we have two adjacent strata, as the label
of a state corresponds to a stratum in it. For
the ⇠�-states this does not happen, thanks to
their definition, even if they are a refinement
of the Sn-states, as to be ⇠�-equivalent two
strata need to be Sn-equivalent. We show their
adjacency graph in Figure 10.

++++
++++++

++++
+++++�

++++
++++��

++++
�++++�

++++
+++���

++++
++�+��

++++
+��+�+

++++
++����

++++
+����+

+++�
+++���

++++
+�����

+++�
+���+�

+��+
+�+��+

����
��++++

����
�++++�

���+
���+++

����
���+++

����
��+�++

����
�++�+�

����
����++

����
+����+

����
�����+

����
������

Figure 10 Adjacency graph of the �⇤–states of
Conf5(R2) using lexicographic order for the choice
of labels.

We know that the stratum with all negative
signs always exists, as it is obtained displaying
the points in clockwise order. Its distance from
� is exactly

�n
3

�
. This means that the num-

ber of ⇠�-states for Confn(R2) is at least
�n
3

�
.

Again, even using states for representing C–
space, instead of the stratification, their num-

ber for a mesh with hundreds of points be-
comes computationally challenging.

To avoid such challenge we propose to con-
sider instead the distribution of states for the
subsets of m points in the mesh, assuming the
4 corner points always in these subsets. As the
case of m = 5 is the simplest and visual con-
siderations can be made quite clearly, we will
focus first on this case and only after show its
generalisation. The cloth simulations presen-
ted here are obtained synthetically using a
Blender simulator Sánchez-Riera et al. (2010).

As we are considering subsets with m
points (with 4 corner points always present)
there exists a one-to-one matching between
each subset and the (internal) point of the
mesh. We can then associate the Sn-state,
or ⇠�-state, of this subset to its unique in-
ternal point and vice versa. This allows us to
show in a clear fashion how the distribution
of states varies from di↵erent cloth meshes. In
Figure 11 we show how this distribution can
change when using di↵erent states, Sn-states
and ⇠�-states.

Figure 11 For the same mesh of a rectangular
cloth with ⇠ 700 points on the top, we plot on
the bottom the distribution of S

n

-states (on the
left) and the ⇠

�

-states (on the right) using di↵er-
ent colours for the internal points based on their
associated states.

It is clear that we are dividing the mesh
cloth in di↵erent “zones”, each one associ-
ated to a di↵erent state, and so having more
states could imply obtaining more zones for
the same mesh. We refer the reader to Ap-
pendix C for more particular state definitions.
They are presented with a discussion on the
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Topological representation of cloth state for robot manipulation 13

di↵erences with the Sn-states and ⇠�-states,
as well as on the possible uses for the practi-
tioner. It is important to note that the defini-
tion of state we propose can be adapted to dif-
ferent needs from the user, as well as di↵erent
goals. For example the coarsening of the states,
that is, of the grouping of strata in Confn(R2),
can be tuned and focus can be put or reduced
on di↵erent states depending on their relative
importance for the task at hand.

Given a mesh, we can map its state-zones
to a vector in Rk, with k the number of
states considered, simply assigning to the ith-
coordinate the number of internal points asso-
ciated to the ith state. In other words, given
a mesh of n points, we are assigning to it a
vector that encapsulates the state distribution
of its points. The reader should bear in mind
that this procedure can be also viewed in terms
of configurations of n points. We are e↵ect-
ively projecting a configuration in Confn(R2)
to n � 4 copies of the state-decomposition
of Conf5(R2). Then, the state decomposition
of Confn(R2) can be obtained by identifying
strata with identical Conf5(R2)-state distribu-
tion with respect to such projection. Examples
of such identification follow in Figure 12.

Figure 12 We consider the distribution of points
in S5-states for di↵erent cloth meshes. The distri-
bution of points in each S

n

-state, a vector in R3, is
displayed for each mesh as a histogram. For brev-
ity we indicate state (+ + + + + + + + +�) with
A, state (+ + + + + + + � ��) with B and state
(+ + ++++++++) with C.

This state distribution can be considered
as a vector in the Euclidean space Rk, so
one could also identify “close” enough state–
distribution vectors with respect to the Euc-
lidean distance. We show in Figure 13 how this
distance can be able to encode such similarities
and di↵erences.

Figure 13 A confusion matrix between di↵erent
mesh poses using the heat function to represent low
distance values (in red) and high ones (in blue). We
can see that the similarity decreases for this partic-
ular example as the corner is moved across and out
of the initial rectangle area.

