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Abstract— This paper presents a Wasserstein attraction ap-
proach for solving dynamic mass transport problems over net-
works. In the transport problem over networks, we start with a
distribution over the set of nodes that needs to be “transported”
to a target distribution accounting for the network topology. We
exploit the specific structure of the problem, characterized by
the computation of implicit gradient steps, and formulate an
approach based on discretized flows. As a result, our proposed
algorithm relies on the iterative computation of constrained
Wasserstein barycenters. We show how the proposed method
finds approximate solutions to the network transport problem,
taking into account the topology of the network, the capacity of
the communication channels, and the capacity of the individual
nodes.

I. INTRODUCTION

Optimal transport (OT) theory has experienced increased
interest over the last few years due to its wide range of
applications in both theoretical and applied fields of mathe-
matics [21]. In particular, the recent efforts to overcome the
high computational cost of the associated linear program-
ming problem [6] have made OT an attractive choice to tackle
problems involving a large number of distributions or other
high dimensional objects and requiring high accuracy.

Our work focuses on the discrete OT problem, where
probability distributions are defined over the nodes of a
finite graph. In traditional OT approaches, it is assumed that
mass (or a fraction of it) at each point in the support of
one of the probability measures can be sent to any of the
elements in the support of the other probability measure.
As a result, the transport plan is executed effectively in one
step. However, we seek to explicitly consider the topology
of the underlying graph, which naturally imposes some
transportation constraints. This means that there may not
be a direct link between two points in the support, and
additionally, one may need to account for channel and node
capacities. Thus, our goal is to find a sequence of transport
plans that move the mass from an initial distribution to a
final one along the edges of a connected graph so that the
cost of transportation is minimal and the capacity constraints
are satisfied.

Finding the amount of mass that needs to be sent through
each edge to minimize the total cost of transportation is a
well-known problem called the minimum-cost flow problem
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(MCFP). This problem has been widely studied [1], [13],
and different algorithms have been proposed to solve it [14].
More importantly, the Wasserstein distance can be rewritten
as a MCFP when considering a complete bipartite graph [3]
and this can be extended to more general graphs if one
considers the shortest path distance as the cost to send a unit
of resource from one node to the other. However, classical
methods to solve this problem do not have a condition
to discern between paths when the optimal flow is not
unique, which leads to unpredictability of the output from the
solver [11]. To avoid that case, some algorithms introduce an
additional term to the objective function so that it becomes
strongly convex. These regularized OT methods, like the
well-known Sinkhorn algorithm [6], achieve uniqueness and
significantly speed up the computation, compared to solving
a large linear programming problem. However, it is at the
cost of finding an approximate solution to the original
problem.

Our approach is based on the resolution of the Wasserstein
attraction (WA) problem [17], which requires the computa-
tion of a Wasserstein barycenter (WB) of two distributions
at every iteration. Computing the WB yields an interme-
diate distribution, defined as the Fréchet mean of the two
measures, which is the result of minimizing the sum of
the (Wasserstein) distances between itself and each of the
two distributions [7]. However, the support of this resulting
distribution can include any of the graph nodes. We expand
the definition of the WB problem by adding constraints that
ensure the mean obtained has the appropriate support and
each node does not receive more mass than the amount
available from its neighbors. This approach resembles what
is called displacement interpolation [21]. However, displace-
ment interpolation in the discrete-time case may require a
small step size of the weight to avoid some of the mass
moving over more than one node in a single step, leading
to many more iterations than necessary. Furthermore, certain
nodes can receive more mass than the total obtainable from
their neighboring nodes. In summary, the main differentiating
factor between displacement interpolation and our proposal
is the addition of the topology and capacity constraints
imposed by a graph. In this regard, [12] recently studied
this problem in the context of traffic planning, where edge
capacity constraints are taken into account, and proposed a
framework based on the Lagrangian dual problem to solve
it, which resembles the Sinkhorn algorithm.

