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Abstract

This paper studies the problem of generalized Nash equilibrium seeking in population games under general affine equality and
convex inequality constraints. In particular, we design a novel payoff dynamics model to steer the decision-making agents to a
generalized Nash equilibrium of the underlying game, i.e., to a self-enforceable state where the constraints are satisfied and no
agent has incentives to unilaterally deviate from her selected strategy. Moreover, using Lyapunov stability theory, we provide
sufficient conditions to guarantee the asymptotic stability of the corresponding equilibria set in stable population games.
Auxiliary results characterizing the properties of the equilibria set are also provided for general continuous population games.
Furthermore, our theoretical developments are numerically validated on a Cournot game considering various market-related
and production-related constraints.
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1 Introduction

Population games provide an evolutionary game theo-
retical framework to study the strategic interaction of
a large number of decision-making agents (Hofbauer
& Sigmund 1998, Sandholm 2010). The conventional
framework consists of two elements: i) a game, which de-
scribes the strategic environment where agents interact;
and ii) a revision protocol, which provides the strategy
selection mechanism that agents use to adapt to the
environment. Together, the game and revision protocol
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define a stochastic evolutionary process for the strate-
gic distribution of agents. Based on such a framework,
various works have studied the conditions under which
the pair game and revision protocol lead to a Nash
equilibrium, i.e., to a self-enforceable state where no
agent has incentives to unilaterally change her selected
strategy. For instance, Hofbauer & Sandholm (2009)
study the so-called class of stable games, and show that
the set of Nash equilibria of such games is asymptot-
ically stable under several types of revision protocols;
Barreiro-Gomez, Obando & Quijano (2017) provide
conditions for the asymptotic stability of Nash equilib-
ria in non well-mixed populations of agents; and Como
et al. (2021) study the convergence to Nash equilibria for
potential games under imitative revision protocols and
community-based structures of interaction. In addition,
Park et al. (2019) and Arcak & Martins (2021) study
the scenario where the strategies’ payoffs (which are
usually given as input to the agents’ revision protocols)
are dynamically provided by a so-called payoff dynam-
ics model (PDM), and characterize the corresponding
conditions for convergence to a Nash equilibrium.

On the other hand, besides the theoretical motivation,
the formalism of population games has been exploited
in several practical applications as well (Quijano et al.
2017). Some examples include wireless networks (Tem-



bine et al. 2010), water distribution systems (Pashaie
et al. 2017, Barreiro-Gomez, Ocampo-Martinez & Qui-
jano 2017), demand response problems (Srikantha &
Kundur 2017), and electric vehicles (Martinez-Piazuelo
et al. 2020), among others. Hence, the study of popula-
tion games is not only relevant from a game theoretical
perspective, but also to the scope of control systems en-
gineering.

Although the problem of Nash equilibrium seeking in
population games has been well-studied in the litera-
ture, and several practical applications have benefit from
it, the broader scenario of generalized Nash equilibrium
(GNE) seeking in population games has received limited
attention. In the context of population games, a GNE
seeking problem refers to the task of reaching a refined
Nash equilibrium where joint feasibility constraints de-
fine the allowed strategic distributions for the agents.
More precisely, a GNE is a self-enforceable state where
certain constraints are satisfied and no agent has incen-
tives to unilaterally deviate from her selected strategy.
As such, a framework capable of reaching a GNE in not
only more motivating from the theoretical perspective,
but also enjoys of a richer scope of applications to be
explored. Consequently, in this paper we investigate the
problem of GNE seeking in population games.

Contributions: Inspired by the ideas on dynamic payoff
mechanisms in Park et al. (2019), in this paper we design
a novel PDM for GNE seeking in population games un-
der affine equality constraints and (twice continuously
differentiable) convex inequality constraints. By consid-
ering the class of stable games (Hofbauer & Sandholm
2009) and the family of (locally Lipschitz) impartial pair-
wise comparison revision protocols (Park et al. 2019),
we provide sufficient conditions to guarantee the asymp-
totic stability of the set of generalized Nash equilibria
of the underlying game. Moreover, as an auxiliary re-
sult, we prove the non-emptiness and compactness of
the equilibria set of the corresponding evolutionary pro-
cess for any continuous game. Finally, to illustrate the
relevance of the developed framework, we provide some
numerical examples regarding a Cournot game, which is
an abstraction that captures a wide family of practical
applications. To the best of our knowledge, this is the
first work on GNE seeking in population games at the
aforementioned level of generality.

Related work: The problem of GNE seeking in classi-
cal multiplayer games has been recently studied from
different perspectives. For instance, Tatarenko & Kam-
garpour (2019) study the problem of reaching a GNE
in potential games with coupled convex inequality con-
straints; Yi & Pavel (2019a) and Yi & Pavel (2019b)
study the problem of GNE seeking in monotone games
under coupled affine constraints; Deng (2021) investi-
gates the GNE seeking problem for nonsmooth aggrega-
tive games under coupled affine equality constraints; and
Belgioioso et al. (2021) propose a distributed decision-

making algorithm for GNE seeking in aggregative games
with non-linear aggregation terms and under coupled
affine equality constraints.

Although the GNE seeking problem has been studied
from various perspectives, limited attention has been
given to such a problem in the aforementioned context
of population games. Some recent approaches that shed
light onto this topic are the ones in Barreiro-Gomez
et al. (2016), Barreiro-Gomez & Tembine (2018), and
Martinez-Piazuelo et al. (2022). Namely, Barreiro-
Gomez et al. (2016) introduce the concept of mass
dynamics to consider affine constraints in stable pop-
ulation games under certain imitative revision proto-
col; Barreiro-Gomez & Tembine (2018) propose some
novel revision protocols to consider affine box inequal-
ity constraints in stable games; and Martinez-Piazuelo
et al. (2022) propose some dynamic payoff mechanism
for GNE seeking in potential population games with
affine equality constraints and under impartial pairwise
comparison revision protocols.

In contrast with the aforementioned previous works, in
this paper we consider the problem of GNE seeking in
population games under fairly general constraints. More
precisely, under affine equality constraints and twice con-
tinuously differentiable convex inequality constraints.
Clearly, this is a significant contribution with respect
to the other population games approaches in Barreiro-
Gomez et al. (2016), Barreiro-Gomez & Tembine (2018),
and Martinez-Piazuelo et al. (2022), which only con-
sider affine constraints. Our approach is close in nature
to the one in Martinez-Piazuelo et al. (2022). However,
in contrast with such an approach, we provide complete
sufficient conditions for asymptotic stability in contin-
uously differentiable stable games (not only for poten-
tial games). Furthermore, the PDM proposed in this pa-
per contemplates the PDM in Martinez-Piazuelo et al.
(2022) as a particular case. Thus, the framework of this
paper fully generalizes such previous results.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the population games framework as
well as the evolutionary process that describes the evo-
lution of the strategic distribution of agents over time.
Then, Section 3 formally states the GNE seeking prob-
lem that is studied throughout the paper. Afterwards,
Section 4 presents the proposed dynamic payoff mech-
anism that is designed for the GNE seeking task, and
Section 5 provides our main theoretical results regarding
the proposed framework. Finally, Section 6 presents an
illustrative example to validate our results, and Section
7 provides some concluding remarks and future direc-
tions of research. Additionally, all the proofs are given
in Section 8 at the end of the paper.

Notations: Throughout, Rn denotes the n-dimensional
Euclidean space. Rn≥0 and Rn>0 denote the non-negative
and positive orthants of Rn, respectively. Z≥z is the
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set of integers greater than or equal to z ∈ Z≥1. Let
col (z1, z2, . . . , zN ) denote the stacked column vec-
tor obtained from the collection of column vectors
z1, z2, . . . , zN . Similarly, diag (A1,A2, . . . ,AN ) de-
notes the block diagonal matrix with the matrices
A1,A2, . . . ,AN in its main diagonal.

2 Population games and evolutionary dynamics

In this section, we introduce some preliminary concepts
on population games and evolutionary dynamics (Sand-
holm 2010).

