
Published as a conference paper at ICLR 2021

SELF-SUPERVISED POLICY ADAPTATION
DURING DEPLOYMENT

Nicklas Hansen12, Rishabh Jangir13, Yu Sun4, Guillem Alenyà3,
Pieter Abbeel4, Alexei A Efros4, Lerrel Pinto5, Xiaolong Wang1
1UC San Diego 2Technical University of Denmark
3IRI, CSIC-UPC 4UC Berkeley 5NYU

ABSTRACT

In most real world scenarios, a policy trained by reinforcement learning in one en-
vironment needs to be deployed in another, potentially quite different environment.
However, generalization across different environments is known to be hard. A
natural solution would be to keep training after deployment in the new environment,
but this cannot be done if the new environment offers no reward signal. Our work
explores the use of self-supervision to allow the policy to continue training after de-
ployment without using any rewards. While previous methods explicitly anticipate
changes in the new environment, we assume no prior knowledge of those changes
yet still obtain significant improvements. Empirical evaluations are performed on
diverse simulation environments from DeepMind Control suite and ViZDoom, as
well as real robotic manipulation tasks in continuously changing environments,
taking observations from an uncalibrated camera. Our method improves general-
ization in 31 out of 36 environments across various tasks and outperforms domain
randomization on a majority of environments.1

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved considerable success when combined with convolu-
tional neural networks for deriving actions from image pixels (Mnih et al., 2013; Levine et al., 2016;
Nair et al., 2018; Yan et al., 2020; Andrychowicz et al., 2020). However, one significant challenge
for real-world deployment of vision-based RL remains: a policy trained in one environment might
not generalize to other new environments not seen during training. Already hard for RL alone, the
challenge is exacerbated when a policy faces high-dimensional visual inputs.

A well explored class of solutions is to learn robust policies that are simply invariant to changes in
the environment (Rajeswaran et al., 2016; Tobin et al., 2017; Sadeghi & Levine, 2016; Pinto et al.,
2017b; Lee et al., 2019). For example, domain randomization (Tobin et al., 2017; Peng et al., 2018;
Pinto et al., 2017a; Yang et al., 2019) applies data augmentation in a simulated environment to train a
single robust policy, with the hope that the augmented environment covers enough factors of variation
in the test environment. However, this hope may be difficult to realize when the test environment
is truly unknown. With too much randomization, training a policy that can simultaneously fit
numerous augmented environments requires much larger model and sample complexity. With too
little randomization, the actual changes in the test environment might not be covered, and domain
randomization may do more harm than good since the randomized factors are now irrelevant. Both
phenomena have been observed in our experiments. In all cases, this class of solutions requires
human experts to anticipate the changes before the test environment is seen. This cannot scale as
more test environments are added with more diverse changes.

Instead of learning a robust policy invariant to all possible environmental changes, we argue that it is
better for a policy to keep learning during deployment and adapt to its actual new environment. A
naive way to implement this in RL is to fine-tune the policy in the new environment using rewards
as supervision (Rusu et al., 2016; Kalashnikov et al., 2018; Julian et al., 2020). However, while it
is relatively easy to craft a dense reward function during training (Gu et al., 2017; Pinto & Gupta,
2016), during deployment it is often impractical and may require substantial engineering efforts.

1Webpage and implementation: https://nicklashansen.github.io/PAD/

1

https://nicklashansen.github.io/PAD/


Published as a conference paper at ICLR 2021

In this paper, we tackle an alternative problem setting in vision-based RL: adapting a pre-trained
policy to an unknown environment without any reward. We do this by introducing self-supervision
to obtain “free” training signal during deployment. Standard self-supervised learning employs
auxiliary tasks designed to automatically create training labels using only the input data (see Section
2 for details). Inspired by this, our policy is jointly trained with two objectives: a standard RL
objective and, additionally, a self-supervised objective applied on an intermediate representation of
the policy network. During training, both objectives are active, maximizing expected reward and
simultaneously constraining the intermediate representation through self-supervision. During testing /
deployment, only the self-supervised objective (on the raw observational data) remains active, forcing
the intermediate representation to adapt to the new environment.

We perform experiments both in simulation and with a real robot. In simulation, we evaluate
on two sets of environments: DeepMind Control suite (Tassa et al., 2018) and the CRLMaze
ViZDoom (Lomonaco et al., 2019; Wydmuch et al., 2018) navigation task. We evaluate generalization
by testing in new environments with visual changes unknown during training. Our method improves
generalization in 19 out of 22 test environments across various tasks in DeepMind Control suite, and
in all considered test environments on CRLMaze. Besides simulations, we also perform Sim2Real
transfer on both reaching and pushing tasks with a Kinova Gen3 robot. After training in simulation, we
successfully transfer and adapt policies to 6 different environments, including continuously changing
disco lights, on a real robot operating solely from an uncalibrated camera. In both simulation and real
experiments, our approach outperforms domain randomization in most environments.

2 RELATED WORK

Self-supervised learning is a powerful way to learn visual representations from unlabeled data (Vin-
cent et al., 2008; Doersch et al., 2015; Wang & Gupta, 2015; Zhang et al., 2016; Pathak et al., 2016;
Noroozi & Favaro, 2016; Zhang et al., 2017; Gidaris et al., 2018). Researchers have proposed to
use auxiliary data prediction tasks, such as undoing rotation (Gidaris et al., 2018), solving a jigsaw
puzzle (Noroozi & Favaro, 2016), tracking (Wang et al., 2019), etc. to provide supervision in lieu of
labels. In RL, the idea of learning visual representations and action at the same time has been investi-
gated (Lange & Riedmiller, 2010; Jaderberg et al., 2016; Pathak et al., 2017; Ha & Schmidhuber,
2018; Yarats et al., 2019; Srinivas et al., 2020; Laskin et al., 2020; Yan et al., 2020). For example,
Srinivas et al. (2020) use self-supervised contrastive learning techniques (Chen et al., 2020; Hénaff
et al., 2019; Wu et al., 2018; He et al., 2020) to improve sample efficiency in RL by jointly training
the self-supervised objective and RL objective. However, this has not been shown to generalize to
unseen environments. Other works have applied self-supervision for better generalization across envi-
ronments (Pathak et al., 2017; Ebert et al., 2018; Sekar et al., 2020). For example, Pathak et al. (2017)
use a self-supervised prediction task to provide dense rewards for exploration in novel environments.
While results on environment exploration from scratch are encouraging, how to transfer a trained
policy (with extrinsic reward) to a novel environment remains unclear. Hence, these methods are not
directly applicable to the proposed problem in our paper.