Moreover, our proposed approach can be reformulated
as a discrete gradient flow problem. Several papers work
on discrete gradient flows over graphs (or other discrete



domains) [5], [10], [15], [19]. However, such papers focus on
the theoretical analysis of differential equations rather than
the computational aspect with the regularized approximation
of the Wasserstein metric (except for [10] which provides a
more in-depth discussion on the topic), and no additional
constraints are considered on the elements of the graph.
The closest works to our setting with constrained WB are
[8], [17]. The former presents a framework to approximate
gradient flows for Wasserstein metrics by computing discrete
entropy-regularized flows, which are computed as JKO flows
(named after the authors in [18]). It introduces the concept of
Wasserstein attraction, which is used in our work. We expand
on this concept by observing that our particular problem
formulation allows us to write each iteration of the WA
problem as the computation of a WB, which unlocks the
use of powerful computational tools found in the literature
to solve this problem. Additionally, as previously mentioned,
we further generalize the definition of this regularized flow
by including the supplemental constraints of the topology of
a network and the node and edge capacity bounds, which
are features not considered in [17]. The latter work, [8],
complements [17] while focusing on the dual formulation
of Wasserstein variational problems.

The main contributions of this paper are twofold: first,
we propose the mathematical formulation of a Wasserstein
attraction-like problem to solve mass transport problems over
networks by writing them as the computation of a WB
problem with additional constraints. And second, we present
a methodology to find an approximation of optimal discrete
flows over networks based on Dykstra’s projection algorithm
and the computation of JKO flow proximal operators for the
Kullback-Leibler divergence.

The remainder of this article is structured as follows. In
Section II, we provide the necessary background for our
work, stating some basic definitions from discrete OT theory
and presenting the formal statement of the problem we
want to solve. In Section III, we briefly review Dykstra’s
projection algorithm in the setting of optimization problems
involving the Kullback-Leibler divergence and how it can be
used to solve the WB problem. Then, we show the additional
steps needed on the algorithm to enforce support constraints
and capacity bounds on the network’s links and nodes. With
that, we present our proposed approach. In Section IV, we
provide an illustrative example to showcase the performance
of the scheme to solve a supply-and-demand problem in the
context of flow optimization on drinking water networks.
Finally, in Section V, we provide a summary and discuss
future investigation directions1.

Notation

The column vector of all ones is denoted by 1 and I is the
identity matrix. The adjacency matrix of a graph is denoted
by A, and we will write Ā = A + I when considering
the connection of one node to itself. R+ and R++ refer
to non-negative and strictly positive real values respectively.

1See [2] for an extended version with additional numerical results.

Given x ∈ Rn, ‖x‖ stands for its Euclidean norm. Given
two matrices A,B ∈ Rn×m, 〈A,B〉 =

∑
i,j AijBij . We

define the support of a function (or vector) ρ as SUPP(ρ) =
{i | ρ(i) > 0}. We denote KL(π|ξ) as the Kullback-Leibler
divergence between π ∈ Rn×n+ and ξ ∈ Rn×n++ , defined
as KL(π|ξ) =

∑n
i,j=1 πij ln

(
πij
ξij

)
− πij + ξij , with the

convention 0 ln(0) = 0. The indicator function of a set C is
defined as ιC(x) = 0 if x ∈ C, and ιC(x) = +∞ otherwise.

II. PROBLEM STATEMENT: DISCRETE FLOWS AND
WASSERSTEIN ATTRACTION ON GRAPHS

A. Discrete Flows on Graphs

Consider a discrete, finite, fixed and connected graph
G = (V,E), where V is a set of n nodes V = (1, · · · , n),
and E ⊆ V × V is a set of directed edges so that (j, i) ∈ E
if and only if there is a link between the node j ∈ V
and node i ∈ V . Denote the probability simplex on V as
Prob(V ) =

{
µ ∈ Rn+ |

∑
x∈V µ(x) = 1

}
. The set of edges

E has an associated weight function c : E → R+ where each
edge e ∈ E has a corresponding weight ce = c(e), i.e., the
cost of sending a unit of mass using the edge e. Furthermore,
endow the graph G with its natural metric d which measures
the total weight of the shortest path between any two nodes
in G.