If we want to generalise this approach for
m > 5 we should bear in mind that the as-
sociation with the internal points will be im-
possible, that is, a “zone” decomposition of the
mesh cloth would be meaningless. We will be
considering all

�n�4
m�4

�
subsets of m�4 internal

points, so we cannot associate uniquely a state
to a point. However, given a mesh cloth of n
points such that the 4 corner points are given
and a state definition, we can again associate
to it a vector in Rk where k is the number
of states in Confm(R2). This allows us to see
any cloth mesh as a vector in an Euclidean
space and measure distances between di↵erent
meshes, and additionally it gives also a way
to decompose Confn(R2) into regions on the
basis of their associated vectors.
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14 Fabio Strazzeri, Carme Torras

5 Conclusion

We have proposed an approach to represent
the state of textiles in a global, coarse way use-
ful for robot manipulation. It is well founded in
topological grounds, as it relies on the config-
uration space (C–space) of distinctive points
in the cloth, whose combinatorial structure
is derived from the stratification of the flag
manifold. Moreover, two theorems, Theorem 1
and Theorem 2, defining conditions for ad-
jacency in C–space, have been proved. Their
algorithmic implementation in Algorithm 3
permits to derive the decomposition of the
C–space of a rectangular cloth with di↵erent
granularities dependent on the particular goal
sought.

More concretely, we proved in Section 3
how to determine computationally the adja-
cency relations of the strata in Confn(R2) for
n  6 and we are currently working on more
general techniques for n > 6. Note that this
doesn’t limit the number of points used to de-
termine the state of cloth, since all points in
the cloth mesh can be used to this end (Fig-
ure 11).

Such topological characterisation of cloth
state represents a key element for the develop-
ment of a theory of cloth manipulation based
on computational topology and machine learn-
ing, that we are undertaking, as well as its im-
plementation in the mobile manipulation ro-
bots servicing in our assisted living facility.

The cloth representation, as a distribu-
tion of states, will be used to link perception
and planning. As shown in Section 4, using
a state classification, the practitioner can ob-
tain a subdivision of a rectangular cloth into
state–induced “zones”. This could make way
for a robot visual recognition of di↵erent global
states of the cloth, depending on the amount of
points in each zone (Figure 13). Future works
would include applying deep learning to cloth
state recognition from images, by generating
training instances using a physical simulator
and labelling them with our proposed state
encoding. Since, for the training instances we

have the meshes (ground truth) with which
the images have been generated, we can ex-
actly obtain the state-distribution vectors of
the mesh poses with our algorithms.

On the manipulation planning side, char-
acterising the states of textile objects and
the feasible transformations under given ac-
tions in a compact operational way (i.e., a
graph–encoding manipulation–oriented states
and transitions), would permit probabilistic
planning of actions that ensure reaching a de-
sired cloth configuration despite low–accuracy
perceptions. In this direction, a framework to
characterise and systematise grasps, manipu-
lation primitives and tasks for the versatile
handling of clothes by robots has been pro-
posed (Borràs et al., 2020). Tasks are repres-
ented as sequences of manipulation primitives,
which yield state changes. We envisage to map
these changes to transitions in our state graph.
A toy example of this approach is displayed in
Figure 14.

+ Grasp PP+⇧
e

+ Release PP

+ Grasp 2PP+⇧
e

Figure 14 Example of subpath of cloth meshes
and distribution of S

n

-states, that would appear in
a graph of states and transitions to plan the fold-
ing of a towel, using the taxonomy of Borràs et al.
(2020).
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Topological representation of cloth state for robot manipulation 15

In this paper we have only considered
static cloth states and envisaged their usage
in manipulations where cloth dynamics can
be neglected. Other authors have studied re-
cently how to learn dynamics of deformable
objects and fluids (Li et al., 2019) and in a
reinforcement learning context Jangir et al.
(2020) distinguishing between static and dy-
namic cloth manipulation tasks. These ap-
proaches, together with our state-subdivision
in zones of the cloth, could determine e�-
ciently the e↵ect of a grasp by propagating the
long-range influence among cloth particles, as
in Mrowca et al. (2018), and consequently en-
abling us to determine the state-distribution
after the grasp as well as to predict, under dy-
namical e↵ects, the optimal path between two
di↵erent state-distribution vectors in Rk.

In sum, we believe that the proposed topo-
logical representation of cloth macro–state is a
promising element towards e↵ectively closing
the perception–action loop in cloth manipula-
tion.
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Grünbaum, B.: Arrangements and Spreads.
American Mathematical Society (1972)

Guan, P., Reiss, L., Hirshberg, D.A., Weiss,
A., Black, M.J.: Drape: Dressing any per-
son. ACM Transactions on Graphics (TOG)
31(4), 1–10 (2012)

Hilaga, M., Shinagawa, Y., Kohmura, T.,
Kunii, T.L.: Topology matching for fully
automatic similarity estimation of 3d
shapes. In: Proceedings of the 28th annual
conference on Computer graphics and inter-
active techniques, pp. 203–212 (2001)

Hiller, H.: Geometry of Coxeter groups, vol. 54.
Pitman Publishing (1982)