2.1 Population games

Consider a society of agents partitioned in N ∈ Z≥1 dis-
joint populations indexed by the set P = {1, 2, . . . , N}.
Each population k ∈ P is comprised of a large number of
strategic agents, and the set of strategies available to the
agents of each population k ∈ P is Sk = {1, 2, . . . , nk},
with nk ∈ Z≥2. Throughout, we let xki ∈ R≥0 be the
portion of agents playing the strategy i ∈ Sk at popu-
lation k ∈ P, for all i ∈ Sk and all k ∈ P. Hence, the
strategic distribution of population k ∈ P is given by

xk = col
(
xk1 , x

k
2 , . . . , x

k
nk

)
∈ Rnk

≥0, for all k ∈ P, and
the strategic distribution of the entire society is given
by x = col

(
x1,x2, . . . ,xN

)
∈ Rn≥0, with n =

∑
k∈P n

k.
Moreover, the amount of players of population k ∈ P
is represented by a (constant) mass mk ∈ R>0, for all
k ∈ P. Consequently, the set of all possible strategic dis-
tributions at population k ∈ P is

∆k =

xk ∈ Rn
k

≥0 :
∑
i∈Sk

xki = mk

 , ∀k ∈ P,

and the set of all possible strategic distributions at the
society level is

∆ =

{
x ∈ Rn≥0 :

x = col
(
x1,x2, . . . ,xN

)
,

where xk ∈ ∆k, ∀k ∈ P

}
.

Under the considered framework, there is a fitness func-
tion associated to each strategy at each population.
Namely, fki : ∆ → R denotes the fitness function of
strategy i ∈ Sk at population k ∈ P. For convenience,
we stack all the fitness functions in a fitness vector
f : ∆ → Rn as f(·) = col

(
f1(·), f2(·), . . . , fN (·)

)
, with

fk(·) = col
(
fk1 (·), fk2 (·), . . . , fknk(·)

)
∈ Rnk

, for all k ∈ P.

In summary, a population game is comprised of a set of
populations (P), a set of possible strategic distributions
for each population (∆k), and a fitness vector (f(·)), i.e.,
in normal form a population game could be defined as
the tuple

(
P, {∆k}k∈P , f(·)

)
. However, as in Sandholm

(2010), throughout this paper we simply use f(·) to refer
to the population game. Moreover, in this paper we pay
special attention to the class of stable population games.

Definition 1 f : ∆→ Rn is a stable game if and only if

(x− y)
>

(f(x)− f(y)) ≤ 0, for all x,y ∈ ∆. �

2.2 Evolutionary dynamics

Let t ∈ R≥0 denote the continuous-time index, and
let x(t) be the value of x at time t. Moreover, let
pki (t) ∈ R be the payoff associated to the strategy
i ∈ Sk at time t, for all i ∈ Sk and all k ∈ P, and
let p(t) = col

(
p1(t),p2(t), . . . ,pN (t)

)
∈ Rn, where

pk(t) = col
(
pk1(t), pk2(t), . . . , pknk(t)

)
∈ Rnk

, for all
k ∈ P. Namely, the payoff vector p(t) provides the pay-
off to all society agents at time t. In classical population
games, it is typically set that p(t) = f (x(t)). However,
as in this paper, this is not the only possible choice for
p(t). We provide our choice for p(t) in Section 4.

Under the considered framework, the (microscopic) de-
cision making process of the society agents is performed
as follows. Each society agent is equipped with a stochas-
tic alarm clock and a revision protocol. The clocks pro-
vide strategic revision opportunities to the correspond-
ing agents according to a rate R exponential distribu-
tion, and the revision protocols are maps of the form
ρkij : ∆×Rn → R≥0, for all i, j ∈ Sk and all k ∈ P, which
provide the conditional switch rate from strategy i to
strategy j. At the microscopic level, if at time t an agent
playing i ∈ Sk receives a revision opportunity, then such
an agent either switches to strategy j ∈ Sk \ {i} with
probability ρkij (x(t),p(t)) /R, or remains at strategy i

with probability 1−
∑
j∈Sk\{i} ρ

k
ij (x(t),p(t)) /R (as in

(Sandholm 2010, Section 4.1), it is assumed that R is
large enough so that the aforementioned probabilities
are well defined for all times). Furthermore, following
the ideas in (Sandholm 2010, Section 4.2) and given that
the number of agents of each population is large, the
(macroscopic) dynamics that describe the continuous-
time evolution of xki (t) are

ẋki (t) =
∑
j∈Sk

xkj (t)ρkji (x(t),p(t))− xki (t)ρkij (x(t),p(t)) ,

for all i ∈ Sk and all k ∈ P. In particular, in this paper
we focus on the class of impartial pairwise comparison
(IPC) revision protocols (Park et al. 2019).

Definition 2 A revision protocol ρkij : ∆ × Rn → R≥0

is an IPC protocol if it has the form ρkij (x(t),p(t)) =

φkj
(
pkj (t)− pki (t)

)
, where φkj : R → R≥0 satisfies

that φkj
(
pkj (t)− pki (t)

)
> 0, if pkj (t) > pki (t), and

φkj
(
pkj (t)− pki (t)

)
= 0, if pkj (t) ≤ pki (t). �
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Standing Assumption 1 For every i, j ∈ Sk and ev-
ery k ∈ P, the revision protocol ρkij : ∆ × Rn → R≥0 is
an IPC protocol characterized by a locally Lipschitz con-
tinuous map φkj : R→ R≥0. �

An example of a map satisfying Standing Assumption 1
is φkj (·) = max(·, 0), for all j ∈ Sk and all k ∈ P.

Consequently, the evolutionary dynamics model (EDM)
considered throughout this paper is

δkij(t) , p
k
j (t)− pki (t), (1a)

ẋki (t) =
∑
j∈Sk

xkj (t)φki
(
δkji(t)

)
− xki (t)φkj

(
δkij(t)

)
, (1b)

for all i, j ∈ Sk and all k ∈ P.

Some well-known properties of the EDM in (1) are char-
acterized in Lemmas 1 and 2.

Lemma 1 Consider the EDM in (1). If x(0) ∈ ∆, then
x(t) ∈ ∆ for all t ≥ 0. �

Lemma 2 Consider an arbitrary k ∈ P, the EDM in

(1), and let ẋk(t) = col
(
ẋk1(t), ẋk2(t), . . . , ẋknk(t)

)
∈ Rnk

.

Then, ẋk(t) = 0 if and only if it holds that

xki (t) > 0 ⇒ pki (t) = max
j∈Sk

pkj (t), ∀i ∈ Sk. (2)

Here, 0 is the zero vector of appropriate dimension. �

In particular, Lemma 1 states some invariance properties
of the EDM in (1), while Lemma 2 characterizes the
equilibria set of the EDM in (1) in terms of the payoff
vector p(t). Based on Lemma 1, we consider the following
assumption.

Standing Assumption 2 x(0) ∈ ∆. �

Hence, without additional loss of generality, it holds that
x(t) ∈ ∆, for all t ≥ 0. The reader should keep this fact
in mind for the forthcoming discussions.

3 Problem Statement

In this section, we formally state the problem that is
studied throughout the paper.

In classical population games scenarios (with p(t) =
f (x(t))), the objective is for the society agents to reach
a Nash equilibrium of the game f(·).

Definition 3 The set of Nash equilibria of the popula-
tion game f : ∆→ Rn is given by

NE(f) =

{
x ∈ ∆ : x ∈ arg max

y∈∆
y>f(x)

}
.

That is, a Nash equilibrium is the best response to itself,
where no agent has incentives to unilaterally deviate from
her selected strategy. �

As such, the problem of Nash equilibrium seeking in
population games has been widely studied in the litera-
ture. Notice that for the case when p(t) = f (x(t)), the
equilibria set of the EDM in (1) coincides with the set
of Nash equilibria of the game f(·) (c.f., Lemma 2 and
Definition 3). Hence, under such a scenario, the prob-
lem of Nash equilibrium seeking reduces to the stability
analysis of the equilibria set of the EDM in (1), which
is readily available in Hofbauer & Sandholm (2009) for
certain population games.

In contrast with the classical framework, however, in this
paper we investigate a generalization of the Nash equi-
librium seeking problem in population games. Namely,
in this paper the goal is for the society agents to reach
a generalized Nash equilibrium of the game f(·).

Definition 4 Let X ⊆ Rn. The set of generalized Nash
equilibria of the population game f : ∆→ Rn with respect
to X is given by

GNE (f ,X ) =

{
x ∈ ∆ ∩ X : x ∈ arg max

y∈∆∩X
y>f (x)

}
.

That is, X represents some constraints to be satisfied by
the strategic distribution of the society, i.e., x. �

For the forthcoming analyses, we impose the following
conditions on the set X .