We study the discrete flow (i.e., discretization in time)
problem of optimally transporting an initial mass distribution
µ ∈ Prob(V ) to a target mass distribution ν ∈ Prob(V ) using
the graph G. The associated weight of each edge allows us
to define a cost matrix C ∈ Rn×n+ , where [C]ji = d(j, i)
indicates the cost of transporting a unit mass from node
j to node i. Moreover, we endow the space Prob(V ) of
probability measures on V with the 1-Wasserstein distance
between two probability distributions µ and ν on G as

W1(µ, ν) = min
π∈Π(µ,ν)

∑
x,y∈V

d(x, y)π(x, y),

where the minimizer (defined as the optimal transport plan)
is computed over all couplings on V × V with marginals µ
and ν, i.e., Π(µ, ν) =

{
π ∈ Rn×n+

∣∣ π1 = µ, πᵀ1 = ν
}

.
Our objective is to design a discrete flow {ρt}t≥0 on G,

where ρt ∈ Prob(V ), by constructing a sequence of transport
plans {πt}t≥0 such that ρ0 = µ, ρt+1 = πt1, ρt = πᵀ

t 1 and
limt→∞ ρt = ν. Moreover, the transport cost at each iteration
should be minimized and the sequence {πt}t≥0 is required
to satisfy the following constraints imposed by the network:
(a) A node can only send mass to its neighbors, i.e.,

[πt]ij > 0 if [ρt]j > 0 and (j, i) ∈ E. In other words,
the flow should follow the sparsity pattern induced by
the graph topology. Intuitively, a flow can only be as-
signed between two nodes if and only if there is an edge
connecting them. Hence, for a transport plan πt it must
hold that SUPP(ρt+1) ⊆ {SUPP(ρt) ∪ {j | (j, i) ∈ E}}.

(b) The mass sent over an edge cannot surpass the associ-
ated edge capacity, i.e., πt ≤ C̃, for a capacity matrix
C̃ ∈ Rn×n+ , where [C̃]ij is the capacity of the edge
(j, i) ∈ E (the inequality is understood element-wise).



(c) The mass at a node i at some time instant t ≥ 0
must not exceed its local storage capacity, i.e., ρt ≤ ρ,
for a vector of storage capacities ρ ∈ Rn+ (again, the
inequality is understood entry-wise).

(d) The mass transported from a node j to a node i cannot
exceed the mass held at node j, i.e., [πt]ij ≤ [ρt]j .

B. Wasserstein Attraction Flows

We formulate the dynamic transport problem described in
Section II-A as a constrained Wasserstein attraction prob-
lem [17]. Our main technical tool will be the JKO flow
proximal operators which we introduce next. We first present
the JKO flow proximal operator with respect to a functional
f . For all q ∈ Prob(V ),

ProxW1

τ,f (q) , argmin
p∈Prob(V )

{W1(p, q) + τf(p)} ,

where τ is a step-size. Thus, starting from an initial distri-
bution ρ0 = µ, the discrete JKO flow with respect to f is
defined as

ρt+1 , ProxW1

τ,f (ρt). (1)

Wasserstein attraction refers to the flow generated by the
implicit gradient steps in (1), known as JKO stepping, with
respect to the potential function defined as W1(ρt, ν) for
some fixed distribution ν. Informally, the potential function
drives the flow to minimize its Wasserstein distance to a
target distribution. Thus, we define the WA discrete flow as

ρt+1 = ProxW1

τ,W1(·,ν)(ρt)

= argmin
p∈Prob(V )

{W1(p, ρt) + τW1(p, ν)} . (2)

The WA defined in (2) has a precise optimization struc-
ture. However, the computation of each proximal operation
is computationally intense [17]. Moreover, the constraints
imposed by the graph are not taken into account. In the
next subsection, we describe our proposed approach for the
efficient computation of the discrete WA, taking into account
the constraints imposed by the network.

C. Approximate Wasserstein Attraction Flow on Graphs

Initially, we present the entropy-regularized discrete JKO
flow for the WA problem following the ideas introduced
in [17]. The main contribution in [17] is to replace the
Wasserstein metrics with their entropy-regularized versions.