Generalization across different distributions is a central challenge in machine learning. In domain
adaptation, target domain data is assumed to be accessible (Geirhos et al., 2018; Tzeng et al., 2017;
Ganin et al., 2016; Gong et al., 2012; Long et al., 2016; Sun et al., 2019; Julian et al., 2020). For
example, Tzeng et al. (2017) use adversarial learning to align the feature representations in both the
source and target domain during training. Similarly, the setting of domain generalization (Ghifary
et al., 2015; Li et al., 2018; Matsuura & Harada, 2019) assumes that all domains are sampled from
the same meta distribution, but the same challenge remains and now becomes generalization across
meta-distributions. Our work focuses instead on the setting of generalizing to truly unseen changes in
the environment which cannot be anticipated at training time.

There have been several recent benchmarks in our setting for image recognition (Hendrycks &
Dietterich, 2018; Recht et al., 2018; 2019; Shankar et al., 2019). For example, in Hendrycks
& Dietterich (2018), a classifier trained on regular images is tested on corrupted images, with
corruption types unknown during training; the method of Hendrycks et al. (2019) is proposed to
improve robustness on this benchmark. Following similar spirit, in the context of RL, domain
randomization (Tobin et al., 2017; Pinto et al., 2017a; Peng et al., 2018; Ramos et al., 2019; Yang
et al., 2019; James et al., 2019) helps a policy trained in simulation to generalize to real robots. For
example, Tobin et al. (2017); Sadeghi & Levine (2016) propose to render the simulation environment
with random textures and train the policy on top. The learned policy is shown to generalize to real

2



Published as a conference paper at ICLR 2021

Training

Replay Buffer

Observation

Reinforcement 
Learning

Self-Supervised 
Learning

Policy Adaptation during Deployment

Environment

Observation

Reinforcement 
Learning

Self-Supervised 
Learning

Figure 1. Left: Training before deployment. Observations are sampled from a replay buffer for
off-policy methods and are collected during roll-outs for on-policy methods. We optimize the RL and
self-supervised objectives jointly. Right: Policy adaptation during deployment. Observations are
collected from the test environment online, and we optimize only the self-supervised objective.

robot manipulation tasks. Instead of deploying a fixed policy, we train and adapt the policy to the
new environment with observational data that is naturally revealed during deployment.

Test-time adaptation for deep learning is starting to be used in computer vision (Shocher et al.,
2017; 2018; Bau et al., 2019; Mullapudi et al., 2019; Sun et al., 2020; Wortsman et al., 2018). For
example, Shocher et al. (2018) shows that image super-resolution can be learned at test time (from
scratch) simply by trying to upsample a downsampled version of the input image. Bau et al. (2019)
show that adapting the prior of a generative adversarial network to the statistics of the test image
improves photo manipulation tasks. Our work is closely related to the test-time training method of
Sun et al. (2020), which performs joint optimization of image recognition and self-supervised learning
with rotation prediction (Gidaris et al., 2018), then uses the self-supervised objective to adapt the
representation of individual images during testing. Instead of image recognition, we perform test-time
adaptation for RL with visual inputs in an online fashion. As the agent interacts with an environment,
we keep obtaining new observational data in a stream for training the visual representations.

3 METHOD

In this section, we describe our proposed Policy Adaptation during Deployment (PAD) approach.
It can be implemented on top of any policy network and standard RL algorithm (both on-policy
and off-policy) that can be described by minimizing some RL objective J(θ) w.r.t. the collection of
parameters θ using stochastic gradient descent.

3.1 NETWORK ARCHITECTURE

We design the network architecture to allow the policy and the self-supervised prediction to share
features. For the collection of parameters θ of a given policy network π, we split it sequentially into
θ = (θe, θa), where θe collects the parameters of the feature extractor, and θa is the head that outputs
a distribution over actions. We define networks πe with parameters θe and πa with parameters θa
such that π(s; θ) = πa(πe(s)), where s represents an image observation. Intuitively, one can think of
πe as a feature extractor, and πa as a controller based on these features. The goal of our method is to
update πe at test-time using gradients from a self-supervised task, such that πe (and consequently πθ)
can generalize. Let πs with parameters θs be the self-supervised prediction head and its collection
of parameters, and the input to πs be the output of πe (as illustrated in Figure 1). In this work, the
self-supervised task is inverse dynamics prediction for control, and rotation prediction for navigation.

3.2 INVERSE DYNAMICS PREDICTION AND ROTATION PREDICTION

At each time step, we always observe a transition sequence in the form of (st,at, st+1), during both
training and testing. Naturally, self-supervision can be derived from taking parts of the sequence
and predicting the rest. An inverse dynamics model takes the states before and after transition, and
predicts the action in between. In this work, the inverse dynamics model πs operates on the feature
space extracted by πe. We can write the inverse dynamics prediction objective formally as

L(θs, θe) = `
(
at, πs (πe(st), πe(st+1))

)
. (1)

For continuous actions, ` is the mean squared error between the ground truth and the model output.
For discrete actions, the output is a soft-max distribution over the action space, and ` is the cross-

3



Published as a conference paper at ICLR 2021

entropy loss. Empirically, we find this self-supervised task to be most effective with continuous
actions, possibly because inverse dynamics prediction in a small space of discrete actions is not as
challenging. Note that we predict the inverse dynamics instead of the forward dynamics, because
when operating in feature space, the latter can produce trivial solutions such as the constant zero
feature for every state2. If we instead performed prediction with forward dynamics in pixel space, the
task would be extremely challenging given the large uncertainty in pixel prediction.

As an alternative self-supervised task, we use rotation prediction (Gidaris et al., 2018). We rotate
an image by one of 0, 90, 180 and 270 degrees as input to the network, and cast this as a four-way
classification problem to determine which one of these four ways the image has been rotated. This
task is shown to be effective for learning representations for object configuration and scene structure,
which is beneficial for visual recognition (Hendrycks et al., 2019; Doersch & Zisserman, 2017).

3.3 TRAINING AND TESTING

Before deployment of the policy, because we have signals from both the reward and self-supervised
auxiliary task, we can train with both in the fashion of multi-task learning. This corresponds to the
following optimization problem during training minθa,θs,θe J(θa, θe) + αL(θs, θe), where α > 0 is
a trade-off hyperparameter. During deployment, we cannot optimize J anymore since the reward
is unavailable, but we can still optimize L to update both θs and θe. Empirically, we find only
negligible difference with keeping θs fixed at test-time, so we update both since the gradients have
to be computed regardless; we ablate this decision in appendix C. As we obtain new images from
the stream of visual inputs in the environment, θ keeps being updated until the episode ends. This
corresponds to, for each iteration t = 1...T :

st ∼ p(st|at−1, st−1) (2)
θs(t) = θs(t− 1)−∇θsL(st; θs(t− 1), θe(t− 1)) (3)
θe(t) = θe(t− 1)−∇θeL(st; θs(t− 1), θe(t− 1)) (4)

at = π(st; θ(t)) with θ(t) = (θe(t), θa), (5)
where θs(0) = θs, θe(0) = θe, s0 is the initial condition given by the environment, a0 = πθ(s0), p is
the unknown environment transition, and L is the self-supervised objective as previously introduced.