Ivan, V., Zarubin, D., Toussaint, M., Komura,
T., Vijayakumar, S.: Topology-based repres-
entations for motion planning and generaliz-
ation in dynamic environments with interac-
tions. The International Journal of Robotics
Research 32(9-10), 1151–1163 (2013)

Jangir, R., Alenya, G., Torras, C.: Dynamic
cloth manipulation with deep reinforcement
learning pp. 4630–4636 (2020)

Kemp, C., Edsinger, A., Torres-Jara, E.: Chal-
lenges for robot manipulation in human
environments [grand challenges of robot-
ics]. IEEE Robotics & Automation Magazine
14(1), 20–29 (2007)

Koganti, N., Tamei, T., Ikeda, K., Shibata,
T.: Bayesian nonparametric learning of cloth
models for real-time state estimation. IEEE
Transactions on Robotics 33(4), 916–931

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

ICRA !



16 Fabio Strazzeri, Carme Torras

(2017)
Kriz, I.: On the rational homotopy type of con-
figuration spaces. Annals of Mathematics
139(2), 227–237 (1994)

Li, Y., Wu, J., Tedrake, R., Tenenbaum, J.B.,
Torralba, A.: Learning particle dynamics for
manipulating rigid bodies, deformable ob-
jects, and fluids. In: International Confer-
ence on Learning Representations (2019)

Ma, Q., Tang, S., Pujades, S., Pons-Moll,
G., Ranjan, A., Black, M.J.: Dressing 3d
humans using a conditional mesh-vae-gan.
arXiv preprint arXiv:1907.13615 (2019)

Milnor, J.W., Stashe↵, J.D.: Characteristic
classes. Annals of mathematics studies 76

(1975)
Monk, D.: The geometry of flag manifolds.
Proceedings of the London Mathematical So-
ciety 3(2), 253–286 (1959)

Mrowca, D., Zhuang, C., Wang, E., Haber,
N., Fei-Fei, L.F., Tenenbaum, J., Yam-
ins, D.L.: Flexible neural representation for
physics prediction. In: Advances in neural
information processing systems, pp. 8799–
8810 (2018)

Pokorny, F.T., Stork, J.A., Kragic, D.: Grasp-
ing objects with holes: A topological ap-
proach. In: 2013 IEEE International Con-
ference on Robotics and Automation, pp.
1100–1107. IEEE (2013)

Pons-Moll, G., Pujades, S., Hu, S., Black,
M.J.: Clothcap: Seamless 4d clothing cap-
ture and retargeting. ACM Transactions on
Graphics (TOG) 36(4), 1–15 (2017)

Pumarola, A., Agudo, A., Porzi, L., San-
feliu, A., Lepetit, V., Moreno-Noguer,
F.: Geometry-aware network for non-rigid
shape prediction from a single view. In: Pro-
ceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp.
4681–4690 (2018)

Roudne↵, J.P.: On the number of triangles in
simple arrangements of pseudolines in the
real projective plane. Discrete Mathematics
60, 243–251 (1986)

Sánchez-Riera, J., Östlund, J., Fua, P.,
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A Adjacency study

In this appendix, we investigate further the adja-
cency relations of the stratification of Conf

n

(R2)
as in Figure 18. We proceed first introducing the
concept of a�ne flag and the corresponding strati-
fication ofFlagA(3), subset of a�ne flags inFlag(3).
Thanks to this stratification and the symmetric ac-
tion of S4 on Conf4(R2) we are able to provide a

matching between the singularities ofFlagA(3) and
those of Conf4(R2). This allows us to determine
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Topological representation of cloth state for robot manipulation 17

how the singularity, that is, alignment of three
points, between two strata has to be crossed, in
terms of the relative position of such points.

In Section 3 we show how the stratification of
Conf4(R2) can be obtained using the Flag(3) one.
This is done after mapping each point to RP2 and
then considering the pair of flags these projective
points determine. These flags are a�ne flags, as
both the point v and the line l in each of them does
not belong to the line at infinity z = 0. In other
words, a�ne flags are those flag that can be projec-
ted in the a�ne plane R2. The set of all such flags,
indicated with FlagA(3), can be stratified using the

stratification ofFlag(3), see Figure 2. IfX
i

is the set

of i-dimension strata of Flag(3) then we define the

set of i-dimensional strata of FlagA(3) as the con-

nected components of X
i

\FlagA(3). It can happen

that, when intersected with FlagA(3), a stratum

of Flag(3) is disconnected into two connected com-
ponents. To distinguish them in such cases, we an-
notate their label with a + or � sign depending on
the placement of V and V ⇤ with respect with each
other, see Fulton (1997), Hiller (1982). The result-
ing stratification is displayed in Figure 15.

(;)+

(;)�

(l � v⇤)+

(v � l⇤)+

(v � l⇤)�

(l � v⇤)�

(l � l⇤)+

v � v⇤

(l � l⇤)�

l � l⇤

v � v⇤

Figure 15 Stratification of FlagA(3) induced by

the one of Flag(3), where stratum signs indicates
how the a�ne flags in it are placed with respect to
the reference one, V ⇤.