Standing Assumption 3 Let

X =

{
x ∈ Rn :

hl (x) = 0, ∀l ∈ C=
gq (x) ≤ 0, ∀q ∈ C≤

}
,

where C= = {1, 2, . . . , C=}, with C= ∈ Z≥0; C≤ =
{1, 2, . . . , C≤}, with C≤ ∈ Z≥0; hl : Rn≥0 → R, for all
l ∈ C=; and gq : Rn≥0 → R, for all q ∈ C≤. Moreover, the
following conditions hold:

(a) The set int (∆) ∩ int (X ) is nonempty. Here,
int (∆) = ∆ ∩ Rn>0, and

int (X ) = {x ∈ X : gq (x) < 0, ∀q ∈ C≤} .

(b) For all l ∈ C=, hl(x) = a>l x − bl, with al ∈ Rn

and bl ∈ R. Besides, the matrix Â =
[
A>,A>∆

]> ∈
R(C=+N)×n is full row rank (hence, C= ≤ n −N).

Here, A = [a1,a2, . . . ,aC= ]
> ∈ RC=×n, and A∆ ∈

RN×n is such that the ∆-related equality constraints∑
i∈Sk xki = mk, for all k ∈ P, can be written as

A∆x = m, with m = col
(
m1,m2, . . . ,mN

)
∈ RN>0.
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(c) For all q ∈ C≤, the function gq(·) is twice continu-
ously differentiable and convex. �

Remark 1 Under Standing Assumption 3, it follows
that the set ∆ ∩ X is nonempty, convex, and compact.
Consequently, as we show in Lemma 6 in Section 5, if f(·)
is continuous, then GNE (f ,X ) is nonempty and com-
pact. Moreover, note that if X ⊇ ∆, then GNE (f ,X ) =
NE (f). Hence, the problem of GNE seeking clearly gen-
eralizes the problem of NE seeking. �

The question to be answered then is: how to design a
control mechanism to steer the society agents to a GNE
of the underlying population game? Observe that ac-
cording to the considered EDM of Section 2.2, the only
influence that one might have over the society agents is
through the payoff signal p(t). Clearly, setting p(t) =
f (x(t)) is in general not enough for GNE seeking as the
society agents would have no information regarding the
constraints in X . Therefore, it is necessary to design an
appropriate payoff signal p(t) that incorporates both the
game f(·) and the constraints of X . Next, we present our
proposed payoff signal and provide the corresponding
theoretical analyses.

4 Proposed approach

As mentioned above, under the considered framework,
the only control mechanism to steer the decision-making
process of the society agents is through the payoff signal
p(t). Hence, in this section we propose a payoff signal
p(t) that effectively guides the society agents to a GNE
of the underlying population game f(·).

Following the ideas in Park et al. (2019), we let p(t) be
the output of a so-called payoff dynamics model (PDM).
More formally, here we propose the PDM given by

pki (t) = fki (x(t))−
∑
l∈C=

µl(t)
∂hl (x(t))

∂xki

−
∑
q∈C≤

λq(t)
∂gq (x(t))

∂xki
,

(3)

for all i ∈ Sk and all k ∈ P, where µl(t), λq(t) ∈ R are
determined by

µ̇l(t) = ϑ+
l (hl (x(t)))− ϑ−l (−hl (x(t))) , (4a)

λ̇q(t) = θ+
q (gq (x(t)))− λq(t)θ−q (−gq (x(t))) , (4b)

for all l ∈ C= and all q ∈ C≤. Here, for all l ∈ C= and
all q ∈ C≤, the functions ϑ+

l : R→ R≥0, ϑ−l : R→ R≥0,
θ+
q : R→ R≥0, and θ−q : R→ R≥0, are locally Lipschitz

continuous maps satisfying that z(α) > 0, if α > 0,
and z(α) = 0, if α ≤ 0, for all α ∈ R and all z(·) ∈{
ϑ+
l (·), ϑ−l (·), θ+

q (·), θ−q (·)
}

. A simple example of such a

EDM

PDM

Fig. 1. Considered EDM-PDM system.

map is z(·) = τ max(·, 0), where τ ∈ R>0 is a positive
constant. In (4), the super index + is used to denote
that ϑ+

l (·) and θ+
q (·) control the growth rate of µl(t) and

λq(t), respectively, while the super index − is used to
highlight that ϑ−l (·) and θ−q (·) control the decay rate of
µl(t) and λq(t), respectively. Moreover, notice that (4a)

and (4b) are not symmetric (i.e., while λ̇q(t) depends on
λq(t), µ̇l(t) does not depend on µl(t)). In fact, the form
of (4b) leads to the following invariance property.

Lemma 3 Consider the dynamics in (4b) and an arbi-
trary q ∈ C≤. If λq(0) ≥ 0, then λq(t) ≥ 0 for all t ≥ 0.�

Based on Lemma 3, we impose the following assumption.

Standing Assumption 4 Let µ(0) ∈ RC= and

λ(0) ∈ RC≤
≥0 , where µ(t) = col (µ1(t), µ2(t), . . . , µC=(t))

and λ(t) = col
(
λ1(t), λ2(t), . . . , λC≤(t)

)
. �

Hence, without additional loss of generality, through this

paper it holds that λ(t) ∈ RC≤
≥0 , for all t ≥ 0.

The PDM defined in (3)-(4) provides a causal map from
x(t) to p(t), and considers both the underlying game
f(·) and the constraints of X . In fact, observe that the
EDM in (1) and the PDM in (3)-(4) are interconnected
in a positive feedback loop structure as in Fig. 1. That
is, based on the society state x(t), the PDM determines
the payoff signal p(t) and forwards it as an input to the
EDM. In Section 5, we formally prove that, for certain
population games, such an interconnected EDM-PDM
system has an asymptotically stable equilibria set, which
coincides with the set GNE (f ,X ). Therefore, the con-
sidered EDM-PDM system effectively solves the GNE
seeking problem of Section 3.
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5 Analysis of the EDM-PDM system

In this section, we provide our main theoretical devel-
opments regarding the EDM-PDM system of Section
4. In particular, we characterize the equilibria set of
the considered EDM-PDM system and prove the coinci-
dence with GNE (f ,X ) for continuous population games.
Moreover, we provide sufficient conditions on the game
f(·) to guarantee the asymptotic stability of the equilib-
ria set of the considered EDM-PDM system. Through-
out, whenever we refer to the state vector of the EDM-
PDM system of (1) and (3)-(4), we use the tuple no-
tation (x(t),µ(t),λ(t)) ∈ Rn × RC= × RC≤ . Besides,
due to Lemmas 1 and 3, and Standing Assumptions 2
and 4, it is further considered that (x(t),µ(t),λ(t)) ∈
∆× RC= × RC≤

≥0 , for all t ≥ 0.

To characterize the equilibria set of the EDM-PDM sys-
tem of (1) and (3)-(4), we provide the following auxiliary
results.

Lemma 4 Consider the dynamics in (4a) and an ar-
bitrary l ∈ C=. It holds that µ̇l(t) = 0 if and only if
hl (x(t)) = 0. �

Lemma 5 Consider the dynamics in (4b) and an ar-

bitrary q ∈ C≤. It holds that λ̇q(t) = 0 if and only if
gq (x(t)) ≤ 0 and λq(t)gq (x(t)) = 0. �

Based on Lemmas 2, 4, and 5, we now characterize the
equilibria set of the overall EDM-PDM system.

Theorem 1 Consider the EDM in (1) in conjunction
with the PDM in (3)-(4), and let

E =

(x,µ,λ) :

x ∈ ∆ ∩ X , µ ∈ RC= , λ ∈ RC≤
≥0 ,

(2) holds for all k ∈ P, and

λqgq (x) = 0 for all q ∈ C≤.

 .

(5)
Then, (x∗,µ∗,λ∗) is an equilibirum state of the EDM-
PDM system if and only if (x∗,µ∗,λ∗) ∈ E. �

Theorem 1 characterizes the equilibria set of the consid-
ered EDM-PDM system. By imposing some conditions
on the game f(·), it is possible to prove certain proper-
ties of the sets GNE (f ,X ) and E .

Lemma 6 Let f : ∆→ Rn be continuous. Then, the set
GNE (f ,X ) is nonempty and compact. �

Theorem 2 Let f : ∆→ Rn be continuous and consider
the set E in (5). Then, x∗ ∈ GNE (f ,X ) if and only if

(x∗,µ∗,λ∗) ∈ E, for some µ∗ ∈ RC= and λ∗ ∈ RC≤
≥0 . �

Lemma 7 Let f : ∆ → Rn be continuous and consider
the set E in (5). Then, E is nonempty and compact. �

Theorem 2 provides sufficient conditions to guarantee
the coincidence of the equilibria set of the considered
EDM-PDM system with the set of GNE of the underly-
ing game f(·). Based on such a result, we now proceed to
prove that, for certain population games, such an equi-
libria set is indeed asymptotically stable under the con-
sidered EDM-PDM system.

