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ABSTRACT

In this paper we address the problem of jointly retrieving a
3D dynamic shape, camera motion, and deformation grouping
from partial 2D point trajectories in a monocular video. To
this end, we introduce a union of piecewise Bézier subspaces
with enforcing continuities to model 3D motion. We show
that formulating the problem in terms of piecewise curves, al-
lows for a better physical interpretation of the resulting priors
and a more accurate representation of the motion. An energy-
based formulation is presented to solve the problem in an un-
supervised, unified, accurate and efficient manner, by means
of the use of augmented Lagrange multipliers. We thoroughly
validate the approach on a wide variety of human video se-
quences, including those cases with noisy and missing obser-
vations, and providing more accurate joint estimations than
state-of-the-art approaches.

Index Terms— Non-Rigid Structure from Motion, Piece-
wise Bézier Space, Grouping, Optimization.

1. INTRODUCTION

The problem of Non-Rigid Structure from Motion (NRSfM)
involves jointly retrieving 3D dynamic shape, and camera
motion from partial 2D point trajectories in a RGB video.
This represents a challenging problem in the community that
nonetheless has a wide variety of real-world applications.
Unfortunately, solving this problem without 3D supervision
is an ill-posed problem that requires to explore the art of
priors, being them more sophisticated than those utilized in
the rigid case. Maybe, the most popular priors are based on
low-rank subspaces constraining the solution space of either
the entire shape [1, 2, 3, 4], the 3D point trajectories [5, 6],
shape-trajectory combinations [7, 8, 9, 10] or the force pat-
terns that induce the deformations [11]. Similar shape [12]
and trajectory [13] subspaces have also been exploited in
a deep learning context, where large amounts of training
data are needed to learn the model. While shape and force
bases need to be estimated from data, trajectory ones can be
predefined a priori and are available for a wide range of de-
formations. Although several representations could be used,
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Fig. 1. Human motion recovery by means of piecewise Bézier
curves. Left: Each color line represents a point trajectory detected
by our algorithm. Middle: Control points estimated by our algo-
rithm (the same color is used to represent every point set). Right:
Two examples of our 3D trajectory estimation together with the cor-
responding spatial control-point distribution (KX = 12). Every color
represents a different piece. Best viewed in color.

the discrete cosine transform is usually chosen to model the
basis [5, 6, 13]. However, this representation is global and
cannot be adapted properly for those scenarios with piece-
varying motion. Piecewise methods [14, 15] based on shape
basis showed better performance than their global counter-
parts, but this was never exploited in a trajectory space.
More recently, the low-rank constraint has been imposed
by directly minimizing the rank of a matrix representing the
dynamic 3D shape, considering the data lie in a single [16,
17], in a union of temporal [18, 19], or in a dual union of
spatio-temporal [20, 21] subspaces. Thanks to those repre-
sentations, some segmentations into motion activities or spa-
tial bodies were included in the estimation. In order to im-
prove robustness, on top of those shape models additional
spatial [3] and temporal [4, 22, 23] smoothness priors have
also been considered. In this paper, we depart from previous
work in that our approach exploits a union of piecewise Bézier
subspaces with enforcing continuities to model 3D point tra-
jectories that are observed in a RGB video. Our piecewise
basis is predefined, and it is parametrized by a set of control
points per point coordinate (some examples of full trajecto-
ries, control points and pieces are displayed in Fig. 1). With
these ingredients, we present a novel unsupervised, unified,
accurate and efficient approach that does not need any train-
ing data at all, and it outperforms state-of-the-art solutions.
To the best of our knowledge, this is the first time a union of
piecewise Bézier subspaces is introduced. Our approach can
handle missing and noisy observations, from sparse to dense
configurations, as well as articulated and continuous motions.