For the singularities v � l⇤ and l � v⇤, the dif-
ference between the two connected components is
the following. If one consider the flag as V ⇤ =
{p1, p1 p2} then (v � l⇤)+ is formed by all those
flags V = {v, l} such that v 2 l⇤ and the vectors
p2 � p1 and v � p1 are concord, otherwise we are in
the singularity (v� l⇤)�. Similarly happens for the
two connected components of l � v⇤.

Any stratum in Conf4(R2) can be associated

to a stratum of FlagA(3), modulo the definition of
V and V ⇤ with respect to p1, p2, p3 and p4. For ex-
ample, the stratum with label (++++) is ;+ when
we consider V ⇤ = {p1, p1, p2} and V = {p3, p3, p4}.
We will show next how we can associated to any
singularity of Conf4(R2) between adjacent strata a

singularity of FlagA(3). Thanks to the action of S4

on Conf4(R2), such characterisation can be easily
determined.

A permutation g 2 S4 induces on Conf4(R2)
the map f

g

such that it sends any configuration p to
one determined by {p

g(i)}4
i=1, permuting accord-

ingly the points. The map f
g

is an automorphism
of Conf4(R2) and when restricted to the singularity
loci, it remains an automorphism, as the singularity
of a determinant does not change under permuta-
tion. The reader should bear in mind that this does
not imply that f

g

is an automorphism when re-
stricted to each singularity alone. Without loss of
generality we can focus only on the maps induced
by the permutations (1, 2), (2, 3) and (3, 4), as they
generate the entire S4. As explained before the sin-
gularities (v� l⇤)± and (l� v⇤)± can be expressed
in terms of “concordant” or not alignment of three
points. We can track the e↵ect of permutation on
such alignments and so we can detect how a per-
mutation g will change any singularity of FlagA(3),
again assuming V and V ⇤ are previously defined.
In Figure 16 we show how the alignment changes
via permutations, denoting by i � j � k the align-
ment where p

j

belongs to the segment of p
i

and p
k

,
identifying i� j � k with k � j � i.

2-1-3

2-4-3

1-3-2

1-4-2

3-1-4

3-2-4

1-2-3 2-1-4

1-4-3

1-2-4

1-3-4

2-3-4

e2

e1 e3

e2

e1e3e2

e3 e1

e2

e1 e3

e3 e2 e1

e2

e1

e1

e2

e3

e3

Figure 16 We show the e↵ect of each basis ele-
ment, e

i

= (i, i + 1), of S4 on the alignments of
any three points. Any possible alignment of three
points is reached using a finite composition of the
basis elements.

We consider the following flags

• V1 = {v1, l1} with v1 = p1 and l1 = p1 p2;
• V ⇤

1 = {v⇤1 , l⇤1} with v⇤1 = p3 and l⇤1 = p3 p4

and

• V1 = {v2, l2} with v2 = p2 and l2 = p2 p1;
• V ⇤

2 = {v2, l2} with v⇤2 = p4 and l⇤2 = p4 p3.

Note that, given two adjacent strata � and ⌧ , with
connecting singularity i� j�k, their images, under
the action of any g 2 S4, will still be adjacent and
g(i)� g(j)� g(k) will correspond to the singularity
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between them. We can then rewrite Figure 16 in
terms of the singularity of FlagA(3).

(v1 � l⇤1)
�

(v1 � l⇤1)
+

(v1 � l⇤1)
+

(v2 � l⇤2)
+

(v2 � l⇤2)
+

(v2 � l⇤2)
� (l1 � v⇤1 )

+

(l1 � v⇤1 )
�

(l1 � v⇤1 )
+

(l2 � v⇤2 )
�

(l2 � v⇤2 )
+

(l2 � v⇤2 )
+

e2

e1 e3

e2

e1e3e2

e3 e1

e2

e1 e3

e3 e2 e1

e2

e1

e1

e2

e3

e3

Figure 17 We show the e↵ect of each basis ele-
ment, e

i

= (i, i+1), of S4 on the alignments of any

three points, in terms of FlagA(3) singularities.

Using Figure 17 and knowing that the connect-
ing singularity of (++++) and (�+++) is 1�2�3,
or also (v1 � l⇤1)

+, we can determine the “type” of
any singularity between two adjacent strata, that
is, the corresponding singularity ofFlagA(3), as fol-
lows.