Definition 1: Given a cost matrix C ∈ Rn×n+ , the discrete
entropy-regularized Wasserstein distance between µ, ν ∈
Prob(V ) is defined as

Wγ(µ, ν) = min
π∈Π(µ,ν)

〈C, π〉+ γH(π), (3)

where H(π) =
∑
πij(lnπij − 1) = 〈π, lnπ − 11>〉 is the

negative entropy and γ ≥ 0 is the regularization parameter.
Now, we can define the approximate entropy-regularized

WA flow as

ρt+1 = ProxWγ

τ,Wγ(·,ν)(ρt)

= argmin
p∈Prob(V )

{Wγ(p, ρt) + τWγ(p, ν)} . (4)

Note Wγ(·, ·) is a strictly convex and coercive function,
therefore the operator in (4) is uniquely defined.

Next, we state one important observation about the
entropy-regularized WA flow in (4). Without loss of gen-
erality, one can multiply the argument in the optimization
problem (4) by a constant ω = 1/(1 + τ). Thus, we obtain

ρt+1 = argmin
p∈Prob(V )

{ωWγ(p, ρt) + (1− ω)Wγ(p, ν)} , (5)

which is precisely the entropy-regularized Wasserstein
barycenter between ρt and ν [7]. Recall that for a finite set
of probability distributions {µi}mi=1 where µi ∈ Prob(V ), the
entropy-regularized Wasserstein barycenter is defined as

µ , argmin
p∈Prob(V )

m∑
i=1

ωiWγ(p, µi),

where ωi ≥ 0 and
∑m
i=1 ωi = 1.

We interpret the Wasserstein attraction problem as the se-
quential computation of Wasserstein barycenters. This intro-
duces an additional weight parameter that can be modified to
give preference to one measure or the other. Such parameter
consequently alters how the mass is transported across the
graph.

Approximate solutions to problems of the form (5)
can be efficiently computed by reformulating the entropy-
regularized OT problem (3) as

Wγ(µ, ν) = min
π∈Π(µ,ν)

KL(π|ξ), (6)

where ξ = e−C/γ (entry-wise exponential) [4]. Note that (6)
can be extended for higher dimensional arrays (such as the
tuples π = (π1, . . . , πm) introduced in the definition of
the WB) by summing over the indices (i, j, k, . . .). Thus,
following [4], we can rewrite (5) as

min
π∈C1∩C2

KLω(π|ξ)=ωKL(π1|ξ)+(1−ω)KL(π2|ξ), (7)

where

Cf = {π1, π2 | π11 = ρt, π21 = ν} , (8)

Ce = {π1, π2 | πᵀ
11 = πᵀ

21 = p} . (9)

Finally, taking into account in Problem (7) the con-
straints (a), (b), (c) and (d) presented in Section II-A, we
can state our main contribution regarding the design of the
entropy-regularized discrete WA flow.

Problem 1: Consider a discrete, finite, fixed and con-
nected graph with n vertices, C̃ ∈ Rn×n+ the capacity
matrix, and µ, ν ∈ Prob(V ) the initial and final distributions
respectively. We design the sequence of probability measures
{ρt}t≥0 by finding, for each t ≥ 0, the transport plan that
solves the optimization problem

{πt}= argmin
π∈Cf∩Ce

π∈C1∩C2∩C3

ωKL(π1|ξ)+(1−ω)KL(π2|ξ), (10a)



where

Cf =
{
π ∈ Rn×n+ ×Rn×n+ | π11 = ρt, π21 = ν

}
(10b)

Ce =
{
π ∈ Rn×n+ ×Rn×n+ | πᵀ

11 = πᵀ
21 = p

}
(10c)

C1 =
{
π ∈ Rn×n+ ×Rn×n+ | π1 ≤ C̃

}
(10d)

C2 =
{
π ∈ Rn×n+ ×Rn×n+ | πᵀ

11 ≤ ρ, π
ᵀ
21 ≤ ρ

}
(10e)

C3 =

{
π ∈ Rn×n+ ×Rn×n+ | [πᵀ

11]i≤
∑

j:(j,i)∈E

[ρt]j

}
(10f)

An essential feature of the scheme presented is that, unlike
in the computation of the Wasserstein distance (or, for that
matter, solving the MCFP), we do not compute the complete
flow in a single step, which would also entail having to store
the shortest path between each node (or at least the first
step of each path). In this regard, our method not only does
not need to store this additional information, but it is also
memoryless, in the sense that, at each step, the algorithm
solves a new problem with initial and final distributions
(hence it adapts to changes in the measures and parameters
during the transport). Here lies the main difference between
the flow we compute, which is discrete, and the one found
by solving a MCFP, which is continuous.

