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Abstract—Real-time control of urban drainage networks is a
complex task where transport flows are non-pressurized and
therefore impose flow-dependent time delays in the system.
Unfortunately, the installation of flow sensors is economically out
of reach at most utilities, although knowing volumes and flows
are essential to optimize system operation. In this article, we
formulate joint parameter and state estimation based on level
sensors deployed inside manholes and basins in the network.
We describe the flow dynamics on the main pipelines by the
level variations inside manholes, characterized by a system
of coupled partial differential equations. These dynamics are
approximated with kinematic waves where the network model
is established with the water levels being the system states.
Moving horizon estimation is developed where the states and
parameters are obtained via the levels and estimated flow data,
utilizing the topological layout of the network. The obtained
model complexity is kept within practically achievable limits,
suitable for nonlinear predictive control. The effectiveness of the
control and estimation method is demonstrated on a high-fidelity
model of a drainage network, acting as virtual reality. We use
real rain and wastewater flow data and test the controller against
the uncertainty in the disturbance forecasts.

Index Terms—Receding horizon control, transport delay, par-
tial differential equation, urban drainage network.

I. INTRODUCTION

OPEN - channel hydraulic systems are large-scale net-
works where water is transported with a free surface

in pipes or conduits [1]. In this work, we focus on Urban
Drainage Networks (UDNs), more specifically, on systems
where rain and wastewater are combined, and pumped in
open channels. Pumped UDNs are typical in areas where
the gravitation of water is limited due to the flatness of
the landscape [2]. Moreover, combined sewers carry both
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domestic and stormwater towards treatment plants, where the
sewage is treated before being released to the environment [3].
Combined sewers are present in many large cities and they are
often overloaded due to the under-dimensioned capacity of the
infrastructure induced by fast urbanization and the growing
number of end-users [4]. Besides, UDNs are increasingly be-
ing pushed to their limits due to changing weather conditions,
resulting in more frequent Combined Sewer Overflows (CSOs)
[4]. The changing conditions challenge flow prediction and
raise the question of how to handle the increased load on these
systems.

In the last few decades, several Real-Time Control (RTC)
techniques have been developed for UDN applications. These
techniques typically exploit the available sensor measure-
ments, rain forecasts, and the available physical description
of the network. Many of the applied methods for evaluating
the network capacities and solving optimization problems
are typically predictive model-based control techniques [5]–
[7]. However, transport flows in open-channel hydraulics are
governed by a set of Partial Differential Equations (PDEs), too
complex to identify with data and often infeasible to adapt to
RTC applications in large-scale problems. Several methods in
the literature typically propose the use of reduced PDE-based
models in Model Predictive Control (MPC). These methods
rely on the physical properties available (e.g., pipe dimensions,
friction, and slope parameters) for model calibration with HiFi
(High Fidelity) model simulators [8], [9]. Simulating gravity-
driven flow with full PDE-based models in large-scale UDNs
requires either a HiFi simulation environment or the placement
of several flow and level sensors along the pipelines, meaning
prohibitively expensive installation and maintenance costs.

PDEs linearized around an operating point have been used
in UDN applications, where transfer functions [10], [11] and
state-space models [12] have been developed. Due to the com-
plexity of PDE-based control, conceptual models are also used
in the state-of-art, for instance, [13] used algebraic models
with a single delay parameter, while [7], [14], [15], [6], [16]
used a dynamic control model where the available capacity
of pipes and tanks have been collectively modelled as virtual
buffers. However, linearized and conceptual internal models
do not allow flow-dependent time delays, conceptualize the
physically measurable levels and flows, furthermore restrict
the flow deviation from steady-state solutions. Data-driven
modeling has been reported in [17] and in [18], where grey-
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box and black-box identification have been used, respectively.
In this article, we propose a PDE-based modeling frame-

work, where the system of PDEs is approximated to obtain
a simple representation of the network, preserving the main
system dynamics for control. We report on the modularity of
the framework by arguing that using the network topology and
water level sensors, a model suitable for control is obtained.
Opposed to the current state-of-art, the proposed modeling
framework captures the inflows to the UDN through water
level measurements. In this way, we disregard the use of HiFi
simulation models for model calibration.