4 EXPERIMENTS

In this work, we investigate how well an agent trained in one environment (denoted the training
environment) generalizes to unseen and diverse test environments. During evaluation, agents have
no access to reward signals and are expected to generalize without trials nor prior knowledge about
the test environments. In simulation, we evaluate our method (PAD) and baselines extensively on
continuous control tasks from DeepMind Control (DMControl) suite (Tassa et al., 2018) as well as
the CRLMaze (Lomonaco et al., 2019) navigation task, and experiment with both stationary (colors,
objects, textures, lighting) and non-stationary (videos) environment changes. We further show that
PAD transfers from simulation to a real robot and successfully adapts to environmental differences
during deployment in two robotic manipulation tasks. Samples from DMControl and CRLMaze
environments are shown in Figure 2, and samples from the robot experiments are shown in Figure 4.
Implementation is available at https://nicklashansen.github.io/PAD/.

Network details. For DMControl and the robotic manipulation tasks we implement PAD on top of
Soft Actor-Critic (SAC) (Haarnoja et al., 2018), and adopt both network architecture and hyperparam-
eters from Yarats et al. (2019), with minor modifications: the feature extractor πe has 8 convolutional
layers shared between the RL head πa and self-supervised head πs, and we split the network into
architecturally identical heads following πe. Each head consists of 3 convolutional layers followed
by 4 fully connected layers. For CRLMaze, we use Advantage Actor-Critic (A2C) as base algorithm
(Mnih et al., 2016) and apply the same architecture as for the other experiments, but implement πe
with only 6 convolutional layers. Observations are stacks of k colored frames (k = 3 on DMControl
and CRLMaze; k = 1 in robotic manipulation) of size 100× 100 and time-consistent random crop is
applied as in Srinivas et al. (2020). During deployment, we optimize the self-supervised objective
online w.r.t. θe, θs for one gradient step per time iteration. See appendix F for implementation details.

2A forward dynamics model operating in feature space can trivially achieve a loss of 0 by learning to map
every state to a constant vector, e.g. 0. An inverse dynamics model, however, does not have such trivial solutions.

4

https://nicklashansen.github.io/PAD/


Published as a conference paper at ICLR 2021

Figure 2. Left: Training environments of DMControl (top) and CRLMaze (bottom). Right: Test en-
vironments of DMControl (top) and CRLMaze (bottom). Changes to DMControl include randomized
colors, video backgrounds, and distractors; changes to CRLMaze include textures and lighting.

Table 1. Episodic return in test environments with randomized colors, mean and std. dev. for 10
seeds. Best method on each task is in bold and blue compares SAC+IDM with and without PAD.

10x episode length
Random colors SAC +DR +IDM +IDM (PAD) +IDM +IDM (PAD)

Walker, walk 414±74 594±104 406±29 468±47 3830±547 5505±592

Walker, stand 719±74 715±96 743±37 797±46 7832±209 8566±121

Cartpole, swingup 592±50 647±48 585±73 630±63 6528±539 7093±592

Cartpole, balance 857±60 867±37 835±40 848±29 7746±526 7670±293

Ball in cup, catch 411±183 470±252 471±75 563±50 – –
Finger, spin 626±163 465±314 757±62 803±72 7249±642 7496±655

Finger, turn easy 270±43 167±26 283±51 304±46 – –
Cheetah, run 154±41 145±29 121±38 159±28 1117±530 1208±487

Reacher, easy 163±45 105±37 201±32 214±44 1788±441 2152±506

4.1 DEEPMIND CONTROL

DeepMind Control (DMControl) (Tassa et al., 2018) is a collection of continuous control tasks
where agents only observe raw pixels. Generalization benchmarks on DMControl represent diverse
real-world tasks for motor control, and contain distracting surroundings not correlated with the reward
signals.

Figure 3. Relative improvement in
instantaneous reward over time for
PAD on the random color env.

Experimental setup. We experiment with 9 tasks from DM-
Control and measure generalization to four types of test environ-
ments: (i) randomized colors; (ii) natural videos as background;
(iii) distracting objects placed in the scene; and (iv) the un-
modified training environment. For each test environment, we
evaluate methods across 10 seeds and 100 random initializa-
tions. If a given test environment is not applicable to certain
tasks, e.g. if a task has no background for the video background
setting, they are excluded. Tasks are selected on the basis of di-
versity, as well as the success of vision-based RL in prior work
(Yarats et al., 2019; Srinivas et al., 2020; Laskin et al., 2020;
Kostrikov et al., 2020). We implement PAD on top of SAC and
use an Inverse Dynamics Model (IDM) for self-supervision,
as we find that learning a model of the dynamics works well
for motor control. For completeness, we ablate the choice of
self-supervision. Learning curves are provided in appendix B.
We compare our method to the following baselines: (i) SAC with no changes (denoted SAC); (ii) SAC
trained with domain randomization on a fixed set of 100 colors (denoted +DR); and (iii) SAC trained
jointly with an IDM but without PAD (denoted +IDM). Our method using an IDM with PAD is
denoted by +IDM (PAD). For domain randomization, colors are sampled from the same distribution
as in evaluation, but with lower variance, as we find that training directly on the test distribution does
not converge.

Random perturbation of color. Robustness to subtle changes such as color is essential to real-
world deployment of RL policies. We evaluate generalization on a fixed set of 100 colors of
foreground, background and the agent itself, and report the results in Table 1 (first 4 columns). We
find PAD to improve generalization in all tasks considered, outperforming SAC trained with domain

5



Published as a conference paper at ICLR 2021

randomization in 6 out of 9 tasks. Surprisingly, despite a substantial overlap between training and test
domains of domain randomization, it generalizes no better than vanilla SAC on a majority of tasks.

Long-term stability. We find the relative improvement of PAD to improve over time, as shown in
Figure 3. To examine the long-term stability of PAD, we further evaluate on 10x episode lengths and
summarize the results in the last two columns in Table 1 (goal-oriented tasks excluded). While we do
not explicitly prevent the embedding from drifting away from the RL task, we find empirically that
PAD does not degrade the performance of the policy, even over long horizons, and when PAD does
not improve, we find it to hurt minimally. We conjecture this is because we are not learning a new
task, but simply continue to optimize the same (self-supervised) objective as during joint training,
where both two tasks are compatible. In this setting, PAD still improves generalization in 6 out of 7
tasks, and thus naturally extends beyond episodic deployment. For completeness, we also evaluate
methods in the environment in which they were trained, and report the results in appendix A. We find
that, while PAD improves generalization to novel environments, performance is virtually unchanged
on the training environment. We conjecture this is because the self-supervised task is already fully
learned and any continued training on the same data distribution thus has little impact.

Table 2. Episodic return in test environments with video back-
grounds (top) and distracting objects (bottom), mean and std.
dev. for 10 seeds. Best method on each task is in bold and blue
compares SAC+IDM with and without PAD.