2. PIECEWISE BEZIER CURVES

A Bézier curve is a parametric curve defined by a set of con-
trol points that normally do not lie in the curve, excepting the
first and the last. They have been widely used in many image-
processing applications as image segmentation and compres-
sion [24]; vector fonts, camera paths and object modeling in
the context of computer graphics; and in mechanical engi-
neering for computer-aided design [25], just to name a few.
The Bézier curve p(s) can be defined by means of a lin-
ear combination of K Bernstein basis polynomials of degree

K — 1 restricted to the continuous interval s = [0, ..., 1] as:
K K
p(s) = (k=0 sP 11— s)K ey, zz:bk(s)ck, )
k=1 k=1
K-1)\ . . . .
where 1) 152 binomial coefficient, and by(s) and

c represent the k-th Bernstein basis and control point, re-
spectively. The control points, for any d-dimensional space,
can be applied independently for each dimension, being
they defined in a 3D space directly by its coordinates as
Ch = [Caks Cyks Cok] T

While the curve in Eq. (1) is a good approximation for a
wide variety of motions, high-degree (i.e., for K > 4) Bern-
stein polynomials do not approximate very well in practice,
providing over-smoothing curves. More specifically, when a
high number of control points are used to define a path, the
global approximation is very hard to be controlled. To solve
this limitation, we can instead consider several low-order
Bézier curves to code the global curve, by using quadratic
and/or cubic ones, obtaining a piecewise representation. As
it can be seen in table 1, the number of pieces (P) to be used
depends on the number of control points. This type of approx-
imation guarantees directly a C° continuity, since a unique
control point acts as the last and the first in two consecutive
pieces, respectively. Additionally, C' and C? continuities
could be also imposed in order to share the same paramet-
ric first and second derivatives, respectively, by enforcing
some geometrical constraints over the control points. These
constraints would be applied every time a change of piece
occurs, ie., T times, according to table 1. Particularly, to
enforce C'! and C? continuities between consecutive pieces
we use first and second derivatives of the Bézier curves as
P;(s)‘szl = p;+1(3)|s:0 and P;/(S)|8:1 = p;l(S)\S:o,
respectively, with ¢ = [1,...,T)]. It is worth noting that this
can be only imposed for K > 4, as it can be seen in table 1.

In the next section, we introduce piecewise Bézier curves
to model 3D motion, fitting it from 2D point trajectories in a
monocular video.

3. NON-RIGID STRUCTURE FROM MOTION

Let us consider a set of N 3D points observed along F' im-
ages represented by s/ = [z, y/ 2/]T for the n-th point at

K|P|T Type K|P|T Type
3 110 1 qua. 103 ]2 3 cub.
4 110 1 cub. 11| 4| 3| 2qua. +2cub.
5 21 2 qua. 12 | 4 | 3 | 1qua. +3cub.
6 | 2|1 |lqua+1lcub ||13|4]3 4 cub.
7 211 2 cub. 14| 5| 4 | 2qua. +3cub.
8 3|12 |2qua.+1lcub. || 15| 5| 4 | 1qua.+4cub.
9 3|12 | 1qua.+2cub. |[ 16| 5| 4 5 cub.

Table 1. Piecewise approximation by means of low-order
Bézier curves. The table shows how a generic curve can be
approximated by means of several Bézier curves as a function
of the number of control points (K), the number of pieces (P)
and transitions (T) to be used, and the type of polynomials.
We consider both quadratic (qua.) and cubic (cub.) functions.

frame f. Considering that the point is observed by an ortho-
graphic camera, its 2D projection in the f-th image plane can
be denoted as w/ = [uf,vf]T. After acquiring all points in
all pictures, and removing zero-mean measurements, i.e., the
2D translations, the 3D-to-2D projection can be defined as:

wi o owh R! st ... sk
= 2k
wi’ wh RF| s sk
w G S

where W is a 2F x N measurement matrix to collect the
2D point trajectories, G is a 2F' x 3F block diagonal matrix,
made of the F truncated 2 x 3 camera rotations R/, and S
is a 3F' x N shape matrix with the 3D positions of the cor-
responding points. The NRSfM problem consists in factoring
the measurement matrix W into the motion G and shape S
factors, i.e., inferring camera pose and non-rigid 3D recon-
struction from 2D point trajectories in a monocular video.
Trajectory-based models [5, 13, 26, 27] approximate
the position of every point coordinate over time by a lin-
ear combination of K low-frequency basis vectors. This
representation is global and cannot be adapted properly for
those scenarios with piece-varying motion. In other words,
a specific point coordinate could have several local motions
along time. To sort out this limitation, we introduce piece-
wise Bézier curves to approximate the evolution of every
point coordinate over time. To this end, we define F' K-
dimensional vectors as b’ (s) = [by(s),...,bx(s)]", where
the entries by (s) represent the k-th Bernstein basis at in-
stant s. To find s, and considering the number of control
points (and therefore, the number of pieces), we assign the
corresponding number of frames to every piece, and assign
a direct correspondence between those frames and the in-
ternal [0,...,1], since all pieces are modeled in the same
interval. Moreover, we define N 3K -dimensional vectors as
KM = [, Gl Gty Gty €5+, i) T O coOl-
lect the K control-point locations associated with the n-th
point. Thanks to this representation, the 3D dynamic shape
can then be written as S = BC, where B € R3F*3K jg



known matrix with the predefined piecewise trajectory ba-
sis, and C € R35 >N is a matrix of unknown control-point
coordinates that are defined as:

I; @ (b'(s) "

B= ,C:[nl F-',N], 2

I; ® (bF(s))T

where I is a 3 x 3 identity matrix, and ® represents the Kro-
necker product. A direct duality can be found between clas-
sical trajectory-based formulations [5, 26, 27] and our ap-
proach, since the global basis is now represented in pieces,
and the trajectory weights correspond to control-point coor-
dinates, i.e., they have a direct physical meaning.

The expression S = BC guarantees the C° continuity
of the piecewise curve for every point coordinate but not the
continuities C'* and C2. To achieve that, we define the ma-
trices {M, N} € R*T*K  with all but two elements in each
row equal to O (see constraints in section 2). The parameter
v = {1,2} is to impose just a C! continuity or both, respec-
tively. The constraints can be applied on the control-point
locations as (I3 ® M)C = (I ® N)C.

Finally, we incorporate the deformation-grouping qual-
ity to our formulation by assuming that the 3D shape coded
by piecewise Bézier curves lies in a union of temporal sub-
spaces. To this end, we define the matrix S that rearranges
the entries of S into a new 3N x F' matrix [18]. Both matri-
ces can be related by the expressions S = (I3 ® ST)A and
S = (ST ® I3)B, where A and B are binary matrices of
size YN x N and 9F x F, respectively. Thanks to this inter-
pretation, we can finally define S = ST + E, where T is a
F'x F affinity matrix to encode the deformation grouping, and
E is a 3N x F residual noise. The most standard approach
to solve the problem is to enforce a low-rank constraint over
S since the 3D shape configurations can be modeled as a re-
duced combination of vectors. In the same line, T is also low
rank because it could be factorized as LL T, where the rank
of LL corresponds to the number of groups in the sequence.

4. 3D DYNAMIC SHAPE, GROUPING AND MOTION
FROM 2D POINT TRAJECTORIES

Our aim is to jointly recover the 3D dynamic shape and the
deformation grouping of an object, as well as the camera mo-
tion, all of them, from partial 2D point trajectories in a RGB
video. We propose an unsupervised, accurate, unified and ef-
ficient optimization strategy that does not need any training
data at all. To this end, we formulate the full problem by in-
troducing a union of piecewise Bézier subspaces, as it was
defined in sections 2 and 3. As it was introduced in sec-
tion 3, some matrices in our formulation are low-rank and
enforce that is a non-convex NP-hard problem. Fortunately,
we can use a nuclear norm instead, which is its convex re-
laxation [28]. Moreover, to improve robustness, we use a

fourth-order temporal filter in our formulation by means of
the expression SF = 0, as it was done recently in [18].

With these ingredients, we denote the set of all model pa-
rameters to be recovered by ® = {W, G, S, Q,T,C,E}.
Our input data consists of partial 2D point trajectories in a
RGB video W, and the corresponding visibility matrix V €
REXN with {0, 1} entries indicating whether a point in a spe-
cific frame is missing or not. Taking into account all previous
definitions along with the orthonormality constraints on cam-
era rotations, our problem can be written as:

argmin || (V ®12) © (W —=W) 7+ BIIW|. + (g(R7)

+a(S = BC|r + Iz @ (M - N))C|[r)

+ (ISl + IT]) + Al El|2,1 3)

subjectto W = GS

S=(I:;® ST)A

S=ST+E

SF=0

R'R/ =1, 1<f<F
where 1 denotes a vector of ones, and ® represents a Hadamard
product. || - ||, || - || = and || - ||2,1 indicate the nuclear, Frobe-

nius and I3 ;-norms, respectively. {53, ¢, a,y, A} are penalty
weight coefficients. Finally, we denote by g(+) the function to
impose smooth solutions on the camera rotation.