Moreover, a new Nonlinear Model Predictive Control
(NMPC) approach is proposed, based on a data-driven model,
reduced from PDEs. In our approach, a Moving Horizon
Estimation (MHE) method is used for constrained parameter
and state estimation governing the PDEs, which we spatially
discretize to Ordinary Differential Equations (ODEs). Time pe-
riodicity conditions are imposed on disturbance inflows, gener-
ated by household activity, to incorporate additional structure
in the model dynamics used for predictions in the NMPC. The
proposed control architecture is shown in Fig. 2. The Moving
Horizon Parameter Estimation (MHPE) along with the Moving
Horizon State Estimation (MHSE) is carried out using easy-
accessible level sensors distributed and placed inside manholes
along the main sewer lines. Besides, we utilize flow estimation
techniques which allow us to use pumped inlet and gravitated
discharge flows, further detailed in [19]. By using MHPE with
NMPC, the system can re-identify the slowly changing pipe
dynamics due to accumulated sludge in the bottom of sewer
pipes. Besides, the NMPC can adapt to varying flow conditions
imposed by the changing rain infiltration due to seasonality.
The MHPE and MHSE problems, similarly to [16], [20], are
both formulated as nonlinear least-squares problems, subject
to state and parameter constraints, further detailed in Section
IV. As shown in Fig. 2, the NMPC is utilized as a global
controller, solving a multi-criteria optimization problem and
thereby providing references to the pumps at the local pumping
stations. The proposed control and estimation methods are
demonstrated on a HiFi network, simulated in the Mike
Urban (MU)1 simulation software where we use the catchment
dynamics and the MU runoff engine for generating rain-
runoff appearing as the load on the network. Finding the
rain-runoff based on rain intensity forecasts by radars and
numerical weather predictions is an active field of research,
which has been extensively studied in [22], [23] and its
effect of uncertainty on UDNs in [24], [25]. Moreover, several
works in the literature report on how to handle rain forecast
uncertainty, e.g., in UDNs in [13] and in river applications
in [26]. In this work, historical events of rain and wastewater
are utilized in terms of real measurements, representing the
imperfect weather forecasts.

The proposed data-driven method using the reduced network
model and MHE has two clear benefits:

• First, it is a data-driven method that does not require

1MIKE Urban is a standard hydraulic simulation and planning tool, used
as a planning tool by many operators at water utilities. The MU simulation
environment solves the full dynamic PDEs for open-channel flow [21].

heavy computation and difficult calibration procedures
opposed to HiFi models, used at many utilities.

• Second, it is only required to collect data from periods un-
der normal operational behavior, opposed to conventional
data-driven methods where historical data is required for
all the abnormal system behaviors.

The rest of the article is organized as follows. In Section II,
a preliminary overview of the operation of UDNs is presented.
Section III first presents the PDE-based model for open-
channel flow, followed by the reduced, data-driven system of
the nonlinear ODE model obtained via spatial discretization.
Then, the model of storage elements and the time-periodicity
assumption on the disturbance signals are presented with the
description of the system as a directed tree graph. In Section
IV, the MHPE and MHSE techniques are detailed, whereupon
Section V introduces the NMPC design and establishes the
main control objectives. In Section VI, the results using data
from a real-world network are presented. This is followed by
Section VII and VIII, where a discussion, conclusions and
future research directions are provided.

Nomenclature: Let R,Rn,Rm×n, denote the field of real
numbers, the set of real column vectors of length n and the set
of m by n real matrices, respectively. Throughout the paper,
all quantities mentioned are real. We use boldface letters for
sets, such as s = {s1, ..., sn}, as well as for vectors x =
[x1, ..., xn]

T ∈ Rn. The superscript ⊺ denotes transposition,
and the operators <,≤,=, >,≥ denote element-wise relations
of vectors. Moreover, for a vector x ∈ Rn, ||x|| =

√
x⊺x

denotes the Euclidean norm.

II. DRAINAGE SYSTEM OVERVIEW

UDNs contain several elements, including gravitation pipes,
manholes, pits, and in some cases, retention tanks. The most
widely used actuators in pressurized sewer networks are
pumps, typically installed inside wastewater pits where the
sewage and rain are collected [1]. These units often consist of
one or several pumps in parallel, controlling the transport of
the sewage from pit to pit. First, the water is pumped through
a rising main, whereupon it gravitates through sewer pipes
towards a downstream station, shown in Fig. 1.