Video backgrounds SAC +DR +IDM +IDM (PAD)

Walker, walk 616±80 655±55 694±85 717±79

Walker, stand 899±53 869±60 902±51 935±20

Cartpole, swingup 375±90 485±67 487±90 521±76

Cartpole, balance 693±109 766±92 691±76 687±58

Ball in cup, catch 393±175 271±189 362±69 436±55

Finger, spin 447±102 338±207 605±61 691±80

Finger, turn easy 355±108 223±91 355±110 362±101

Cheetah, run 194±30 150±34 164±42 206±34

Distracting objects SAC +DR +IDM +IDM (PAD)

Cartpole, swingup 815±60 809±24 776±58 771±64

Cartpole, balance 969±20 938±35 964±26 960±29

Ball in cup, catch 177±111 331±189 482±128 545±173

Finger, spin 652±184 564±288 836±62 867±72

Finger, turn easy 302±68 165±12 326±101 347±48

Non-stationary environments.
To investigate whether PAD can
adapt in non-stationary envi-
ronments, we evaluate general-
ization to diverse video back-
grounds (refer to Figure 2). We
find PAD to outperform all base-
lines on 7 out of 8 tasks, as
shown in Table 2, by as much
as 104% over domain random-
ization on Finger, spin. Domain
randomization generalizes com-
parably worse to videos, which
we conjecture is not because the
environments are non-stationary,
but rather because the image
statistics of videos are not cov-
ered by its training domain of
randomized colors. In fact, do-
main randomization is outper-
formed by the vanilla SAC in
most tasks with video back-
grounds, which is in line with the findings of Packer et al. (2018).

Scene content. We hypothesize that: (i) an agent trained with an IDM is comparably less distracted
by scene content since objects uncorrelated to actions yield no predictive power; and (ii) that PAD
can adapt to unexpected objects in the scene. We test these hypotheses by measuring robustness
to colored shapes at a variety of positions in both the foreground and background of the scene (no
physical interaction). Results are summarized in Table 2. PAD outperforms all baselines in 3 out of 5
tasks, with a relative improvement of 208% over SAC on Ball in cup, catch. In the two cartpole tasks
in which PAD does not improve, all methods are already relatively unaffected by the distractors.

Choice of self-supervised task. We investigate how much the choice of self-supervised task con-
tributes to the overall success of our method, and consider the following ablations: (i) replacing
inverse dynamics with the rotation prediction task described in Section 3.2; and (ii) replacing it with
the recently proposed CURL (Srinivas et al., 2020) contrastive learning algorithm for RL. As shown
in Table 3, PAD improves generalization of CURL in a majority of tasks on the randomized color
benchmark, and in 4 out of 9 tasks using rotation prediction. However, inverse dynamics as auxiliary
task produces more consistent results and offers better generalization overall. We argue that learning
an IDM produces better representations for motor control since it connects observations directly to
actions, whereas CURL and rotation prediction operates purely on observations. In general, we find
the improvement of PAD to be bigger in tasks that benefit significantly from visual information (see
appendix A), and conjecture that selecting a self-supervised task that learns features useful to the RL
task is crucial to the success of PAD, which we discuss further in Section 4.2.

6



Published as a conference paper at ICLR 2021

Table 3. Ablations on the randomized color domain of DMC. All methods use SAC. CURL represents
RL with a contrastive learning task (Srinivas et al., 2020) and Rot represents the rotation predic-
tion (Gidaris et al., 2018). Offline PAD is here denoted O-PAD for brevity, whereas the default usage
of PAD is in an online setting. Best method is in bold and blue compares +IDM w/ and w/o PAD.

Random colors CURL CURL (PAD) Rot Rot (PAD) IDM IDM (O-PAD) IDM (PAD)

Walker, walk 445±99 495±70 335±7 330±30 406±29 441±16 468±47

Walker, stand 662±54 753±49 673±4 653±27 743±37 727±21 797±46

Cartpole, swingup 454±110 413±67 493±52 477±38 585±73 578±69 630±63

Cartpole, balance 782±13 763±5 710±72 734±81 835±40 796±37 848±29

Ball in cup, catch 231±92 332±78 291±54 314±60 471±75 490±16 563±50

Finger, spin 691±12 588±22 695±36 689±20 757±62 767±43 803±72

Finger, turn easy 202±32 186±2 283±68 230±53 283±51 321±10 304±46

Cheetah, run 202±22 211±20 127±3 135±12 121±38 112±35 159±28

Reacher, easy 325±32 378±62 99±29 120±7 201±32 241±24 214±44

Table 4. Episodic return of PAD and baselines in CRLMaze environments. PAD improves general-
ization in all considered environments and outperforms both A2C and domain randomization by a
large margin. All methods use A2C. We report mean and std. error of 10 seeds. Best method in each
environment is in bold and blue compares rotation prediction with and without PAD.

CRLMaze Random A2C +DR +IDM +IDM (PAD) +Rot +Rot (PAD)

Walls −870±30 −380±145 −260±137 −302±150 −428±135 −206±166 −74±116

Floor −868±23 −320±167 −438±59 −47±198 −530±106 −294±123 −209±94

Ceiling −872±30 −171±175 −400±74 166±215 −508±104 128±196 281±83

Lights −900±29 −30±213 −310±106 239±270 −460±114 −84±53 312±104

Offline versus online learning. Observations that arrive sequentially are highly correlated, and we
thus hypothesize that our method benefits significantly from learning online. To test this hypothesis,
we run an offline variant of our method in which network updates are forgotten after each step. In
this setting, our method can only adapt to single observations and does not benefit from learning
over time. Results are shown in Table 3. We find that our method benefits substantially from online
learning, but learning offline still improves generalization on select tasks.

4.2 CRLMAZE

CRLMaze (Lomonaco et al., 2019) is a time-constrained, discrete-action 3D navigation task for
ViZDoom (Wydmuch et al., 2018), in which an agent is to navigate a maze and collect objects. There
is a positive reward associated with green columns, and a negative reward for lanterns as well as for
living. Readers are referred to the respective papers for details on the task and environment.

Experimental setup. We train agents on a single environment and measure generalization to
environments with novel textures for walls, floor, and ceiling, as well as lighting, as shown in Figure 2.
We implement PAD on top of A2C (Mnih et al., 2016) and use rotation prediction (see Section 3.2) as
self-supervised task. Learning to navigate novel scenes requires a generalized scene understanding,
and we find that rotation prediction facilitates that more so than an IDM. We compare to the following
baselines: (i) a random agent (denoted Random); (ii) A2C with no changes (denoted A2C); (iii)
A2C trained with domain randomization (denoted +DR); (iv) A2C with an IDM as auxiliary task
(denoted +IDM); and (v) A2C with rotation prediction as auxiliary task (denoted +Rot). We denote
Rot with PAD as +Rot (PAD). Domain randomization uses 56 combinations of diverse textures,
partially overlapping with the test distribution, and we find it necessary to train domain randomization
for twice as many episodes in order to converge. We closely follow the evaluation procedure of
(Lomonaco et al., 2019) and evaluate methods across 20 starting positions and 10 random seeds.