++++

+��+

��++

++��

�++�

����

++�+

+�++

�+++

���+

+++�

+���

�+��

��+�

(v1�l

⇤
1
)�

(v2�l

⇤
2
)+

(l1�v

⇤
1
)+

(v1�l

⇤
1
)+

(l2�v

⇤
2
)+

(v2�l

⇤
2
)�

(v2�l

⇤
2
)+

(l2�v

⇤
2
)�

(l1�v

⇤
1
)+

(v1�l

⇤
1
)+

(l2�v

⇤
2
)+

(l1�v

⇤
1
)�

(v1�l

⇤
1
)�

(v2�l

⇤
2
)+

(l1�v

⇤
1
)+

(v1�l

⇤
1
)+

(l2�v

⇤
2
)+

(v2�l

⇤
2
)�

(v2�l

⇤
2
)+

(l1�v

⇤
1
)+

(v1�l

⇤
1
)+

(l1�v

⇤
1
)�

(l2�v

⇤
2
)�

(l2�v

⇤
2
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Figure 18 Representation of Conf4(R2),
with strata adjacencies in terms of singularities
of FlagA(3), using the pair of flags V ⇤

1 , V1 and
V ⇤
2 , V2. We used cyan ellipses to denote external

strata and red rectangles for internal ones.

It is easy to check that each possible singular-
ity, (v

i

� l⇤
i

)± and (l
i

� v⇤
i

)±, is present in the
stratification of Conf4(R2) showed in Figure 15.
In particular we have that any stratum has always
at least one singularity in terms of V1, V ⇤

1 and one
V2, V ⇤

2 , which should convince the reader that we
need both pairs. We leave the study of singularities
with lower dimension, that is, associated to v

i

� v⇤
i

and (l
i

� l⇤
i

)±, for the future.

B Proofs of Theorems 1 and 2

In this section we will prove Theorem 1 and The-
orem 2 in details, using the notion of dual regions,
as in Figure 7, to test if there exists a crossing map
between two strata, see Definition 1.

For any crossing map H, the configurations
H(0) and H(1) belong to adjacent strata. We can
assume then that the configuration H(0) = p, is
such that p1 = (0, 0), p2 = (1, 0) and p3 = (0, 1).
This can be achieved via f : R2 ! R2 with

p 7! f(p) =

✓
x2 � x1 x3 � x1

y2 � y1 y3 � y1

◆�1

(p� p1). (1)

Note that f does not change the sign of any de-
terminant. In addition we can assume that H1 is
constant over t, that is H1(t) ⌘ (0, 0). If not, we
apply to each H

i

: [0, 1] ! R2 the translation
�H1 : [0, 1] ! R2. The map H � H1 is also a
crossing map, because for any t the configuration
q = {H

i

(t)�H1(t)}n
i=1 has identical sign sequence

to {H
i

(t)}n
i=1. In addition, at any t the configura-

tion q has q1 = (0, 0).

Similarly we assume that p2 belongs to the pos-
itive x–semiaxis. If not, we apply now a suitable ro-
tation with centre the origin, such that for any t the
point H2(t) is mapped to the positive x–semiaxis.
Again we have a crossing map, as rotations are sign–
preserving isometries, and clearly for any t the im-
age of p2 with respect to such map is on the positive
x–semiaxis. One can alternatively assume that p3
is on the positive, or negative, y–semiaxis instead.
Furthermore we can assume that H2(t) ⌘ (1, 0),
via an homogeneous dilation at each t of R2 with
centre the origin and dilation factor y2 > 0, which
ensures that the sign sequence does not change. If
we suppose that p3 is constantly on the positive y–
semiaxis, we can similarly assume H3(t) ⌘ (0, 1).

In the following proof of Theorem 1, we make
use of these assumptions, that w.l.o.g. extremely
simplify the proof. For brevity, to denote the de-
terminant of the image of points p

i

, p
j

and p
k

un-
der H, we will write d

i,j,k

(t) when the context is
clear
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Proof Suppose there exists p
i

2 p in the self–dual
region (cf. Figure 7) and H is a crossing map. As
the sign sequence of H(0) is (+ + �+), H(1) has
sign sequence (� + �+), which is impossible as it
is not an admissible sequence of Conf4(R2).

For i = 1, . . . , n let H
i

(t) = (x
i

(t), y
i

(t)) and
suppose there exist two points p

j

, p
k

in two not
dual regions. Thanks to our assumptions on H,
we have d1,2,3(t) = y3(t), and, because H is
a crossing map, we have that for some t0 it is
true that y3(0) > y3(t0) = 0 > y3(1). Denoted by
�
s

(t), for s = j, k, the sign sequence of the points
H1(t), H2(t), H3(t) and H

s

(t), we can analyse each
possible case.

Case 1. Consider �
j

(0) = (+ + ++). If �
k

(0) is
(+ + ��) or (+ + +�), we have the following in-
equalities.

8
>>><

>>>:

0 < d1,2,j = y
j

(t)

0 < d1,2,k = y
k

(t)

0 < d2,3,j(t) = d1,2,3(t)� y
j

(t) + x3(t)yj(t)

0 > d2,3,k(t) = d1,2,3(t)� y
k

(t) + x3(t)y
k

(t).

then
8
>>><

>>>:

0 < y
j

(t0)

0 < y
k

(t0)

0 < �y
j

(t0) + x3(t0)yj(t0)) x3(t0) > 1

0 > �y
k

(t0) + x3(t0)y
k

(t0)) x3(t0) < 1.