III. ITERATIVE PROJECTIONS FOR THE COMPUTATION OF
TRANSPORT PLANS

Now that we have the necessary background on discrete
OT and have introduced the problem we want to solve, we
describe the approach that we propose. We will solve the
regularized version of the WB problem, with the additional
constraints (10d), (10e) and (10f). To do so, we use a well-
known algorithm for solving regularized OT problems called
Dykstra’s projection algorithm [9], which, in our setting,
is a generalization of the widely used Iterative Bregman
Projections (IBP) algorithm [4]. We use Dykstra’s method
because the convergence of IBP cannot be guaranteed in the
presence of inequality constraints.

In Section III-A, we give some background on how
this algorithm is used to compute the regularized WB. In
Section III-B, we show how one can modify it to compute
the WB with the added constraints, and finally, in Section III-
C, we move on to the description of the proposed algorithm.

A. Computation of the WB Using Dykstra’s Projection Al-
gorithm

Dykstra’s projection algorithm can be used to solve prob-
lems of the form

min
π∈∩iCi

KL(π|ξ),

much like Problem 1 defined in Section II. It is based on the
computation of the proximal operators for the KL divergence.
This is done iteratively, cycling through each constraint set
Ci, and since C = ∩iCi is a finite intersection of L sets, we
shall define, for every index i, Ci+L = Ci. Then, for each
k > 0 we compute

π(k) = ProxKL
ιCk

(
π(k−1) · q(k−L)

)
, q(k) = q(k−L)π

(k−1)

π(k)
,

with initial values π(0)=ξ and q(0)=q(−1)= . . .=q(−L+1) =
11ᵀ. The product and division of matrices are considered
element-wise. We slightly abuse notation by omitting the
step-size τ in the definition of the proximal operator, since
we are multiplying the argument in the optimization problem
(4) by ω = 1/(1 + τ), as noted in Section II.

The next propositions state how we can compute in closed
form the proximal operator corresponding to each constraint
in the WB problem (7).

Proposition 1 (Proposition 1 in [4]): The proximal oper-
ator of the indicator function ιCf , corresponding to the
constraint set Cf in (8), has the closed form[

ProxKLω
ιCf

(π)
]
l
= ProxKL

ι{πl1=Pl}
(πl)=diag

(
Pl
πl1

)
πl. (11)

Proposition 2 (Proposition 2 in [4]): The proximal oper-
ator of the indicator function ιCe , corresponding to the
constraint set Ce in (9), has the closed form[

ProxKLω
ιCe

(π)
]
l

= πldiag
(

p

1ᵀπl

)
, (12)

where p =
∏m
l=1 (1ᵀπl)

ωl (the products and exponentiation
are considered element-wise), and m = 2 in our case.

B. Capacity and Support Constrained WB

In the context of networks, it is reasonable to restrict how
much mass can be sent from one node to another, i.e. to add a
capacity to the edges connecting the nodes. This constraint is
imposed on each transport plan by defining a capacity matrix
C̃ ∈ Rn×n such that [C̃]ij is the maximum mass that can
be sent from node i to node j. The following proposition
concerns the computation of the proximal operator for the
set C1 in (10d).

Proposition 3 (Section 5.2 in [4]): The proximal map for
the function ι{π1≤C̃} is defined as

ProxKL
ι{π1≤C̃}

(π1) = min
(
π1, C̃

)
, (13)

with the minimum computed element-wise.
We can also have capacity limits on some of the nodes,

meaning that even though the optimal solution might send
a certain amount of mass to one of these nodes, it may not
be possible to hold that much quantity. This corresponds to
the constraint set C2 in (10e). We can adapt the results for
partial transport problems in [4] for the computation of the
projection on this set in closed form, as follows.