Results. We report performance on the CRLMaze environments in Table 4. PAD improves gener-
alization in all considered test environments, outperforming both A2C and domain randomization
by a large margin. Domain randomization performs consistently across all environments but is less
successful overall. We further examine the importance of selecting appropriate auxiliary tasks by a
simple ablation: replacing rotation prediction with an IDM for the navigation task. We conjecture
that, while an auxiliary task can enforce structure in the learned representations, its features (and
consequently gradients) need to be sufficiently correlated with the primary RL task for PAD to be

7



Published as a conference paper at ICLR 2021

(a) Simulation. (b) Default transfer. (c) Table cloth. (d) Disco lights.
Figure 4. Samples from the push robotic manipulation task. The task is to push the yellow cube to
the location of the red disc. Agents are trained in setting (a) and evaluated in settings (b-d).

successful during deployment. While PAD with rotation prediction improves generalization across all
test environments considered, IDM does not, which suggests that rotation prediction is more suitable
for tasks that require scene understanding, whereas IDM is useful for tasks that require motor control.
We leave it to future work to automate the process of selecting appropriate auxiliary tasks.

4.3 ROBOTIC MANIPULATION TASKS

Table 5. Success rate of PAD and baselines on a real
robotic arm. Best method in each environment is in bold
and blue compares +IDM with and without PAD.

Real robot SAC +DR +IDM +IDM (PAD)

Reach (default) 100% 100% 100% 100%
Reach (cloth) 48% 80% 56% 80%
Reach (disco) 72% 76% 88% 92%

Push (default) 88% 88% 92% 100%
Push (cloth) 60% 64% 64% 88%
Push (disco) 60% 68% 72% 84%

We deploy our method and baselines on
a real Kinova Gen3 robot and evaluate on
two manipulation tasks: (i) reach, a task in
which the robot reaches for a goal marked
by a red disc; and (ii) push, a task in which
the robot pushes a cube to the location of
the red disc. Both tasks use an XY action
space, where the Z position of the actua-
tor is fixed. Agents operate purely from
pixel observations with no access to state
information. During deployment, we make
no effort to calibrate camera, lighting, or
physical properties such as dimensions, mass, and friction, and policies are expected to generalize
with no prior knowledge of the test environment. Samples from the push task are shown in Figure 4,
and samples from reach are shown in appendix E.

Table 6. Success rate of PAD and baselines for the push
task on a simulated robotic arm in test environments
with changes to dynamics. Changes include object mass,
size, and friction, arm mount position, and end effector
velocity. Best method in each environment is in bold
and blue compares +IDM with and without PAD.

Simulated robot SAC +DR +IDM +IDM (PAD)

Push (object) 66% 64% 72% 82%
Push (mount) 68% 58% 86% 84%
Push (velocity) 70% 68% 70% 78%
Push (all) 56% 50% 48% 76%

Experimental setup. We implement PAD
on top of SAC (Haarnoja et al., 2018) and
apply the same experimental setup as in
Section 4.1 using an Inverse Dynamics
Model (IDM) for self-supervision, but with-
out frame-stacking (i.e. k = 1). Agents are
trained in simulation with dense rewards
and randomized initial configurations of
arm, goal, and box, and we measure gen-
eralization to 3 novel environments in the
real-world: (i) default environment with
pixel observations that roughly mimic the
simulation; (ii) a patterned table cloth that
distracts visually and greatly increases friction; and (iii) disco, an environment with non-stationary
visual disco light distractions. Notably, all 3 environments also feature subtle differences in dynamics
compared to the training environment, such as object dimensions, mass, friction, and uncalibrated
actions. In each setting, we evaluate the success rate across 25 test runs spanning across 5 pre-defined
goal locations throughout the table. The goal locations vary between the two tasks, and the robot
is reset after each run. We perform comparison against direct transfer and domain randomization
baselines as in Section 4.1. We further evaluate generalization to changes in dynamics by considering
a variant of the simulated environment in which object mass, size, and friction, arm mount position,
and end effector velocity is modified. We consider each setting both individually and jointly, and
evaluate success rate across 50 unique configurations with the robot reset after each run.

Results. We report transfer results in Table 5. While all methods transfer successfully to reach
(default), we observe PAD to improve generalization in all settings in which the baselines show

8



Published as a conference paper at ICLR 2021

sub-optimal performance. We find PAD to be especially powerful for the push task that involves
dynamics, improving by as much as 24% in push (cloth). While domain randomization proves highly
effective in reach (cloth), we observe no significant benefit in the other settings, which suggests that
PAD can be more suitable in challenging tasks like push. To isolate the effect of dynamics, we further
evaluate generalization to a number of simulated changes in dynamics on the push task. Results are
shown in Table 6. We find PAD to improve generalization to changes in the physical properties of
the object and end effector, whereas both SAC+IDM and PAD are relatively unaffected by changes
to the mount position. Consistent with the real robot results in Section 5, PAD is found to be most
effective when changes in dynamics are non-trivial, improving by as much as 28% in the push (all)
setting, where all 3 environmental changes are considered jointly. These results suggest that PAD can
be a simple, yet effective method for generalization to diverse, unseen environments that vary in both
visuals and dynamics.

5 CONCLUSION

While previous work addresses generalization in RL by learning policies that are invariant to any
environment changes that can be anticipated, we formulate an alternative problem setting in vision-
based RL: can we instead adapt a pretrained-policy to new environments without any reward. We
propose Policy Adaptation during Deployment, a self-supervised framework for online adaptation
at test-time, and show empirically that our method improves generalization of policies to diverse
simulated and real-world environmental changes across a variety of tasks. We find our approach
benefits greatly from learning online, and we systematically evaluate how the choice of self-supervised
task impacts performance. While the current framework relies on prior knowledge on selecting self-
supervised tasks for policy adaptation, we see our work as the initial step in addressing the problem
of adapting vision-based policies to unknown environments. We ultimately envision embodied agents
in the future to be learning all the time, with the flexibility to learn both with and without rewards,
before and during deployment.

Acknowledgements. This work was supported, in part, by grants from DARPA, NSF 1730158
CI-New: Cognitive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI), NSF
ACI-1541349 CC*DNI Pacific Research Platform, and gifts from Qualcomm and TuSimple. This
work was also funded, in part, by grants from Berkeley DeepDrive, SAP and European Research
Council (ERC) from the European Union Horizon 2020 Programme under grant agreement no.
741930 (CLOTHILDE). We would like to thank Fenglu Hong and Joey Hejna for helpful discus-
sions.