This is a contradiction.

Case 2. Suppose �
j

(0) is (+ + +�) and �
k

(0)
is (+ � ++), or �

j

(0) is (+ + ++) and �
k

(0) is
(+ � ++). In both cases we have the following in-
equalities.

8
>>><

>>>:

0 < d1,2,j(t) = y
j

(t)

0 > d1,2,k(t) = y
k

(t)

0 < d1,3,j(t) = x3(t)yj(t)� y3(t)xj

(t)

0 < d1,3,k(t) = x3(t)y
k

(t)� y3(t)x
k

(t).

then
8
>>><

>>>:

0 < y
j

(t0)

0 > y
k

(t0)

0 < x3(t0)yj(t0)) x3(t0) > 0

0 < x3(t0)y
k

(t0)) x3(t0) < 0.

This is a contradiction.

It is left to the reader to see that any other pair
of di↵erent and not dual configurations can be re-
duced via a suitable symmetric action to the two
considered above. ut

Given a couple of dual regions we can map it to an-
other one using the permutation (2, 3, 1) or (3, 1, 2),
which will also keep the determinant d1,2,3 of the
same sign. This means that we can reduce our con-
siderations to only one of such couples, namely
(+ + ++) and (+���). We assume w.l.o.g. that
the crossing map is such that H1(t) is the origin
and H3(t) ⌘ (0, 1) for any t. We are now ready to
prove Theorem 2.

Proof The proof is divided into three parts. First
we prove that any line passing through p

i

and p
j

with i, j > 4 does not cross the self–dual region.
Then we prove that it does not happen also for the
lines passing through p1, pi and p3, pi. As a con-
sequence, we are able in the last part to construct
explicitly a crossing map for p.

Consider L : R ! R2, parametric expression of
p
i

p
j

, such that we have L(0) = p
i

and L(1) = p
j

.

L(t) =

(
x(t) = (x

j

� x
i

) t+ x
i

,

y(t) = (y
j

� y
i

) t+ y
i

,
(2)

with p
i

= (x
i

, y
i

) and p
j

= (x
j

, y
j

). We show first
that the line p

i

p
j

never crosses the self–dual re-
gion. If a point q = (x, y) is in the self–dual region
we have x, y > 0 and x + y < 1, as its state cor-
responds to the sign sequence (+ +�+). We will
denote �

i,j

the sign sequence of the state relat-
ive to (p1, p3, pi, pj). As we will make broad use of
them, we write the explicit expressions of d1,i,j and
d3,i,j , given w.l.o.g. that p1 = (0, 0), p2 = (1, 0)
and p3 = (0, 1).

(
d1,i,j = x

i

y
j

� x
j

y
i

,

d3,i,j = d1,i,j + x
j

� x
i

.
(3)

As before we need to examine di↵erent cases de-
pending on �

i

, resp. �
j

, the sign sequence of the
points p1, p2, p3 and p

i

, resp. p1, p2, p3 and p
j

. That
is, each case will correspond to a di↵erent pair of
regions to which p

i

and p
j

belong.

Case 1. If both �
i

and �
j

are (+���), then �
i,j

is either (��++) or (����). Note that the per-
mutation (i, j) allows to pass from one case to the
other, that is, we can assume both d1,i,j and d3,i,j
positive. Suppose there exists L(t) from Eq. (2) in-
side the self–dual region, that is, x(t) > 0. We know
that x

i

, x
j

< 0 from the expression of �
i

and �
j

, so
by continuity there exists a t0 such that x(t0) = 0.
In particular, this implies that x

i

� x
j

6= 0, other-
wise x(t) will be constant and always negative.

(a) If x
i

< x
j

, from Eq. (2) we have
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x
i

x
j

x(t)0%

t0 1 t0%

With % we indicate that the value is increasing
from left to right, otherwise we will use &.

As x(t0) = 0 then z(t0) = 1 +
d3,i,j

x

j

�x

i

> 1, with

z(t) = x(t) + y(t). We have

z
j 1 z(t)z(t0)%

1 tt0%

As 1 < z(t), we have that L(t) is not in the self–dual
region.

(b) If x
j

< x
i

, from Eq. (2) we have

x
i

x
j

x(t) 0&

t 0 1t0%

As x(t0) = 0 then y(t0) =
d1,i,j

x

i

�x

j

< 0. From

y
i

> 1� x
i

> 0 we have

y
i0y(t) y(t0)%

t 0t0%

Thus, L(t) is not in the self–dual region as y(t) is
negative.