Theorem 3 Consider the EDM in (1) in conjunction
with the PDM in (3)-(4), and the equilibria set E in (5).
Moreover, let f : Rn≥0 → Rn be a continuously differ-

entiable stable game 1 . Then, the set E is asymptotically
stable under the considered EDM-PDM system. �

Theorems 2 and 3 show that the considered EDM-PDM
system is in fact suitable for GNE seeking in continuo-
suly differentiable stable population games. We now pro-
ceed to illustrate the application of the proposed EDM-
PDM system in some strategic scenario relevant to sev-
eral practical applications.

6 An illustrative application example

For the following discussions, we let x = col
(
x1, . . . ,xN

)
be equivalently written as

(
xk,x−k

)
, for all k ∈ P, where

x−k = col
(
x1, . . . ,xk−1,xk+1, . . . ,xN

)
∈ Rn−n

k

≥0 is the
strategic distribution of all populations other than k.
Namely, regardless of k, it always holds that

(
xk,x−k

)
=

col
(
x1, . . . ,xN

)
= x. That is, the order is preserved

regardless of k.

Consider the scenario where each population k ∈ P seeks
to solve an optimization problem of the form

max
xk∈Rnk

ψk
(
xk,x−k

)
, s.t. xk ∈ Ωk

(
x−k

)
, (6)

where ψk : Rn≥0 → R is the (concave and differentiable)
objective function of population k ∈ P; and

Ωk
(
x−k

)
= ∆k ∩

{
xk ∈ Rn

k

:
(
xk,x−k

)
∈ X

}
is the feasible set of population k ∈ P with respect to x−k

and X . Namely, by solving (6), the agents of population
k ∈ P aim to find the best response strategy to x−k,
while satisfying the constraints of X . Now, let

f(x) = col
(
∇x1ψ1(x),∇x2ψ2(x), . . . ,∇xNψN (x)

)
,
(7)

i.e., f(·) is a pseudo-gradient mapping associated to the
functions ψk(·), for all k ∈ P. If x∗ ∈ GNE (f ,X ), with
x∗ = col

(
x1∗,x2∗, . . . ,xN∗

)
, then it follows that every

1 The domain of f(·) is assumed to be Rn
≥0 ⊃ ∆ to ensure

the existence of partial derivatives (Sandholm 2010).
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xk∗ solves the optimization problem in (6) for the cor-
responding population k ∈ P. To see this, observe that
x∗ ∈ GNE (f ,X ) implies that x∗ ∈ ∆ ∩ X and that

(y − x∗)
>

f (x∗) ≤ 0, ∀y ∈ ∆ ∩ X .

Thus, x∗ ∈ GNE (f ,X ) implies that xk∗ ∈ Ωk
(
x−k∗

)
,

where x−k∗ = col
(
x1∗, . . . ,x(k−1)∗,x(k+1)∗, . . . ,xN∗

)
,

and that(
yk − xk∗

)>∇xkψk (x∗) ≤ 0, ∀yk ∈ Ωk
(
x−k∗

)
,

for all k ∈ P. Here, y = col
(
y1,y2, . . . ,yN

)
. Hence, any

x∗ ∈ GNE (f ,X ) satisfies the necessary and sufficient
optimality conditions to solve the convex programming
problem in (6), for all k ∈ P. Therefore, by solving the
GNE seeking problem regarding the game f(·) in (7), one
solves the problem in (6) simultaneously for all popula-
tions.

Convex programming problems of the form in (6) arise
in several practical applications. Some examples include
charging coordination of plug-in electric vehicles (Gram-
matico 2017), energy sharing games (Wang et al. 2021),
and power control of femtocells (Li et al. 2020), among
others. In fact, a wide variety of such practical appli-
cations can be abstracted by the framework of Cournot
games with market-related and production-related con-
straints (Yi & Pavel 2019b). As such, we consider a
Cournot game scenario to validate our results.

Cournot game

Consider N companies (populations) indexed by the set
P, and consider M ∈ Z≥1 markets indexed by the set
M = {1, 2, . . . ,M}. Each company k ∈ P decides its
strategy in the competition in nk ≤M markets by deliv-

ering xk ∈ Rnk

≥0 products to the markets it participates

in. Namely, xki ∈ R≥0 denotes the amount of product
delivered from company k to market i ∈ Sk ⊆M. More-
over, each company has a maximum production capacity
denoted mk. For simplicity, we assume that companies
seek to deliver the totality of their production capacity
mk. Note, however, that this fact does not imply any
loss of generality as one could always introduce a ficti-
tious market inM to allocate the surplus of production
capacity from all companies. Consequently, the set of
possible strategic profiles for company k is given by ∆k.

To formulate the problem, let Ck ∈ RM×nk

be a ma-
trix which specifies the markets where company k is in-
volved. Namely, each column of Ck has exactly one el-
ement equal to 1 and the rest equal to 0; each row of
Ck has at most one element equal to 1; and the `-th
element of the j-th column of Ck is equal to 1 if and
only if company k participates in market ` ∈ M (c.f.,

Fig. 2). Hence, with C =
[
C1,C2, . . . ,CN

]
∈ RM×n

and x = col
(
x1,x2, . . . ,xN

)
∈ Rn, it follows that Cx =∑

k∈P Ckxk is the total supply vector to all markets
given the action profile x of all companies. Furthermore,
let J : RM → RM be a map from the total supply
vector to the price of product at each market, and let

Qk : Rnk

≥0 → R be the production cost for company

k. In particular, following the example in (Yi & Pavel
2019b, Section 7), throughout we set J(Cx) = J̄−DCx,
and we let Qk (·) be a continuously differentiable convex
function, for all k ∈ P. Here, J̄ ∈ RM is a vector with
positive coefficients, and D ∈ RM×M is a diagonal ma-
trix with positive diagonal entries. Note that the con-
sidered map J(·) is typically known as a linear inverse
demand function in economics. Finally, let X be char-
acterized by some market-related constraints to be con-
sidered in the competition. Without loss of generality,
we consider the following constraints: i) the first mar-
ket (indexed by 1 in M) must receive a fixed amount
of supply d1 ∈ R≥0; and ii) each market has a maxi-
mum input capacity r` ∈ R≥0, for all ` ∈ M. Hence,
X =

{
x ∈ Rn : e>1 Cx = d1, Cx � r

}
, where e1 ∈ RM

is the first column of the M ×M identity matrix; and
r = col (r1, r2, . . . , rM ) ∈ RM .

Based on the considered scenario, each company k ∈ P
seeks to solve an optimization problem of the form in

(6) with ψk
(
xk,x−k

)
= (J (Cx))

>
Ckxk −Qk

(
xk
)
. As

discussed above, to solve such an optimization problem
for all companies simultaneously, it suffices to find some
x∗ ∈ GNE (f ,X ), with f(·) defined as in (7). Hence, if
such an f(·) is interpreted as a population game, and f(·)
satisfies the conditions of Theorem 3, then the proposed
EDM-PDM system can indeed be applied to find a GNE
for the considered market competition game.

Now, observe that, under the considered setup,
ψk (x) = J̄>Ckxk −

∑
z∈P xz>Cz>DCkxk − Qk

(
xk
)
,

for all k ∈ P (here, we have used Cx =
∑
z∈P Czxz).

In consequence, ∇xkψk(x) = Ck>J̄ − 2Ck>DCkxk −∑
z∈P\{k}Ck>DCzxz − ∇xkQk

(
xk
)
, for all k ∈ P.

Hence, from (7), f(x) = C>J̄ − Sx − ∇xQ(x),
where ∇xQ(·) = col

(
∇x1Q1(·), . . . ,∇xNQN (·)

)
and

S = diag
(
C1>DC1, . . . ,CN>DCN

)
+ T>T, with

T =
[√

DC1, . . . ,
√

DCN
]

and D =
√

D
√

D. Namely,

∇xQ(·) ∈ Rn, S ∈ Rn×n, and T ∈ RM×n. Clearly, f(·)
is continuously differentiable. Moreover, since Qk(·) is
convex, for all k ∈ P, and S is symmetric positive semi-
definite, it follows that the Jacobian matrix of f(·) with
respect to x is negative semi-definite. Therefore, from
(Sandholm 2010, Theorem 3.3.1), it follows that f(·)
is a continuously differentiable stable game, and, thus,
satisfies the conditions of Theorem 3.