REFERENCES

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020. 1

David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou, Jun-Yan Zhu, and Antonio
Torralba. Semantic photo manipulation with a generative image prior. ACM Trans. Graph., 38(4),
2019. ISSN 0730-0301. 3

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations, 2020. 2

Carl Doersch and Andrew Zisserman. Multi-task self-supervised visual learning. In Proceedings of
the IEEE International Conference on Computer Vision, pp. 2051–2060, 2017. 4

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
context prediction. In Proceedings of the IEEE International Conference on Computer Vision, pp.
1422–1430, 2015. 2

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual
foresight: Model-based deep reinforcement learning for vision-based robotic control, 2018. 2

9



Published as a conference paper at ICLR 2021

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
The Journal of Machine Learning Research, 17(1):2096–2030, 2016. 2

Robert Geirhos, Carlos R. Medina Temme, Jonas Rauber, Heiko H. Schütt, Matthias Bethge, and
Felix A. Wichmann. Generalisation in humans and deep neural networks. In NeurIPS, 2018. 2

Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. Domain generalization
for object recognition with multi-task autoencoders. In Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), ICCV ’15, pp. 2551–2559. IEEE Computer Society, 2015.
ISBN 9781467383912. 2

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations, 2018. 2, 3, 4, 7

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.
2066–2073. IEEE, 2012. 2

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international conference
on robotics and automation (ICRA), pp. 3389–3396. IEEE, 2017. 1

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Advances
in Neural Information Processing Systems 31, pp. 2451–2463. Curran Associates, Inc., 2018. 2

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications, 2018. 4, 8, 17

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020. 2

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and surface variations. arXiv: Learning, 2018. 2

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learning
can improve model robustness and uncertainty. ArXiv, abs/1906.12340, 2019. 2, 4

Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, S. M. Ali Eslami, and
Aaron van den Oord. Data-efficient image recognition with contrastive predictive coding, 2019. 2

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks, 2016.
2

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz, S. Levine,
Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-sim: Data-efficient robotic
grasping via randomized-to-canonical adaptation networks. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 12619–12629, 2019. 2

R. Julian, B. Swanson, G. Sukhatme, Sergey Levine, Chelsea Finn, and Karol Hausman. Never stop
learning: The effectiveness of fine-tuning in robotic reinforcement learning. arXiv: Learning,
2020. 1, 2, 15

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, Eric Jang, Deirdre Quillen, Ethan Holly,
Mrinal Kalakrishnan, V. Vanhoucke, and S. Levine. Qt-opt: Scalable deep reinforcement learning
for vision-based robotic manipulation. ArXiv, abs/1806.10293, 2018. 1

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. 2020. 5, 17

10



Published as a conference paper at ICLR 2021

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In NIPS, 2012. 17

Sascha Lange and Martin A. Riedmiller. Deep auto-encoder neural networks in reinforcement
learning. In The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2010.
2

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020. 2, 5, 17

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. A simple randomization technique for
generalization in deep reinforcement learning. ArXiv, abs/1910.05396, 2019. 1

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016. 1

Ya Feng Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain generalization
via conditional invariant representations. In AAAI, 2018. 2

Vincenzo Lomonaco, Karen Desai, Eugenio Culurciello, and Davide Maltoni. Continual reinforce-
ment learning in 3d non-stationary environments. arXiv preprint arXiv:1905.10112, 2019. 2, 4, 7,
16, 17

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation
with residual transfer networks. In Advances in Neural Information Processing Systems, pp.
136–144, 2016. 2

Toshihiko Matsuura and Tatsuya Harada. Domain generalization using a mixture of multiple latent
domains, 2019. 2

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013. 1

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning, 2016. 4, 7, 17

Ravi Teja Mullapudi, Steven Chen, Keyi Zhang, Deva Ramanan, and Kayvon Fatahalian. Online
model distillation for efficient video inference. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), Oct 2019. doi: 10.1109/iccv.2019.00367. 3

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In Advances in Neural Information Processing
Systems, pp. 9191–9200, 2018. 1

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European Conference on Computer Vision, pp. 69–84. Springer, 2016. 2

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning, 2018. 6

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536–2544, 2016. 2

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In ICML, 2017. 2

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. 2018 IEEE International Conference on Robotics
and Automation (ICRA), May 2018. 1, 2

11



Published as a conference paper at ICLR 2021

Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and
700 robot hours. In 2016 IEEE international conference on robotics and automation (ICRA), pp.
3406–3413. IEEE, 2016. 1

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel. Asym-
metric actor critic for image-based robot learning. arXiv preprint arXiv:1710.06542, 2017a. 1,
2

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 2817–2826. JMLR. org, 2017b. 1

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning
robust neural network policies using model ensembles. arXiv preprint arXiv:1610.01283, 2016. 1

Fabio Ramos, Rafael Possas, and Dieter Fox. Bayessim: Adaptive domain randomization via
probabilistic inference for robotics simulators. Robotics: Science and Systems XV, Jun 2019. 2

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018. 2

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? arXiv preprint arXiv:1902.10811, 2019. 2

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016. 1

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real image.
arXiv preprint arXiv:1611.04201, 2016. 1, 2

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models, 2020. 2

Vaishaal Shankar, Achal Dave, Rebecca Roelofs, Deva Ramanan, Benjamin Recht, and Lud-
wig Schmidt. A systematic framework for natural perturbations from videos. arXiv preprint
arXiv:1906.02168, 2019. 2

Assaf Shocher, Nadav Cohen, and Michal Irani. Zero-shot super-resolution using deep internal
learning, 2017. 3

Assaf Shocher, Shai Bagon, Phillip Isola, and Michal Irani. Ingan: Capturing and remapping the
”dna” of a natural image, 2018. 3

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020. 2, 4, 5, 6, 7, 17

Yu Sun, Eric Tzeng, Trevor Darrell, and Alexei A Efros. Unsupervised domain adaptation through
self-supervision. arXiv preprint, 2019. 2

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts. ICML, 2020. 3

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2015. 17

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
DeepMind control suite. Technical report, DeepMind, January 2018. 2, 4, 5, 16, 17

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep 2017. 1, 2

12



Published as a conference paper at ICLR 2021

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7167–7176, 2017. 2

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103. ACM, 2008. 2

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos.
In ICCV, 2015. 2

Xiaolong Wang, Allan Jabri, and Alexei A. Efros. Learning correspondence from the cycle-
consistency of time. In CVPR, 2019. 2

Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi.
Learning to learn how to learn: Self-adaptive visual navigation using meta-learning, 2018. 3

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3733–3742, 2018. 2

Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. Vizdoom competitions: Playing doom
from pixels. IEEE Transactions on Games, 2018. 2, 7, 16

Wilson Yan, Ashwin Vangipuram, Pieter Abbeel, and Lerrel Pinto. Learning predictive representations
for deformable objects using contrastive estimation. arXiv preprint arXiv:2003.05436, 2020. 1, 2

Jiachen Yang, Brenden Petersen, Hongyuan Zha, and Daniel Faissol. Single episode policy transfer
in reinforcement learning, 2019. 1, 2

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving
sample efficiency in model-free reinforcement learning from images, 2019. 2, 4, 5, 17

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European
conference on computer vision, pp. 649–666. Springer, 2016. 2

Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain autoencoders: Unsupervised learning
by cross-channel prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1058–1067, 2017. 2

13



Published as a conference paper at ICLR 2021

A PERFORMANCE ON THE TRAINING ENVIRONMENT

Historically, agents have commonly been trained and evaluated in the same environment when
benchmarking RL algorithms exclusively in simulation. Although such an evaluation procedure does
not consider generalization, it is still a useful metric for comparison of sample efficiency and stability
of algorithms. For completeness, we also evaluate our method and baselines in this setting on both
DMControl and CRLMaze. DMControl results are reported in Table 7 and results on the CRLMaze
environment are shown in Table 8. In this setting, we also compare to an additional baseline on
DMControl: a blind SAC agent that operates purely on its previous actions. The performance of a
blind agent indicates to which degree a given task benefits from visual information. We find that,
while PAD improves generalization to novel environments, performance is virtually unchanged when
evaluated on the same environment as in training. We conjecture that this is because the algorithm
already is adapted to the training environment and any continued training on the same data distribution
thus has little influence. We further emphasize that, even when evaluated on the training environment,
PAD still outperforms baselines on most tasks. For example, we observe a 15% relative improvement
over SAC on the Finger, spin task. We hypothesize that this gain in performance is because the self-
supervised objective improves learning by constraining the intermediate representation of policies.
A blind agent is no better than random on this particular task, which would suggest that agents
benefit substantially from visual information in Finger, spin. Therefore, learning a good intermediate
representation of that information is highly beneficial to the RL objective, which we find PAD to
facilitate through its self-supervised learning framework. Likewise, the SAC baseline only achieves a
51% improvement over the blind agent on Cartpole, balance, which indicates that extracting visual
information from observations is not as crucial on this task. Consequently, both PAD and baselines
achieve similar performance on this task.

Table 7. Episodic return on the training environment for each of the 9 tasks considered in DMControl,
mean and std. dev. for 10 seeds. Best method on each task is in bold and blue compares +IDM with
and without PAD. It is shown that PAD hurts minimally when the environment is unchanged.

Training env. Blind SAC +DR +IDM +IDM (PAD)

Walker, walk 235±17 847±71 756±71 911±24 895±28

Walker, stand 388±10 959±11 928±36 966±8 956±20

Cartpole, swingup 132±41 850±28 807±36 849±30 845±34

Cartpole, balance 646±131 978±22 971±30 982±20 979±21

Ball in cup, catch 150±96 725±355 469±339 919±118 910±129

Finger, spin 3±2 809±138 686±295 928±45 927±45

Finger, turn easy 172±27 462±146 243±124 462±152 455±160

Cheetah, run 264±75 387±74 195±46 384±88 380±91

Reacher, easy 107±11 264±113 92±45 390±126 365±114

Table 8. Episodic return of PAD and baselines in the CRLMaze training environment. All methods
use A2C. We report mean and std. error of 10 seeds. Best method is in bold and blue compares
rotation prediction with and without PAD.

CRLMaze Random A2C +DR +IDM +IDM (PAD) +Rot +Rot (PAD)

Training env. −868±34 371±198 −355±93 585±246 −416±135 729±148 681±99

B LEARNING CURVES ON DEEPMIND CONTROL

All methods are trained until convergence (500,000 frames) on DMControl. While we do not
consider the sample efficiency of our method and baselines in this study, we report learning curves
for SAC, SAC+IDM and SAC trained with domain randomization on three tasks in Figure 5 for
completeness. SAC trained with and without an IDM are similar in terms of sample efficiency and
final performance, whereas domain randomization consistently displays worse sample efficiency,
larger variation between seeds, and converges to sub-optimal performance in two out of the three
tasks shown.

14



Published as a conference paper at ICLR 2021

0.0 0.1 0.2 0.3 0.4 0.5
Number of frames (M)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Cartpole, swingup

0.0 0.1 0.2 0.3 0.4 0.5
Number of frames (M)

Walker, stand

0.0 0.1 0.2 0.3 0.4 0.5
Number of frames (M)

Walker, walk

SAC SAC (DR) SAC+IDM

Figure 5. Learning curves for SAC, SAC trained with domain randomization (denoted SAC (DR) here),
and SAC+IDM on three tasks from the DeepMind Control suite (DMControl). Episodic return is
averaged across 10 seeds and the 95% confidence intervals are visualized as shaded regions. SAC and
SAC+IDM exhibit similar sample efficiency and final performance, whereas domain randomization
consistently displays worse sample efficiency, larger variation between seeds, and converges to
sub-optimal performance in two out of the three tasks shown.

C KEEPING πs FIXED DURING POLICY ADAPTATION

We now consider a variant of PAD where the self-supervised task head πs is fixed at test-time such
that the self-supervised objective L is optimized only wrt πe, as discussed in Section 3.3. We measure
generalization to test environments with randomized colors and report the results in Table 9 for three
tasks from the DeepMind Control suite. We empirically find the difference between updating πs and
keeping it fixed negligible, and we choose to update πs by default since its gradients are computed by
back-propagation regardless.

Table 9. Episodic return in test environments with randomized colors, mean and std. dev. for 10 seeds.
All methods use SAC. IDM (PAD, fixed πs) considers a variant of PAD where πs is fixed at test-time,
whereas IDM (PAD) denotes the default usage of PAD in which both πe and πs are optimized at
test-time using the self-supervised objective.

Random colors IDM IDM (PAD, fixed πs) IDM (PAD)

Walker, walk 406±29 452±38 468±47

Walker, stand 743±37 802±41 797±46

Cartpole, swingup 585±73 623±57 630±63

D COMPARISON TO ADAPTATION WITH REWARDS

While our method does not require data collected prior to deployment and does not assume access
to a reward signal, we additionally compare our method to a naı̈ve fine-tuning approach using
transitions and rewards collected from the target environment prior to deployment. To fine-tune the
pre-trained policy using rewards, we collect datasets consisting of 1, 10, and 100 episodes in each
target environment using the learned policy while keeping its parameters fixed, and then subsequently
fine-tune both πe and πa on the collected data, following the same training procedure as during
the training phase. This fine-tuning approach is analogous to Julian et al. (2020) but does not use
data from the original environment during adaptation. Results are shown in Table 10. We find that
naı̈vely fine-tuning the policy using data collected prior to deployment can improve generalization
but requires comparably more data than PAD, as well as access to a reward signal in the target
environment. This finding suggests that PAD may be a more suitable method for settings where data
from the target environment is scarce and not easily accessible prior to deployment.

E ADDITIONAL ROBOTIC MANIPULATION SAMPLES

Figure 6 provides samples from the training and test environments for the reach robotic manipulation
task. Agents are trained in simulation and deployed on a real robot. Samples from the push task are
shown in Figure 4.