Case 2. If both �
i

and �
j

are (+ + ++), then �
i,j

is either (+ +��) or (+ + ++). Note that the per-
mutation (i, j) allows to pass from one case to the
other, that is, we can assume both d1,i,j and d3,i,j
negative. Suppose there exists L(t) from Eq. (2) in-
side the self–dual region, that is, z(t) < 1 for some
t. We know that z

i

, z
j

are greater than 1, as both
d1,i,j and d3,i,j are negative, so by continuity there
exists t0 such that z(t0) = 1. In particular, this im-
plies that z

i

6= z
j

, otherwise z(t) will be constant
and always greater than 1.

(a) If z
i

< z
j

, from Eq. (2) we have

z
i

z
j

z(t) 1%

t 0 1t0%

As z(t0) = 1 then we have x(t0) =
d3,i,j

z

i

�z

j

< 0 from

Eq. (2), and, therefore,

x
i0x(t) x(t0)%

t 0t0%

Thus, L(t) is not in the self–dual region as x(t) <
0.

(b) If z
j

< z
i

, from Eq. (2) we have

z
i

z
j

z(t)1&

t0 1 t0%

As z(t0) = 1 then y(t0) = 1 +
d3,i,j

z

j

�z

i

> 1 and

x(t0) < 0. From Eq. (2) we have

x
i0x(t) x(t0)%

t 0t0%

Since x(t) < 0, we have that L(t) is not in the self–
dual region.

Case 3. �
i

is (+ + ++) and �
j

is (+���).
We now have that �

i,j

is either (+�++) or
(+���), with i < j. The case j < i is obtained
permuting i with j. The condition �

i,j

= (+�++)
is equivalent to d1,i,j > 0 as the sign sequence
(+ � +�) is not admissible. Similarly we have
that �

i,j

equal to (+���) is equivalent to as-
sume d3,i,j < 0. As before, suppose there exists
L(t) from Eq. (2) inside the self–dual region, that
is, x(t), y(t) > 0 and z(t) < 1 for some t. Note that
as p3 = (0, 1) we have d1,3,k = �x

k

for any 3  k.
We know that y

j

< 0 < y
i

from the expression of
�
i

and �
j

, so by continuity of Eq. (2) there exists
t0 such that y(t0) = 0. Similarly, as x

j

< 0 < x
i

,
there exists a t1 such that x(t1) = 0. Thus we have
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y
j

y(t) 0&

1t t0%

and

x
i

x(t)0%

0 tt1%

In particular t1 < t < t0, so x(t0) > 0 and
y(t1) > 0. Furthermore, as z

i

< 1 < z
j

we have
z(t0) < z(t) < z(t1).

(a) If d1,i,j > 0 then, as x(t1) = 0, we have

y(t1) =
d1,i,j

x

j

�x

i

< 0, contradiction. Then there can-

not exists L(t) inside the self–dual region.

(b) If d3,i,j < 0 then, as z(t0) = 1 +
d3,i,j

x

i

�x

j

> 1,

we have z(t) > 1, contradiction. Then there cannot
exists L(t) inside the self–dual region.

In conclusion, any line p
i

p
j

with i, j > 4 does not
cross the self–dual region.

Consider p1, pi with i > 4 and its parametric ex-
pression

L1(t) :

(
x(t) = x

i

t,

y(t) = y
i

t.
(4)

If �
i

= (++++) then x
i

< 0 < y
i

, so either x
i

t, y
i

t
are both 0 or they are discordant, that is, the point
L1(t) is never in the self–dual region. Similarly if
�
i

= (+���).
Consider p3, pi with i > 4 and its parametric

expression

L3(t) :

(
x(t) = x

i

t,

y(t) = (y
i

� 1) t+ 1.
(5)

If �
i

= (+ + ++) then x
i

< 0. Suppose that
L3(t) belongs to the self–dual region, then t < 0
as x(t) > 0, but x

i

+y
i

< 1 so x(t)+y(t) > 1. That
is, the point L1(t) is never in the self–dual region.
Similarly if �

i

= (+���).

In conclusion we have that the only lines cross-
ing the self–dual region will be p2 p

i

for i =
1, . . . , n. In particular as any pair of them crosses
at p2, then they cannot cross inside the self–dual
region. If we move p2 inside the self–dual region,
along p2 p4 and so continuously, the sign sequence
of p remains the same. That is, we are describing
a continuous path of Conf

n

(R2) that is contained
inside the stratum � of p. It is only when p2 p4
crosses p1 p3 that the sign sequence changes, that
is, when the singularity loci is crossed at d1,2,3. Let

L2,4 = p2 p4 and � such that L2,4(�) 2 p1 p3. We
can assume, modulo orientation of L2,4, that � > 0
and L2,4(0) = p2, in particular this means that
for any t > � we have L2,4(t) with x–coordinate
negative. Consider µ > � such that for any t > �
such that L2,4(t) belongs to some p

i

p
j

, we have
t > µ. For i 6= 2 consider the continuous map
H

i

: [0, 1] ! R2 as the constant map H
i

(t) ⌘ p
i

and H2 as follows.