Station 2

Station 1 Station 4 WWTP

Station 3

(1)
(2) (3)

Fig. 1. Tree topology of a pumped sewer network, where (1) illustrates rising
mains, (2) gravity sewer pipes and (3) pumping stations [3].

UDNs typically have a tree structure, where the Waste Water
Treatment Plant (WWTP) represents the root of the network.

III. SYSTEM MODEL

The modelling based on physics is introduced to show how
the reduced model is obtained considering simple mass con-
servation rules and assumptions on the geometry of hydraulic
structures.
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[ĥ(tk), ...,ĥ(tk+Hp)] u∗(tk)

θ,λ
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u |u

D

hs(tk)[u(tk−He),...,u(tk)]

[y(tk−He),...,y(tk)]

ĥg(t0) V̂s(tk)

dr(tk)

dg(tk)

dr(tk)

dh(tk)

dh(tk)dg(tk)

Rain
intensity
forecast

Global control

Fig. 2. The proposed closed-loop control architecture, where rain intensities are known by means of weather forecasts and the transformation between the
intensities and the runoff flow appearing in the sewers is characterized by the catchment dynamics. Red signals denoted with d represent rain, household and
groundwater inflow disturbances, h and V are the system states representing water level and water volume, respectively. Moreover, u denotes the input of
the aggregated flows which are delivered by locally-controlled pumps. The pipe network (plant) is represented by the WW (Waste Water) network block.

We aim to obtain a model structure with a low number of
lumped parameters, where the system states are expressed
by water levels. Besides, we show that the proposed internal
model structure allows us to make assumptions on the initial
parameters and their upper and lower bounds.

A. Physical transport model

Flow propagation in UDNs can be accurately computed by
the full Saint-Venant (SV) equations, which are non-linear
hyperbolic PDEs describing the mass and momentum of fluid:

∂Ax,t

∂t
+

∂qx,t
∂x

= d̃x,t, (1a)

∂qx,t
∂t

+
∂

∂x

( q2x,t
Ax,t

)
+ gAx,t

( Diffusion wave︷ ︸︸ ︷
∂hx,t

∂x
+ Sf − Sb︸ ︷︷ ︸

Kinematic wave

)
= 0,

(1b)
where qx,t is the flow in the pipe and d̃x,t = dx,t/dx
represents lateral inflows per unit length, where dx,t is the
lateral inflow hereinafter referred to as disturbance. Ax,t is the
wetted pipe area, hx,t represents the water level, furthermore
qx,t, dx,t, Ax,t and hx,t are functions from (0, L)×R+ → R+,
where L is the total length of the gravity pipe. The gravi-
tational acceleration is denoted with g, moreover the slope
term Sb ∈ R+ and friction term Sf ∈ R+ are assumed to be
independent of x and t, i.e. all pipe segments along the gravity
pipe are modelled with assuming identical physical attributes.

The dynamics of each transport pipe in (1a) and (1b) are
coupled through boundary conditions, hence the problem can
become computationally demanding to solve in the case of
complex networks [9]. Assumptions on the flow character-
istics can lead to loss of dynamics, however, can lead to
significant simplifications to the model structure. In this work,
we utilize the Kinematic Wave approximation of the SV
equations, thereby removing the left-hand-side terms of (1b).
In this way, we omit the phenomena of wave attenuation,

flow acceleration, and the phenomena of backwater effect2.
These simplifications inherently mean that the considered flow
characteristics are uniform and hence quasi-steady flow is
assumed at all x ∈ (0, L). The momentum equation in (1b)
only considers two terms, i.e.,

Sb = Sf (qx,t, hx,t), (2)

where the friction term Sf is obtained from the Manning
equation, which is an empirical formula for energy balance
between gravity and friction, expressed by the level h and
flow q variables [1] as

Sb =
n2q2x,t

A2
x,tR

4/3
x,t

, (3)

where R = A
P is the hydraulic radius, P ∈ R+ is the wetted

perimeter and n ∈ R+ is the Manning coefficient. Note that
by knowing a map f : Ax,t 7→ hx,t, an expression between
qx,t flow and hx,t level is constructed.