As illustration, for our numerical experiments we con-
sider the Cournot game with 10 companies and 7 mar-
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kets presented in Fig. 2. Moreover, without loss of gener-

ality, we set Qk
(
xk
)

=
∑
i∈Sk

(
(αki /2)

(
xki
)2

+ βki x
k
i

)
,

for all k ∈ P, where αki , β
k
i ∈ R≥0 are non-negative co-

efficients, for all i ∈ Sk and all k ∈ P. Furthermore, as
in (Yi & Pavel 2019b, Section 7), the market capacities
r` are randomly sampled from [0.5, 1], for all ` ∈ M;
the nonzero elements of J̄ and D are randomly drawn
from [2, 4] and [0.5, 1], respectively; and the coefficients
αki and βki are randomly drawn from [1, 8] and [0.1, 0.6],
respectively, for all i ∈ Sk and all k ∈ P. Besides, we set
d1 = 0.1r1, and we randomly sample mk from [0.1, 1],
for all k ∈ P (it is numerically verified, however, that
Standing Assumption 3.(a) holds under the sampled pa-
rameters).

To validate our theoretical developments, we consider
two different instances of the proposed EDM-PDM sys-
tem (c.f., Fig. 1). For the first instance (referred to as
EDM-PDM A), we set φki (·) = max(·, 0), for all i ∈ Sk
and all k ∈ P, and we set ϑ+

l (·) = ϑ−l (·) = θ+
q (·) =

θ−q (·) = max(·, 0), for all l ∈ C= and all q ∈ C≤. Note
that the resulting EDM corresponds to the well-known
Smith dynamics (Smith 1984). For the second instance
(referred to as EDM-PDM B), we keep the same EDM
as in the first instance, but we set ϑ+

l (·) = z(·, σ+
l ),

ϑ−l (·) = z(·, σ−l ), θ+
q (·) = z(·, η+

q ), and θ−q (·) = z(·, η−q ),

where z(α, ζ) = eζα − 1, if α ≥ 0, and z(α, ζ) = 0 oth-
erwise. Moreover, we randomly sample σ+

l , σ
−
l , η

+
q , and

η−q from [2, 4], respectively, for all l ∈ C= and all q ∈ C≤
(we use randomized values for σ+

l , σ
−
l , η

+
q , and η−q , sim-

ply to illustrate an instance of the PDM with heteroge-
neous functions ϑ+

l (·), ϑ−l (·), θ+
q (·), and θ−q (·)).

In Fig. 3 we present the trajectories of the selected per-
formance index, i.e., ‖x(t) − x∗‖2/‖x(0) − x∗‖2 with
x∗ ∈ GNE (f ,X ), for the two considered instances of the
EDM-PDM system. Clearly, it is verified that both in-
stances of the EDM-PDM system indeed asymptotically
converge to a GNE of the game f(·). Additionally, for the
sake of illustration, Fig. 4 shows the temporal evolution
of x5(t) under the EDM-PDM B.

To compare the performance of the proposed EDM-
PDM system against another related continuous-time
dynamical system, we highlight that the EDM-PDM sys-
tem of Fig. 1 can be regarded as a form of a primal-dual
gradient dynamics system (such dynamical systems are
fairly popular in the field of convex optimization (Qu &
Li 2019)). Namely, the EDM updates the primal vari-
ables within the (invariant) set ∆, and the PDM updates
the dual variables associated to the constraints of X .
Since conventional primal-dual gradient dynamics are
usually designed to solve convex programming problems
rather than GNE seeking problems, let us consider a
simplified version of the aforementioned Cournot game.
In particular, let D be the zero matrix so that the mar-
ket prices are now fixed at J̄ regardless of the produc-

Market 

Company 

Fig. 2. Cournot game with 10 companies competing in 7
markets, i.e., N = 10 and M = 7. An edge between company
k ∈ P and market ` ∈Mmeans that company k participates
in market `. The matrix C5 is presented as an example.
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x(
0)

−
x
*

∥ 2

EDM-PDM A
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Fig. 3. Trajectories of the selected performance index under
the EDM-PDM A and B for the considered Cournot game.
In both cases, xki (0) = mk/nk, µl(0) = 0, and λq(0) = 0, for
all i ∈ Sk, k ∈ P, l ∈ C=, and q ∈ C≤.

tion. Under such a simplification, it follows that f(x) =
C>J̄ − ∇xQ(x), and thus the game f(·) is now a (full)
potential game (Sandholm 2010, Section 3.1.2) with po-
tential function ϕ(x) =

∑
k∈P J̄>Ckxk − Qk

(
xk
)
, i.e.,

f(x) = ∇xϕ(x). Under such a setup, it is straightfor-
ward to verify that x∗ ∈ GNE (f ,X ) if and only if x∗ ∈
arg maxx∈∆∩X ϕ(x). As illustration, Fig. 5 depicts the
trajectories of the selected performance index under the
EDM-PDM systems and the primal-dual gradient dy-
namics presented in Qu & Li (2019) (with unitary time
constants). Clearly, while all dynamical systems indeed
converge to a GNE of f(·), our proposed EDM-PDM sys-
tems reach the equilibrium faster.

7 Concluding remarks

This paper has proposed a novel payoff dynamics model
for generalized Nash equilibrium seeking in population
games. In particular, we have considered the scenario
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Fig. 4. Trajectory of the strategic distribution of population
5 under the EDM-PDM B in the considered Cournot game.
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Fig. 5. Trajectories of the selected performance index under
the EDM-PDM A and B and the primal-dual gradient dy-
namics in Qu & Li (2019) for the simplified Cournot game
(with D = 0). In all cases, xki (0) = mk/nk, µl(0) = 0, and
λq(0) = 0, for all i ∈ Sk, k ∈ P, l ∈ C=, and q ∈ C≤ (the
remaining Lagrange multipliers of the primal-dual gradient
dynamics are initialized at zero as well).

where the allowed strategic distributions of agents are
subject to some affine equality constraints and some con-
vex inequality constraints, and we have derived sufficient
conditions to guarantee the achievement of generalized
Nash equilibria in stable population games under impar-
tial pairwise comparison revision protocols.

Future research should focus on the consideration of
population games under non-complete interaction struc-
tures, and on the extension of the framework to other
classes of revision protocols, e.g., imitative revision pro-
tocols. In addition, for the sake of generality, future work

should attempt to soften the continuous differentiabil-
ity assumptions on the population game and the convex
inequality constraints.

8 Proofs

8.1 Proof of Lemma 1

Note that, for every k ∈ P,∑
i∈Sk

ẋki (t)

=
∑
i∈Sk

∑
j∈Sk

xkj (t)φki
(
δkji(t)

)
− xki (t)φkj

(
δkij(t)

)
=
∑
i∈Sk

∑
j∈Sk

xkj (t)φki
(
δkji(t)

)
−
∑
i∈Sk

∑
j∈Sk

xki (t)φkj
(
δkij(t)

)
=
∑
i∈Sk

∑
j∈Sk

xkj (t)φki
(
δkji(t)

)
−
∑
i∈Sk

∑
j∈Sk

xkj (t)φki
(
δkji(t)

)
= 0.

Hence, if
∑
i∈Sk xki (0) = mk, then

∑
i∈Sk xki (t) = mk

for all t ≥ 0, for all k ∈ P. Moreover, from (1) observe
that if xki (t) = 0, then ẋki (t) ≥ 0, for all i ∈ Sk and all
k ∈ P. Thus, xki (0) ≥ 0 implies that xki (t) ≥ 0 for all
t ≥ 0, for all i ∈ Sk and all k ∈ P. Consequently, if
xk(0) ∈ ∆k, then xk(t) ∈ ∆k for all t ≥ 0, for all k ∈ P,
leading to to the desired result. �

8.2 Proof of Lemma 2

(Sufficiency) Let condition (2) hold. Since

xki (t)φkj
(
δkij(t)

)
= xki (t)φkj

(
pkj (t)− pki (t)

)
, ∀i, j ∈ Sk,

it follows from Definition 2 that xki (t)φkj
(
δkij(t)

)
= 0, for

all i, j ∈ Sk. Hence, ẋk(t) = 0.