H2(t) = µ(p4 � p2)t+ p2, (6)

To check that H is a crossing map we need to check
only H2. Clearly H2(0) = p2 and H2 is continuous.
Consider 0 < t0 = �

µ

< 1, then H2(t0) 2 p1 p3,

and as H2 is a linear map this can happen only
once. It remains to prove that the sign sequence
of H(1) di↵ers only by the sign of d1,2,3 with re-
spect to �. We have that H2(1) has negative x–
coordinate, so d1,2,3 changes sign as wanted. Fur-
thermore, if any other determinant d2,i,j changes
sign, for (i, j) 6= (1, 3), then d2,i,j(t) = 0 for
t 2 (t0, 1), as inside the self–dual region it cannot
happen. That is, there exists � < ⌫ < µ such that
L2,4(⌫) belongs to p

i

, p
j

, which is impossible. All in
all, H = {H

i

}n
i=1 is a crossing map, as wanted. ut

Note that, thanks to these two theorems we are able
to construct Algorithm 1, and, thanks to the proof
of Theorem 2, we can explicitly construct the cross-
ing map between two adjacent strata.

C Di↵erent states definitions

In Section 4 we proposed two di↵erent state defini-
tions based on S4 and on the topological structure
of the stratification of Conf

n

(R2). A practitioner
however might want or need to study the state of
a cloth with particular (or less) focus on a subset
of points. For example, if q is a configuration of m
points, subset of p 2 Conf

n

(R2), then one could
group together strata of Conf

n

(R2) depending on
the strata of p and that of q, or instead that of p\q.
In this appendix we will show other two state defin-
ition based on the S

n

-states and ⇠
�

-ones. Again
we will assume that ⇠

�

is defined using as “base-
stratum” the sequence of all positive signs. Even if
we show here only two cases, it is clear that depend-
ing on the cloth in analysis, the mesh properties
but as well the manipulation task in mind, di↵erent
states can be defined. For now on, we will assume
that q are always the first m points in p, again for
user-defined states such assumption might not be
true.

As explained previously, if we consider the S
n

-
states, we are e↵ectively forgetting the labelling
given to each point. On the other hand, when using
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the ⇠
�

-states we are able to track how far away we
are from the “base-stratum” �. If we are interested
on the labels of the first m points and how their
distance change, we would define the following.

Definition 3 (� (m,n)-States)
Given two strata ⌧1, ⌧2 of Conf

n

(R2), for i = 1, 2
we denote by �

i

the subsequence of the first
�
m

3

�

signs, strata in Conf
m

(R2). We say that ⌧1 and
⌧2 belong to the same S

n

-state if they are in the
same S

n

-state and �1 is in the same ⇠
�

-state of
�2. We will denote such equivalence relation as
⌧1 ⇠(m,n) ⌧2.

The adjacency graph of such classes for n = 5 and
m = 4 is displayed in Figure 19, note that unlike
the ⇠

�

–states, self–loops can now occur as they are
a refinement of the S

n

-states.

+ +++
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+++��+

����
+++++�

+���
+++++�

����
������

Figure 19 Adjacency graph of � (m,n)-states,
blue dashed lines denote a change for the state of
q.

On the opposite case, if our intention is to study
the state of the cloth, without giving importance to
the labelling of q, then we can define the following
states.

Definition 4 (� (n,m)-States)
Given two strata ⌧1, ⌧2 of Conf

n

(R2), for i = 1, 2
we denote by �

i

the subsequence of the first
�
m

3

�

signs, strata in Conf
m

(R2). We say that ⌧1 and
⌧2 belong to the same ⇠

�

-state if they are in the
same S

n

-state and �1 is in the same S
m

-state of
�2. We will denote such equivalence relation as
⌧1 ⇠(n,m) ⌧2.

The adjacency graph of such states for n = 5 and
m = 4 is displayed in Figure 19.
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Figure 20 Adjacency graph of � (n,m)-states,
blue dashed lines denote a change for the state of
q.
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As the graphs displayed in Figure 19 and Fig-
ure 20 are not isomorphic, we know that these
two state definitions are di↵erent. Note that, as
� (n,m)-states are a refinement of the ⇠

�

-states,
there cannot be self–loops in its adjacency graph.
This does not always happen for the � (m,n)-states
as they are a refinement of S

n

-states, which do have
self-loops.

There are clearly a lot more possible state defin-
itions than the ones we presented here. From our
point of view, interesting ones can arise when con-
sidering instead of S

n

subgroups of it, for example
the one generated by the cycle (1, 2 . . . , n). This
would produce a refinement of S

n

-states which is
not identical to the one of ⇠

�

. Furthermore one
could use such states as in Definition 4 or Defini-
tion 3 to group together configuration that are equal
after cyclic permutation of m, or n, points.
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