Assumption 1: We assume a linear map f between the
wetted-area Ax,t and water level hx,t. It is assumed that semi-
filled circular sewers are reasonably well-approximated by
rectangular pipe shapes, i.e.,

Rx,t =
Ax,t

Px,t
≈ whx,t

2hx,t + w
, (4)

where hx,t, x ∈ (0, L) is the water level and the cross section
is parametrized by the w channel width shown in Fig. 3.

hx,t

w
Fig. 3. Semi-filled circular pipe approximated with rectangular geometry.

2Backwater occurs in sewers when the receiving water body becomes
overloaded and therefore water volumes are accumulating at downstream of
the connected hydraulic structure [27].
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The independent variables remaining in the simplified SV
PDEs in (1a) and (1b) are reduced to qx,t flow and hx,t level
distributions on the domain (0, L)× R+, given by:

w
∂hx,t

∂t
+

∂qx,t
∂x

=
dx,t
δx

, (5a)

qx,t =

√
Sb

n

(whx,t)
5/3

(2hx,t + w)2/3
, (5b)

which is an approximation of the full dynamic SV-PDEs. Note
that Assumption 1 on the pipe geometry means a linear scaling
from levels hx,t to flows qx,t, which leads to inaccuracy for
circular pipe profiles. However, the assumption on the linear
geometry profile keeps the model complexity low.

B. Reduced, data-driven transport model

In order to formulate the transport dynamics in a form more
amenable to system identification, the spatial discretization of
the approximated SV-PDEs in (5a) and (5b) is considered.
The gravity pipes are partitioned into Nx non-overlapping δx
segments of length, while the signals hx,t, qx,t and dx,t are
approximated as piece-wise constant functions of the spatial
coordinate x, as shown in Fig. 4.

q0,t qL,t

x=Lx=0

dx+δx,tdx,t dx+2δx,t dx+Nxδx,tdx+iδx,t

Fig. 4. Gravity pipe divided into Nx, equal-sized, non-overlapping segments.

In Fig. 4, q0,t and qL,t denote the flows corresponding to
the upstream and downstream boundaries, respectively. Fur-
thermore, dx+iδx,t represents the lateral inflows (disturbances)
entering the ith pipe section, where i ∈ {1, 2, ..., Nx}.

Remark 1: It is not necessary to partition gravity pipes
into equal-sized δx sections. The length of the spatial step δx
can be defined by the placement of manholes along the sewer
pipes, among which some may be equipped with level sensors.

Remark 2: Close to the downstream end of gravity pipes
(x = L), the discharge conditions of qL,t are influenced by
the receiving hydraulic structure and the corresponding water
levels [28], [29]. This relation imposes dynamics governing
the water level hL,t in the last section. In this study, the effect
of these types of dynamics are excluded, hence the positioning
of water level sensors close to x = L are chosen such that

L− x ≥ smin, (6)

where smin ∈ R+ denotes the minimal distance from the end of
the channel where level sensors at position x should be placed.
The criteria of choosing smin for the free fall condition of
fluids, based on the diameter of open-channel pipes is detailed
in [28, pp.698-699].

The spatial discretization of (5a) and (5b) is done by the
backward Euler method. The left boundary (upstream) is

defined at x = 0 and the right boundary (downstream) at
x = L. Then, the SV-PDEs are reduced to the following
system of finite dimensional ODEs:

dhx,t

dt
= θ1(qx−δx,t − qx,t + dx,t), ∀ x ∈ (0, L), (7a)

qx,t = θ2
h
5/3
x,t

(hx,t + θ3)2/3
, ∀ x ∈ (0, L), (7b)

where the physical constants and the spatial time step are
lumped into the parameters

θ1 ≜
1

wδx
, θ2 ≜

√
Sbw

5
3

2
2
3n

, θ3 ≜
w

2
, (8)

where θ1, θ2, θ3 ∈ R+. Note that θ3 is directly related to the
width parameter w and θ1 would change along the pipe in
case of non-equal spatial steps δx. For the sake of simplicity,
the model is presented with fixed δx spatial steps.

Remark 3: Due to the spatial discretization, numerical
distortion is introduced in the traveling wave [9], which
compensates for the flow attenuation phenomena in gravity
pipes. This artificial attenuation vanishes as δx → 0.