(Necessity) Let ẋk(t) = 0, but suppose that (2)
does not hold. Let i ∈ Sk be such that pki (t) =
maxj∈Sk pkj (t). Thus, from Definition 2 it follows that

xki (t)φkj
(
pkj (t)− pki (t)

)
= 0, for all j ∈ Sk. Hence,

ẋki (t) ≥ 0. Now, given that (2) does not hold, there is
some ` ∈ Sk such that xk` (t) > 0 and pk` (t) < pki (t).
Therefore, xk` (t)φki

(
pki (t)− pk` (t)

)
> 0, and ẋki (t) > 0.

Consequently, ẋk(t) 6= 0, which is a contradiction. �

8.3 Proof of Lemma 3

Note from (4b) that λq(t) = 0 implies that λ̇q(t) ≥ 0.
Hence, if λq(0) ≥ 0, then λq(t) cannot decrease below 0
for any t ≥ 0. �
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8.4 Proof of Lemma 4

From (4a), µ̇l(t) = ϑ+
l (hl (x(t))) − ϑ−l (−hl (x(t))).

Clearly, if hl (x(t)) = 0, then µ̇l(t) = 0. In contrast,
note that if hl (x(t)) > 0, then ϑ+

l (hl (x(t))) > 0 and

ϑ−l (−hl (x(t))) = 0. Similarly, if hl (x(t)) < 0, then

ϑ+
l (hl (x(t))) = 0 and ϑ−l (−hl (x(t))) > 0. Conse-

quently, hl (x(t)) 6= 0 implies that µ̇l(t) 6= 0. �

8.5 Proof of Lemma 5

From (4b), λ̇q(t) = θ+
q (gq (x(t)))−λq(t)θ−q (−gq (x(t))).

Hence,

(a) if gq (x(t)) > 0, then λ̇q(t) = θ+
q (gq (x(t))) > 0;

(b) if gq (x(t)) = 0, then λ̇q(t) = 0; and

(c) if gq (x(t)) < 0, then λ̇q(t) = −λq(t)θ−q (−gq (x(t))),

with θ−q (−gq (x(t))) > 0.

(Sufficiency) From (b) we have that gq (x(t)) = 0 imme-

diately implies that λ̇q(t) = 0. Thus, let gq (x) < 0 and
λq(t)gq (x(t)) = 0. Clearly, it must hold that λq(t) = 0.

Consequently, from (c), λ̇q(t) = 0.

(Necessity) From (a) we have that gq (x(t)) > 0 readily

implies that λ̇q(t) > 0. Therefore, gq (x(t)) ≤ 0 is clearly

a necessary condition for λ̇q(t) = 0. Now, suppose that

λ̇q(t) = 0, but let gq (x(t)) < 0 and λq(t) 6= 0, so that

λq(t)gq (x(t)) 6= 0. From (c) it follows that λ̇q(t) 6= 0,
which leads to a contradiction. �

8.6 Proof of Theorem 1

From Lemma 2, it follows that ẋ(t) = 0 if and only if
(2) holds for all k ∈ P. Moreover, from Lemmas 4 and

5 it follows that µ̇(t) = 0 and λ̇(t) = 0 if and only if
x(t) ∈ X and λq(t)gq (x(t)) = 0, for all q ∈ C≤. Putting
these facts together with the definition of E leads to the
desired result. �

8.7 Proof of Lemma 6

Note that GNE (f ,X ) coincides with the solution set of
the variational inequality VI (∆ ∩ X ,−f), which is de-
noted as SOL (∆ ∩ X ,−f) and is defined as

SOL (∆ ∩ X ,−f)

=
{

x ∈ ∆ ∩ X : (y − x)
>

(−f(x)) ≥ 0,∀y ∈ ∆ ∩ X
}
.

Since −f(·) is continuous, and ∆ ∩ X is nonempty,
convex, and compact (c.f., Remark 1), it follows
from (Facchinei & Pang 2003, Corollary 2.2.5) that
GNE (f ,X ) is nonempty and compact. �

8.8 Proof of Theorem 2

Let γki ∈ R be the Lagrange multiplier associated to the
∆-related constraint xki ≥ 0, for all i ∈ Sk and all k ∈ P;
let νk ∈ R be the Lagrange multiplier associated to the
∆-related constraint

∑
i∈Sk xki = mk, for all k ∈ P; let

µl ∈ R be the Lagrange multiplier associated to the X -
related constraint hl(x) = 0, for all l ∈ C=; and, simi-
larly, let λq ∈ R be the Lagrange multiplier associated to
the X -related constraint gq (x) ≤ 0, for all q ∈ C≤. Also,
let γ ∈ Rn, ν ∈ RN , µ ∈ RC= , and λ ∈ RC≤ be the vec-
tors containing such Lagrange multipliers, respectively.
Moreover, consider the conditions

xki ≥ 0, ∀i ∈ Sk, ∀k ∈ P, (8a)∑
i∈Sk

xki = mk, ∀k ∈ P, (8b)

hl (x) = 0, ∀l ∈ C=, (8c)

gq (x) ≤ 0, ∀q ∈ C≤, (8d)

γki ≥ 0, ∀i ∈ Sk, ∀k ∈ P, (8e)

λq ≥ 0, ∀q ∈ C≤, (8f)

γki x
k
i = 0, ∀i ∈ Sk, ∀k ∈ P, (8g)

λqgq (x) = 0, ∀q ∈ C≤, (8h)

fki (x)− χki (x,µ,λ) = νk − γki , ∀i ∈ Sk, ∀k ∈ P,
(8i)

where

χki (x,µ,λ) =
∑
l∈C=

µl
∂hl (x)

∂xki
+
∑
q∈C≤

λq
∂gq (x)

∂xki
,

for all i ∈ Sk and all k ∈ P.

Now, observe that x∗ ∈ GNE (f ,X ) if and only if
the conditions in (8) hold at (x∗,γ∗,ν∗,µ∗,λ∗), for
some x∗ ∈ Rn, γ∗ ∈ Rn, ν∗ ∈ RN , µ∗ ∈ RC= ,
and λ∗ ∈ RC≤ . To see this, note that from Def-
inition 4, it holds that x∗ ∈ GNE (f ,X ) if and
only if x∗ ∈ arg maxx∈∆∩X x>f (x∗). Hence, let
x∗ ∈ GNE (f ,X ) and observe that from the neces-
sity of the Karush-Kuhn-Tucker (KKT) conditions,
there must exist some γ∗ ∈ Rn, ν∗ ∈ RN , µ∗ ∈ RC= ,
and λ∗ ∈ RC≤ , such that the conditions in (8) hold
at (x∗,γ∗,ν∗,µ∗,λ∗). Conversely, let the conditions

in (8) hold at
(
x̂, γ̂, ν̂, µ̂, λ̂

)
, for some x̂ ∈ Rn,

γ̂ ∈ Rn, ν̂ ∈ RN , µ̂ ∈ RC= , and λ̂ ∈ RC≤ . From
the sufficiency of the KKT conditions, it follows
that x̂ ∈ arg maxx∈∆∩X x>f (x̂), and, therefore, it
holds that x̂ ∈ GNE (f ,X ). Hence, we conclude that
x∗ ∈ GNE (f ,X ) if and only if (x∗,µ∗,λ∗) ∈ K, for
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some µ∗ ∈ RC= and some λ∗ ∈ RC≤ , where

K =


(x,µ,λ) :

x ∈ Rn, µ ∈ RC= , λ ∈ RC≤ , and

the conditions in (8) hold at

(x,γ,ν,µ,λ), for some γ ∈ Rn

and some ν ∈ RN .


.

Based on the discussion above, to prove the Theo-
rem’s result, i.e., that x∗ ∈ GNE (f ,X ) if and only if

(x∗,µ∗,λ∗) ∈ E , for some µ∗ ∈ RC= and λ∗ ∈ RC≤
≥0 , we

should only prove that (x∗,µ∗,λ∗) ∈ E if and only if
(x∗,µ∗,λ∗) ∈ K. We now proceed to prove this claim.

(Sufficiency) Let (x∗,µ∗,λ∗) ∈ E . From (5) it readily
follows that conditions (8a)-(8d), (8f), and (8h) hold.
Furthermore, since x∗ satisfies (2) for all k ∈ P, it follows
that, for all i ∈ Sk and all k ∈ P,

xk∗i > 0 ⇒ fki (x∗)− χki (x∗,µ∗,λ∗) = pk∗max,

with pk∗max = maxj∈Sk

(
fkj (x∗)− χkj (x∗,µ∗,λ∗)

)
,

for all k ∈ P. Hence, conditions (8e), (8g), and
(8i), are satisfied by taking νk∗ = pk∗max and γk∗i =
νk∗ −

(
fki (x∗)− χki (x∗,µ∗,λ∗)

)
, for all i ∈ Sk and all

k ∈ P. Consequently, (x∗,µ∗,λ∗) ∈ K.