Energy in Eq. (3) can be minimized by means of a two-
step factorization approach in which: 1) complete missing en-
tries W, 2) estimate jointly motion G, shape (S, S, C, E) and
grouping T parameters. In order to solve both problems, we
apply augmented Lagrange multipliers [29].

5. EXPERIMENTAL EVALUATION

We now present our experimental evaluation on several hu-
man motion videos, including articulated and continuous
deformation, several body configurations and scenarios with
missing or dense entries. For quantitative comparison, we
apply our approach on the articulated human motion dataset
introduced in [5], which includes five types of activities,
and nine competing methods are considered: EM-PPCA [4],
MP [2], PTA [5], CSF [8], KSTA [7], BMM [16], PPTA [27],
URS [18], and TRUS [23]; under two scenarios: noise-free
and noisy 2D point trajectories as it was done in [27]. As in
the literature [8, 16, 27], we provide the normalized mean 3D
error eg, and the mean rotation error eg. For further details,
we refer the reader to these papers. We also report the defor-
mation grouping error eg as defined in [20], after applying
spectral clustering [30] over the estimated affinity matrix T.
As it occurs for some methods with the subspace rank, we
need to tune the number of control points K by hand. Fortu-
nately, as it can be seen in Fig. 2, the error reduction is con-
sistent as K increases, doing the error always remains within
reasonable bounds. In contrast to other approaches, this is



Data Met. EM-PPCA [4] MP [2] PTA [5] CSF (8] KSTA [7] BMM [16] PPTA [27] URS [18] TRUS [23] (Ours)

er | es(K) er | es(K) er | es(K) er | es(K) cr | es(K) er | es(K) cr | es(K) er | es |ecl%] || er | es |eal%] | er | es | ea[%]

Noise-free observations
Drink 186 | .261(7) | 330 | .357(12) || .006 | .025(13) || .006 | .022(6) || .006 | .020(12) || .007 | .027(12) || .006 | .011(30) [[ .006 | .009 | 0.8(2) || .006 | .009 | 0.6(2) || .005 | .009 | 0.6(2)
Stretch 749 | .458(7) || 832 | .900(8) || .055 | .109(12) || .049 | .071(8) || .049 | .064(11) || .068 | .103(11) || .058 | .084(11) || .058 | .061 | 4.1(3) || .058 | .060 | 4.1(3) || .048 | .062 | 4.3(3)
Yoga .688 | .445(8) || .854 | .786(2) || .106 | .163(11) || .102 | .147(7) || .102 | .148(7) || .088 | .115(10) || .106 | .158(11) || .106 | .143 | 0.3(2) || .091 | .133 | 0.2(2) || .076 | .111 | 0.1(2)
Pick-up A17 | 423(14) || 249 | 429(5) || .155 | .237(12) || .155 | .230(6) || .155 | .233(6) || .121 | .173(12) || .154 | .235(12) || .154 | 221 | 3.7(3) || .147 | 209 | 3.0(3) || .104 | .138 | 1.4(3)
Dance — .339(4) — 271(5) — .296(5) - | 27112) — .249(4) - | .188(10) — .229(4) - | .165 — — 150 — - | 143 —
Average error: .385 549 .166 .148 .143 121 .143 119 112 092
Relative error: 4.16 5.93 1.79 1.60 1.54 1.31 1.54 1.28 1.21 1.00
Noisy observations