Proposition 4 (Proposition 5 in [4]): For the the indica-
tor function ιC2 , corresponding to the constraint set C2 in
(10e), one has[

ProxKLω
ιC2

(π)
]
l

= ProxKL
ι{πᵀ

l
1≤ρ}

(πl)

= πldiag
(

min

(
ρ

πᵀ
l 1
,1

))
,

(14)

where the minimum and division of vectors are considered
element-wise.

Regarding the support constraint (10f), since nodes in
SUPP(ρt) can still send mass to non-neighboring nodes, our



Algorithm 1 Conceptual procedure of the proposed approach
Input: Initial and final distributions ρ0 and ν, adjacency
matrix A, cost matrix C, vector of storage capacities ρ,
regularization parameter γ(t) and weight ω(t) depending
on t and such that γ(t), ω(t) → 0 as t → +∞, accuracy
parameter ε > 0

1: t = 0

2: while 1
2 ‖ν − ρt‖1 > ε do

3: Define the capacity matrix C̃ as seen in (15)
4: Compute the WB ρt+1 with weights ω1 = ω(t) and

ω2 = 1−ω(t) and the additional support and capacity
constraints by using Dykstra’s projection algorithm
with initial conditions π(0)

1 = π
(0)
2 = e−

C
γ(t) and the

proximal operators defined on (12), (11) and (14)
(with ρ) for both transport plans, and (13) only for
transport plan π1 to enforce the capacity constraint
(10d) with capacity matrix C̃

5: t← t+ 1

6: end while
Output: {ρt}t

fix is to take advantage of constraint (10d) and adapt it to
circumvent this issue. We redefine the capacity matrix C̃ for
π1 from ρt to ρt+1, such that for the nodes in the support of
ρt, if there is no connection between one of them and another
node, the “link” between them has zero capacity, i.e.,

[C̃]ij =

{
0 if j ∈ SUPP(ρt) and Āij = 0,

[C̃]ij otherwise.
(15)

C. Description of the Proposed Approach

Now, we can present the proposed algorithm to solve
Problem 1. We use Dykstra’s projection algorithm, and
together with the support and capacity constraints, we can
impose the additional restrictions introduced in the problem
statement (Section II). Algorithm 1 summarizes the proposed
method. It is important to remark that our entropy-regularized
approach does not allow the scheme to converge exactly to
the target distribution ν. Since the additional entropy term
in the definition of the Wasserstein distance (3) forces every
node to send a small amount of mass to the rest, the solution
obtained can be more or less diffused depending on the
regularization strength γ. Moreover, we cannot guarantee the
convergence of Algorithm 1 for a fixed weight ω, and to our
knowledge, there is no proof for it as of yet. However, if
instead of taking fixed values for both γ and ω we consider, at
each step t, γ(t), ω(t) such that γ(t), ω(t)→ 0 as t→ +∞,
we can ensure its convergence [4] [17]. Despite that, in the
simulations carried out in Section IV, we consider the weight
ω to be both fixed and tending to zero since we have observed
how, for a constant ω < 1/2, the mass reaches the target
distribution as well. We state the following lemma regarding
the convergence of the computation of each intermediate
distribution in the discrete flow.

Source

Sector of consume

Pump

Tank

Node

Fig. 1. Topology of the small DWN case study.

Initial distribution Iteration 1, ω = 0.75

Iteration 2, ω = 0.1 Iteration 3, ω = 0.1

Iteration 4, ω = 0.1 Final distribution

Fig. 2. Steps obtained for the small DWN case study.

Lemma 1: For each step t, let C̃ be the capacity matrix
defined in (15) such that it verifies C̃ᵀ1 > ρt, and let ρ be the
node capacity vector in the constraint set C2 such that ρt < ρ
(both inequalities are considered element-wise). Then, the
iterative computation of the proximal steps in Propositions 1,
2, 3 and 4 converges to the solution of (10a).

IV. CASE STUDY

To show the effectiveness of the proposed approach, a
simple case study of a drinking water network (DWN) is
considered. Fig. 1 depicts a basic topology of a drinking
water transport network. Water is moved from the sources
towards the network using manipulated actuators to fill
retention tanks and supply water to demand sectors. The
reader is referred to [16] for further details about this system.