(Necessity) Let (x∗,µ∗,λ∗) ∈ K. Conditions (8a)-(8d)
imply that x∗ ∈ ∆ ∩ X ; condition (8f) implies that

λ∗ ∈ RC≤
≥0 ; and condition (8h) implies that λ∗qgq (x∗) =

0, for all q ∈ C≤. Moreover, conditions (8g) and (8i)
imply that fki (x∗) − χki (x∗,µ∗,λ∗) = νk∗, for all i ∈
supp

(
xk∗
)

and all k ∈ P. Similarly, conditions (8e) and

(8i) imply that fkj (x∗)− χkj (x∗,µ∗,λ∗) = νk∗ − γk∗j ≤
νk∗, for all j ∈ Sk and all k ∈ P. Therefore, for all
i ∈ supp (x∗) and all k ∈ P it follows that fki (x∗) −
χki (x∗,µ∗,λ∗) = maxj∈Sk

(
fkj (x∗)− χkj (x∗,µ∗,λ∗)

)
.

Thus, the conditions in (2) holds at (x∗,µ∗,λ∗). Conse-
quently, (x∗,µ∗,λ∗) ∈ E . �

8.9 Proof of Lemma 7

The fact that E is nonempty is an immediate result from
Lemma 6 and Theorem 2. To prove the compactness of
E , on the other hand, we proceed to show that E is closed
and bounded.

First, the set E is closed because it is the preimage of the
closed set {0} under the continuous map V (·, ·, ·) defined
in (10) in Section 8.10.

To show that E is bounded, on the other hand, recall
the discussion in Section 8.8 on the coincidence between

E and K. Also, recall that x∗ ∈ GNE (f ,X ) if and only
if x∗ solves the convex programming problem given by
maxx∈∆∩X x>f (x∗). Such a convex programming prob-
lem can be equivalently written as

max
x∈Rn

x>f (x∗) s.t. Âx = b̂, ĝ (x) � 0, (9)

where Â ∈ R(C=+N)×n is defined as in Standing As-
sumption 3.(b); b̂ = col (b1, b2, . . . , bC=

,m) ∈ R(C=+N);

ĝ(x) = col (g(x),−x) ∈ R(C≤+n); and (�) de-
notes the element-wise inequality. Additionally, let
µ̂∗ = col (µ∗,ν∗) ∈ R(C=+N) be the optimal Lagrange
multipliers associated to the equality constraints in (9),

and let λ̂
∗

= col (λ∗,γ∗) ∈ R(C≤+n)
≥0 be the optimal

Lagrange multipliers associated to the inequality con-
straints in (9). From strong duality, it follows that, for
every x∗ ∈ GNE (f ,X ) and every x̃ ∈ int (∆) ∩ int (X )
[c.f., Standing Assumption 3.(a)],

x∗>f (x∗) ≥ x̃>f (x∗)−
(
λ̂
∗)>

ĝ (x̃)

= x̃>f (x∗) +
(
λ̂
∗)>
|ĝ (x̃)|

≥ x̃>f (x∗) + min {|ĝ (x̃)|}
(
1>λ̂

∗)
.

Here, | · | denotes the absolute value and is applied
element-wise; min{z} returns the minimum element of
the vector z; and 1 is the vector of ones of appropriate
dimension. In particular, observe that the second equal-
ity holds because ĝ (x̃) ≺ 0 (since x̃ ∈ int (∆)∩ int (X )).
Consequently, since min {|ĝ (x̃)|} > 0, it follows that

1>λ̂
∗
≤ x∗>f (x∗)− x̃>f (x∗)

min {|ĝ (x̃)|}
∈ [0,∞),

for every x∗ ∈ GNE (f ,X ) and all x̃ ∈ int (∆) ∩ int (X ).
That is, the set of optimal Lagrange multipliers associ-
ated to the inequality constraints in ∆ ∩ X is bounded.

Now, from the KKT stationarity condition, at any
x∗ ∈ GNE (f ,X ) it must hold that f (x∗) − Â>µ̂∗ −
(Dĝ (x∗))

>
λ̂
∗

= 0, where Dĝ (x∗) ∈ R(C≤+n)×n is the

Jacobian matrix of ĝ(·) at x∗. Given that Â is full row
rank [c.f., Standing Assumption 3.(b)], it follows that

µ̂∗ =
(
ÂÂ>

)−1

Â
(
f (x∗)− (Dĝ (x∗))

>
λ̂
∗)

. That is,

µ̂∗ is the image of a (uniformly continuous) linear map

applied to f (x∗)− (Dĝ (x∗))
>
λ̂
∗
, which implies that µ̂∗

is bounded. To see this, note that λ̂
∗

is bounded from
the previous discussion; f (x∗) is bounded due to the
continuity of f(·) and the compactness of GNE (f ,X )
(c.f., Lemma 6); and Dĝ (x∗) is bounded because of the
continuity of Dĝ (·) [c.f., Standing Assumption 3.(c)]
and the compactness of GNE (f ,X ). Hence, the set of
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optimal Lagrange multipliers associated to the equality
constraints in ∆ ∩ X is bounded as well.

Based on the discussions above and the coincidence be-
tween E and K (c.f., Section 8.8), we conclude that for
every x∗ ∈ GNE (f ,X ), the corresponding vectors µ∗

and λ∗ are bounded. Therefore, the set E is both closed
and bounded, and thus compact. �

8.10 Proof of Theorem 3

From Lemma 7 we conclude that E is nonempty and
compact. Moreover, from Theorem 1 it follows that E
is positively invariant under the considered EDM-PDM
system. Therefore, using an appropriate Lyapunov func-
tion, it is possible to investigate the stability properties
of E (Haddad & Chellaboina 2008, Corollary 4.7).

Throughout, let xki , xki (t), µl , µl(t), λq , λq(t),

pki , pki (t), hl , hl (x(t)), gq , gq (x(t)), x , x(t),

µ , µ(t), and λ , λ(t). Moreover, consider the map

V : Rn≥0 × RC= × RC≤
≥0 → R≥0 given by

V (x,µ,λ) =
∑
k∈P

∑
j∈Sk

∑
i∈Sk

xki P
k
ij (x,µ,λ)

+
∑
l∈C=

Hl (x) +
∑
q∈C≤

Gq (x, λq) ,
(10)

where, for all i, j ∈ Sk, k ∈ P, l ∈ C=, and q ∈ C≤,

P kij (x,µ,λ) =

∫ pkj−p
k
i

0

φkj (σ) dσ,

Hl (x) =

∫ hl

0

ϑ+
l (σ) dσ +

∫ −hl

0

ϑ−l (σ) dσ,

Gq (x, λq) =

∫ gq

0

θ+
q (σ) dσ + λq

∫ −gq
0

θ−q (σ) dσ.

It is straightforward to check that V (·, ·, ·) is a valid
Lyapunov function candidate with respect to E . To
see this, note that V (x,µ,λ) ≥ 0 for all x ∈ ∆,

µ ∈ RC= , and λ ∈ RC≤
≥0 ; and V (x,µ,λ) = 0 if and

only if (x,µ,λ) ∈ E . To see the latter, observe that∑
k∈P

∑
j∈Sk

∑
i∈Sk xki P

k
ij (x,µ,λ) = 0 if and only if

the condition in (2) holds for all k ∈ P (Sandholm
2010, Theorem 7.2.9);

∑
l∈C= Hl (x) = 0 if and only if

hl(x) = 0, for all l ∈ C=; and
∑
q∈C≤ Gq (x,λ) = 0 if

and only if gq (x) ≤ 0 and λqgq (x) = 0, for all q ∈ C≤.
Consequently, to investigate the stability properties of
E , we proceed to analyze the derivatives of V (·, ·, ·). Let-

ting V , V (x,µ,λ), P kij , P kij(x,µ,λ), Hl , Hl(x),

and Gq , Gq(x, λq), it follows that

∂V

∂xzs
=
∑
j∈Sz

P zsj +
∑
k∈P

∑
j∈Sk

∑
i∈Sk

xki
∂P kij
∂xzs

+
∑
l∈C=

∂Hl

∂xzs

+
∑
q∈C≤

∂Gq
∂xzs

,

∂V

∂µv
=
∑
k∈P

∑
j∈Sk

∑
i∈Sk

xki
∂P kij
∂µv

,

∂V

∂λw
=
∑
k∈P

∑
j∈Sk

∑
i∈Sk

xki
∂P kij
∂λw

+

∫ −gw
0

θ−w (σ) dσ,

for all s ∈ Sz, z ∈ P, v ∈ C=, and w ∈ C≤. Here, letting

δkij , p
k
j − pki one gets

∑
k∈P

∑
j,i∈Sk

xki
∂P kij
∂xzs

=
∑
k∈P

∑
j,i∈Sk

xki φ
k
j

(
δkij
)(∂pkj

∂xzs
− ∂pki
∂xzs

)

=
∑
k∈P

∑
j∈Sk

ẋkj
∂pkj
∂xzs

[using (1)].