Drink 231 | .250(7) || 329 | .517(12) || .043 | .045(13) || .043 | .044(6) || .043 | .042(12) || .044 | .056(12) || .042 | .038(30) || .042 | .044 | 3.6(2) || .036 | .034 | 1.4(2) || .037 | .036 | 1.3(2)
Stretch 819 | .886(7) || .872 | .975(8) || .091 | .144(12) || .091 | .121(8) || .091 | .166(11) || .098 | .183(11) || .091 | .123(11) || .091 | .119 | 8.4(3) || .091 | .119 | 5.1(3) || .091 | .120 | 4.9(3)
Yoga 700 | .507(8) || .858 | .791(2) || .124 | .174(11) || .125 | .168(7) || .125 | .172(7) || .136 | .195(10) || .124 | .174(11) || .125 | .167 | 0.0(2) || .112 | .162 | 0.2(2) || .115 | .164 | 0.2(2)
Pick-up 499 | .807(14) || 250 | .407(5) || .148 | .228(12) || .148 | .224(6) || .148 | .222(6) || .141 | .212(12) || .148 | .228(12) || .148 | .207 | 3.1(3) || .147 | .205 | 2.5(3) || .103 | .136 | 1.2(3)
Dance - .336(4) - .282(5) - .299(5) - | .266(2) - .248(4) - | .236(10) - .222(4) - | .64 - - 157 - - | .146 -
Average error: 557 594 178 165 170 176 157 .140 135 120
Relative error: 4.64 4.95 1.48 1.37 1.42 1.47 131 1.17 1.12 1.00

Table 2. Quantitative evaluation on human motion capture videos. Rotation er and 3D reconstruction eg errors for
competing techniques: EM-PPCA [4], MP [2], PTA [5], CSF [8], KSTA [7], BMM [16], PPTA [27], URS [18], and TRUS [23];
and for our approach, considering both noise-free and noisy observations. The table also indicates in parentheses the rank K
of the linear subspace that produced the lowest eg. Relative error is always computed with respect to our reconstruction. When
possible, e [%)] and the number of motion groups in parentheses are provided. “—" means that ground truth is not available.
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Fig. 2. 3D Reconstruction and rotation errors as a function of
K. Results on the five human motion capture videos.

a key factor for our method since it does not require tuning
accurately any parameter and could be done a priori accord-
ing to other factors as the computational resources. Table 2
summarizes both eg and eg for all methods, sequences, and
scenarios. It is worth mentioning that our approach outper-
forms consistently the state of the art in terms of joint estima-
tions, reducing the 3D error of other methods by large mar-
gins between the 21% and 593% for noise-free, and between
the 12% and 495% for noisy observations, respectively. We
also include e when available. As our approach produces
better 3D reconstructions on average, the partition on defor-
mation groups is very competitive with respect to competing
approaches. The median computation time in unoptimized
Matlab code for these experiments was 103 seconds, on a
commodity laptop with an Intel Core i7 processor at 2.4GHz.
We next show the availability of our approach against
missing entries due to self-occlusions or lack of visibility, by
processing an American-sign-language video, where a hu-
man face is moving and gesturing [11]. Figure 3-top displays
some images and our 3D reconstruction for all points. More-
over, our algorithm detects three groups in this video: open
and closed mouth with open eyes, and closed eyes. Finally,
we also validate our approach on dense data by running two
videos with 20,561 and 68,295 2D point trajectories taken
from [17], where a back and a heart are deforming and mov-
ing, respectively. In the same figure is represented our joint
solution in these videos, obtaining qualitatively accurate and
physically possible solutions in comparison to [23].

Fig. 3. Qualitative evaluation on real Face, Back and Heart
videos. In all cases, we display the same information. Left:
Deformation affinity matrix T we recover, and the corre-
sponding grouping. Right: Images and 3D reconstruction
using another point of view. Every color corresponds to a de-
formation group. Blue crosses represent missing points.

6. CONCLUSION

We have introduced a union of piecewise Bézier subspaces
in combination with temporal smoothness priors and spatial
continuities to model 3D trajectories of a dynamic object ob-
served with a RGB camera. To this end, we have presented an
energy-based formulation that can recover all model parame-
ters without assuming any training data at all in an unsuper-
vised, unified, accurate and efficient manner. Experimental
results on human motion videos show our solution provides
competitive joint estimations with respect to state-of-the-art
approaches. Our future work is oriented to extend our formu-
lation for sequential processing as the data arrive.
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