15



Published as a conference paper at ICLR 2021

Table 10. Episodic return in test environments with randomized colors, mean and std. dev. for
10 seeds. All methods use SAC trained with an inverse dynamics model (IDM) as auxiliary task.
Our method is denoted IDM (PAD), and we compare to a naı̈ve fine-tuning approach that assumes
access to transitions and rewards collected from 1, 10, and 100 episodes, respectively, from target
environments prior to deployment.

Fine-tuning w/ rewards
Random colors IDM IDM (PAD) 1 episode 10 episodes 100 episodes

Walker, walk 406±29 468±47 395±78 489±104 561±62

Walker, stand 743±37 797±46 661±65 728±44 784±31

Cartpole, swingup 585±73 630±63 538±53 605±51 650±58

(a) Simulation. (b) Default transfer. (c) Table cloth. (d) Disco lights.

Figure 6. Samples from the reach robotic manipulation task. The task is to move the robot gripper to
the location of the red disc. Agents are trained in setting (a) and evaluated in settings (b-d) on a real
robot, taking observations from an uncalibrated camera.

F IMPLEMENTATION DETAILS

In this section, we elaborate on implementation details for our experiments on DeepMind Control
(DMControl) suite (Tassa et al., 2018) and CRLMaze (Lomonaco et al., 2019) for ViZDoom (Wyd-
much et al., 2018). Our implementation for the robotic manipulation experiments closely follows that
of DMControl. Code is available at https://nicklashansen.github.io/PAD/.

Figure 7. Network architecture for the DMControl, CRLMaze, and robotic manipulation experiments.
πs and πa uses a shared feature extractor πe. Observations are stacks of 100× 100 colored frames.
Implementation of policy and value function depends on the learning algorithm.

Architecture. Our network architecture is illustrated in Figure 7. Observations are stacked frames
(k = 3) rendered at 100× 100 and cropped to 84× 84, i.e. inputs to the network are of dimensions
9×84×84, where the first dimension indicates the channel numbers and the following ones represent
spatial dimensions. The same crop is applied to all frames in a stack. The shared feature extractor πe
consists of 8 (DMControl, robotic manipulation) or 6 (CRLMaze) convolutional layers and outputs
features of size 32 × 21 × 21 in DMControl and robotic manipulation, and size 32 × 25 × 25
in CRLMaze. The output from πe is used as input to both the self-supervised head πs and RL
head πa, both of which consist of 3 convolutional layers followed by 3 fully-connected layers. All

16

https://nicklashansen.github.io/PAD/


Published as a conference paper at ICLR 2021

Table 11. Hyperparameters used for the DM-
Control (Tassa et al., 2018) tasks.

Hyperparameter Value

Frame rendering 3× 100× 100
Frame after crop 3× 84× 84
Stacked frames 3
Action repeat 2 (finger)

8 (cartpole)
4 (otherwise)

Discount factor γ 0.99
Episode length 1,000
Learning algorithm Soft Actor-Critic
Self-supervised task Inverse Dynamics Model
Number of training steps 500,000
Replay buffer size 500,000
Optimizer (πe, πa, πs) Adam (β1 = 0.9, β2 = 0.999)
Optimizer (α) Adam (β1 = 0.5, β2 = 0.999)
Learning rate (πe, πa, πs) 3e-4 (cheetah)

1e-3 (otherwise)
Learning rate (α) 1e-4
Batch size 128
Batch size (test-time) 32
πe, πs update freq. 2
πe, πs update freq. (test-time) 1

Table 12. Hyperparameters used for the CRL-
Maze (Lomonaco et al., 2019) navigation task.

Hyperparameter Value

Frame rendering 3× 100× 100
Frame after crop 3× 84× 84
Stacked frames 3
Action repeat 4
Discount factor γ 0.99
Episode length 1,000
Learning algorithm Advantage Actor-Critic
Self-supervised task Rotation Prediction
Number of training episodes 1,000 (dom. rand.)

500 (otherwise)
Number of processes 20
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Learning rate 1e-4
Learning rate (test-time) 1e-5
Batch size 20
Batch size (test-time) 32
πe, πs loss coefficient 0.5
πe, πs loss coefficient (test-time) 1
πe, πs update freq. 1
πe, πs update freq. (test-time) 1

convolutional layers use 32 filters and all fully connected layers use a hidden size of 1024, as in
Yarats et al. (2019).

Learning algorithm. We use Soft Actor-Critic (SAC) (Haarnoja et al., 2018) for DMControl and
robotic manipulation, and Advantage Actor-Critic (A2C) for CRLMaze. Network outputs depend on
the task and learning algorithm. As the action spaces of both DMControl and robotic manipulation
are continuous, the policy learned by SAC outputs the mean and variance of a Gaussian distribution
over actions. CRLMaze has a discrete action space and the policy learned by A2C thus learns a
soft-max distribution over actions. For details on the critics learned by SAC and A2C, the reader is
referred to Haarnoja et al. (2018) and Mnih et al. (2016), respectively.

Hyperparameters. When applicable, we adopt our hyperparameters from Yarats et al. (2019) (DM-
Control, robotic manipulation) and Lomonaco et al. (2019) (CRLMaze). For the robotic manipulation
experiments, our implementation closely follows that of DMControl, only differing by number of
frames in an observation. We use a frame stack of k = 3 frames for DMControl and CRLMaze, and
only k = 1 frame for robotic manipulation. For completeness, we detail all hyperparameters used for
the DMControl and CRLMaze environments in Table 11 and Table 12.

Data augmentation. Random cropping is a commonly used data augmentation used in computer
vision systems (Krizhevsky et al., 2012; Szegedy et al., 2015) but has only recently gained interest
as a stochastic regularization technique in the RL literature (Srinivas et al., 2020; Kostrikov et al.,
2020; Laskin et al., 2020). We adopt the random crop proposed in Srinivas et al. (2020): crop
rendered observations of size 100× 100 to 84× 84, applying the same crop to all frames in a stacked
observation. This has the added benefits of regularization while still preserving spatio-temporal
patterns between frames. When learning an inverse dynamics model, we apply the same crop to all
frames of a given observation but apply two different crops to the consecutive observations (st, st+1)
used to predict action at.

Policy Adaptation during Deployment. We evaluate our method and baselines by episodic return
of an agent trained in a single environment and tested in a collection of test environments, each with
distinct changes from the training environment. We assume no reward signal at test-time and agents
are expected to generalize without pre-training or resetting in the new environment. Therefore, we
make updates to the policy using a self-supervised objective, and we train using observations from
the environment in an online manner without memory, i.e. we make one update per step using the
most-recent observation.

17



Published as a conference paper at ICLR 2021

Empirically, we find that: (i) the random crop data augmentation used during training helps regularize
learning at test-time; and (ii) our algorithm benefits from learning from a batch of randomly cropped
observations rather than single observations, even when all observations in the batch are augmented
copies of the most-recent observation. As such, we apply both of these techniques when performing
Policy Adaptation during Deployment and use a batch size of 32. When using the policy to take
actions, however, inputs to the policy are simply center-cropped.

18