Our objective is to find the (discrete) flow that moves
the mass from an initial distribution (water provided by
the treatment plants and reservoirs) to a target distribution
(expected water in the reservoirs to cover the consumers’
water demand) such that it follows the sparsity pattern and
constraints induced by the network, and each step is the most
cost-efficient (depending on the weight parameter ω).

Fig. 2 shows a simulation on the small network in Fig. 1,
ignoring the pumps (which simply add an additional cost)
and with no additional capacities on the edges and nodes,
for simplicity. Here, we take advantage of the parameter ω
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Fig. 3. (Left) Total variation distance between the distribution obtained at
iteration t (ρt) and the final distribution (ν), and (right) cost of transportation
for each iteration, for the example depicted in Fig. 2 (for different weights).

to regulate how the water is transported. In particular, in the
first step, we use a fairly high weight ω = 0.75 in favor
of the initial distribution so that the transportation is done
more gradually. In the following steps, the weight is reduced
to ω = 0.1 to cover the demand much faster. Fig. 3 (left),
shows the total variation distance between the intermediate
distribution ρt and the target measure ν, for ω(t) tending
to zero at different rates and also fixed at ω(t) = 0.1.
In any case, we see how we eventually converge to the
final distribution. For ω = 0.1, since it gives more weight
to minimizing the distance to ν rather than the previous
distribution, the mass advances faster until it covers the
target in few iterations. Similarly, for ω(t) = 1/t, the weight
decreases fast enough, and ν is covered in the same number
of steps. For ω(t) = 1/ ln t, the decrease rate is slower, and
it takes more iterations to cover the target, finally doing so
in a single step. On the right plot, we have the Wasserstein
distance of each step (the cost of transportation). We can
reach the same conclusions we had with the total variation
distance, but in particular, we notice how for ω(t) = 1/ ln t
the mass stays still until ω is small enough at the third
iteration.

Note how the memorylessness property of the proposed
scheme is a valuable feature to have in the context of DWN
logistics since it allows the algorithm to adapt to different
changes as it advances (sudden peaks in demand, changes in
the graph topology, or other occurrences).

From the point of view related to the management of a
DWN, the proposed approach opens new ways of improving
existent management criteria in the sense of scalability and
modularity of the control approaches [20], apart from adding
robustness capabilities to the system. In any case, a straight-
forward comparison with existing methods for management
and control of DWNs is nowadays not fair since our approach
is presented as a proof of concept for the proposed objectives
related to the case study, and then some additional design
criteria should be considered.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a mathematical formula-
tion to resolve discrete optimal flows over networks, based
on the computation of constrained Wasserstein Barycenters.
Using the entropically regularized approximation of the
Wasserstein metric allows us to make use of Dykstra’s
projection algorithm, which is easy to implement and is

competitive in terms of performance speed since it only
requires elementary operations such as matrix and vector
products. Moreover, with this methodology, the solution
obtained is unique. The scheme presented can be extended
to consider more than two distributions and is able to
adapt to different changes, thus, a new line of investigation
could be to use the proposed approach to tackle problems
involving decentralized or distributed models, where not all
the information is available for every agent.
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[17] G. Peyré. Entropic approximation of Wasserstein gradient flows. SIAM
Journal on Imaging Sciences, 8(4):2323–2351, 2015.

[18] J. Richard, K. David, and O. Felix. The variational formulation of the
Fokker-Planck equation. SIAM Journal on Mathematical Analysis,
29(1):1–17, 1998.

[19] P. H. Richemond and B. Maginnis. On Wasserstein reinforcement
learning and the Fokker-Planck equation. ArXiv, abs/1712.07185,
2017.

[20] F. Tedesco, C. Ocampo-Martinez, A. Cassavola, and V. Puig. Cen-
tralised and distributed command governor approaches for the oper-
ational control of drinking water networks. IEEE Transactions on
Systems, Man & Cybernetics: Systems, 48(4):586–595, 2018.

[21] C. Villani. Optimal Transport: Old and New. Grundlehren der
mathematischen Wissenschaften. Springer Berlin Heidelberg, 2008.