Similarly,

∑
l∈C=

∂Hl

∂xzs
=
∑
l∈C=

(
ϑ+
l (hl)

∂hl
∂xzs
− ϑ−l (−hl)

∂hl
∂xzs

)
=
∑
l∈C=

µ̇l
∂hl
∂xzs

[using (4a)],

and∑
q∈C≤

∂Gq
∂xzs

=
∑
q∈C≤

(
θ+
q (gq)

∂gq
∂xzs
− λqθ−q (−gq)

∂gq
∂xzs

)
=
∑
q∈C≤

λ̇q
∂gq
∂xzs

[using (4b)].

On the other hand,

∑
k∈P

∑
j,i∈Sk

xki
∂P kij
∂µv

=
∑
k∈P

∑
j,i∈Sk

xki φ
k
j

(
δkij
)( ∂pkj

∂µv
− ∂pki
∂µv

)

=
∑
k∈P

∑
j∈Sk

ẋkj
∂pkj
∂µv

[using (1)]

= −
∑
k∈P

∑
j∈Sk

ẋkj
∂hv
∂xkj

[using (3)],

and, by symmetry,

∑
k∈P

∑
j,i∈Sk

xki
∂P kij
∂λw

= −
∑
k∈P

∑
j∈Sk

ẋkj
∂gw
∂xkj

[using (1),(3)].
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Now, let ΓP , col
(
Γ1
P ,Γ

2
P , . . . ,Γ

N
P

)
∈ Rn≥0, where

ΓzP , col

∑
j∈Sz

P z1j ,
∑
j∈Sz

P z2j , . . . ,
∑
j∈Sz

P znzj

 ∈ Rn
z

≥0,

for all z ∈ P, and let

ΓG , col

(∫ −g1
0

θ−1 (σ)dσ, . . . ,

∫ −gC≤

0

θ−C≤
(σ)dσ

)
,

with ΓG ∈ RC≤
≥0 . Also, let Dp ∈ Rn×n, be the Jaco-

bian matrix of p(t) with respect to x and evaluated
at (x(t),µ(t),λ(t)); and let Dg ∈ RC≤×n be the Jaco-
bian matrix of g(·) = col

(
g1(·), g2(·), . . . , gC≤(·)

)
with

respect to x and evaluated at x(t). Under these obser-
vations, it follows that

∇xV (x,µ,λ) = ΓP + (Dp)
>

ẋ + A>µ̇ + (Dg)
>
λ̇

∇µV (x,µ,λ) = −Aẋ

∇λV (x,µ,λ) = −Dgẋ + ΓG,

where A is defined as in Standing Assumption 3.(b).
Consequently, the gradient of V (·, ·, ·) along the trajec-
tories of the EDM-PDM system is given by

∇V >


ẋ

µ̇

λ̇

 = Γ>P ẋ + ẋ>Dpẋ + Γ>Gλ̇,

where ∇V , col (∇xV,∇µV,∇λV ), and we have used

the facts that, as scalars, µ̇>Aẋ = ẋ>A>µ̇, and that

λ̇
>

Dgẋ = ẋ>Dg>λ̇. Now, let us analyze the terms Γ>P ẋ,

ẋ>Dpẋ, and Γ>Gλ̇ separately.

(Γ>P ẋ) Following a similar analysis as in the proofs of
(Sandholm 2010, Theorem 7.2.9) or (Hofbauer & Sand-
holm 2009, Theorem 7.1), it is straightforward to show

that Γ>P ẋ ≤ 0 for all times, and that Γ>P ẋ = 0 if and
only if (2) holds for all k ∈ P.

(ẋ>Dpẋ) From (3), and the fact that hl(x) = a>l x− bl,
for all l ∈ C=, it follows that Dp = Df −

∑
q∈C≤ λqD

2gq,

where Df ∈ Rn×n is the Jacobian of f with respect to
x and is evaluated at x(t), and D2gq ∈ Rn×n denotes
the Hessian of gq(·) with respect to x and is evaluated

at x(t). Hence, ẋ>Dpẋ = ẋ>Df ẋ−
∑
q∈C≤ λqẋ

>D2gqẋ.

Since f(·) is a continuously differentiable stable game,
we conclude from (Sandholm 2010, Theorem 3.3.1)
that ẋ>Df ẋ ≤ 0 for all times. Similarly, from Stand-
ing Assumption 3.(c) and Lemma 3, we conclude that∑
q∈C≤ λqẋ

>D2gqẋ ≥ 0 for all times. Consequently,

ẋ>Dpẋ ≤ 0 for all times. Also, is clear that ẋ>Dpẋ = 0
whenever ẋ = 0. Thus, from Lemma 2, ẋ>Dpẋ = 0 if
(2) holds for all k ∈ P.

(Γ>Gλ̇) Observe that Γ>Gλ̇ =
∑
q∈C≤ λ̇q

∫ −gq
0

θ−q (σ)dσ.

Clearly, if gq ≥ 0, then
∫ −gq

0
θ−q (σ)dσ = 0. On the other

hand, if gq < 0, then
∫ −gq

0
θ−q (σ)dσ > 0 and λ̇q ≤ 0

[c.f., (4b)]. Therefore, Γ>Gλ̇ ≤ 0 for all times. Moreover,

observe that Γ>Gλ̇ = 0 if and only if it holds that

gq < 0 ⇒ λqgq = 0, ∀q ∈ C≤. (11)

Based on the three separate analyses above, we conclude
that Γ>P ẋ + ẋ>Dpẋ + Γ>Gλ̇ ≤ 0 for all times, and, con-
sequently, the set E is stable in the sense of Lyapunov.

To prove the asymptotic stability of E , on the other hand,
we rely on LaSalle’s Theorem (Haddad & Chellaboina
2008, Theorem 3.3). In particular, based on the three

separate analyses above, note that Γ>P ẋ + ẋ>Dpẋ +

Γ>Gλ̇ = 0 if and only if (x,µ,λ) ∈ R, with

R =

{
(x,µ,λ) :

x ∈ ∆, µ ∈ RC= , λ ∈ RC≤
≥0 , and

(2) and (11) hold, for all k ∈ P

}
.

Clearly, R ⊇ E . In fact, E is the subset of R where
x ∈ X . From LaSalle’s Theorem, it follows that if E is
shown to be the largest invariant set of the EDM-PDM
system within R, then E is asymptotically stable under
the EDM-PDM system. We now proceed to prove such a
claim by contradiction (a similar argument can be found
in the proof of (Martinez-Piazuelo et al. 2022, Theorem
1)).

First, recall that the Lyapunov stability of E means
that the trajectories of the EDM-PDM system can be
bounded in an arbitrary open neighborhood of E within

∆ × RC= × RC≤
≥0 (Haddad & Chellaboina 2008, Defini-

tion 4.10). Second, let I ⊆ R be the largest invariant
set of the EDM-PDM system within R. From Theorem
1, it follows that E ⊆ I. Now, let T = I \ E , suppose
that T 6= ∅, and let the state of the EDM-PDM sys-
tem at a time τ ≥ 0 be an arbitrary point in T , i.e.,
(x(τ),µ(τ),λ(τ)) ∈ T . Since (x(τ),µ(τ),λ(τ)) ∈ T
and T ⊂ I ⊆ R, it follows that x(t) = x(τ) for all
t ≥ τ (c.f., Lemma 2). Moreover, since x(τ) is fixed and
x(τ) /∈ X (as (x(τ),µ(τ),λ(τ)) /∈ E), it holds that ei-
ther ‖µ(t)‖ → ∞ as t → ∞, or ‖λ(t)‖ → ∞ as t → ∞
[c.f., (4)]. Here, ‖ · ‖ is any p-norm. Consequently, the
assumption that T 6= ∅ leads to a contradiction with
the Lyapunov stability of E . Hence, T = ∅, I = E , and
E is the largest invariant set of the EDM-PDM system
within R. This completes the proof. �
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