In order to obtain the state equation with water levels as
states, the section flow distribution qx,t in (7a) is substituted
with water levels from (7b), which yields

dhx,t

dt
= θ1θ2

(
h
5/3
x−δx,t

(hx−δx,t +θ3)2/3
−

h
5/3
x,t

(hx,t +θ3)2/3

)
+ θ1dx,t,

(9)
where, opposed to previous work in [17], the flow balance in
the SV equations is reformulated with physically measurable
water levels. For ease of notation, let us define a non-linear
map g : R+ → R+ as

g : (hx,t, θ3) 7→
h
5/3
x,t

(hx,t + θ3)2/3
, ∀ x ∈ (0, L). (10)

Then, the transport flow model is completed by introducing
the boundary conditions into the Nx coupled ODEs, i.e.,

dh0,t

dt
= θ1(q0,t + d0,t)− θ1θ2g(hδx,t, θ3),

...
dhx,t

dt
= θ1θ2

(
g(hx−δx,t, θ3)− g(hx,t, θ3)

)
+ θ1dx,t, (11)

...
dhL,t

dt
= θ1θ2g(hL−δx,t, θ3) + θ1(dL,t − qL,t),

where dx,t is the unknown disturbances in form of lateral
inflows. Besides, the upstream boundary flow q0,t is subject
to control and hereinafter denoted as u. The downstream
boundary flow qL,t is the discharged output, which we consider
as the controlled model output, hereinafter denoted as

y = θ2g(hL,t, θ3), (12)

where hL,t represents the water level at the downstream
boundary x = L. Note that (12) is the parametric form of
(3), relating the level to flow.
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C. Disturbance model

The proposed model described in (11) aggregates the un-
known, scaled disturbances in dx,t. The disturbances are
typically composed of several different types of inflows:

dx,t ≜ drx,t + dhx,t + dgx,t, ∀ x ∈ (0, L), (13)

where drx,t denotes rain runoff, dhx,t is the household flow due
to human activity and dgx,t stands for groundwater.

Assumption 2: The disturbance flow generated by house-
holds has an inherent periodicity, such that dhx,t = dhx,t+T ,
where T typically corresponds to one day. Moreover, dis-
turbances generated by groundwater infiltration fulfill the
constraint

∑Nx

i=1 d
g
i,t = Nxd

g
j,t, ∀ j ∈ {1, 2, ..., Nx}, i.e.,

uniformly distributed along the whole length of gravity sewer
pipes.

Remark 4: Seasonality with different time periodicity have
been considered (e.g. weeks, months) in [30], where method-
ologies such as Fourier models have been used to decompose
seasonal components in a broad range of applications.

Besides, the rain runoff drx,t is generated by the dynamics of
catchments where the intensity of rain precipitation is typically
provided by weather forecasts. Several works have been done
on relating rain radar forecasts to actual runoff flow in UDNs,
e.g., [24], [25], [22], [23].

For modelling the periodic household flows dhx,t and the
constant groundwater dgx,t flows, Fourier series are utilized.
For simplicity, let us assume that drx,t = 0, ∀ x ∈ (0, L), i.e.,
assuming a dry-weather period. Then, the scaled disturbances
in (11) are defined as:

d̃x,t ≜ d̃gx,t + d̃hx,t (14)

≜ λ0 +

k∑
j=1

(
λ1j cos(jωt) + λ2j sin(jωt)

)
,

where the set of disturbance parameters is λ ≜
{λ0, λ11, λ21, ..., λ1k, λ2k} ∈ R2k+1. The angular frequency ω
corresponds to a period of one day and k ≥ 2 is the number of
frequency terms in the truncated Fourier series. The transport
model in (11) and (12), in combination with the disturbance
model in (14) are used to find parameters θ and λ.

D. Storage model

Stored volume within the network is represented through
wastewater pits, among which some are specifically con-
structed to retent extreme peak flows caused by sudden rainfall
runoffs. An example for such storage structure is shown in Fig.
5. These pits are distinguished from single wastewater pits due
to their large capacity and therefore referred to as retention
pits in the rest of this paper. For each storage element at
pumping station i ∈ {1, ..., Ns}, the infinitesimal level change
is computed as the sum of all in- and outflows as

dfV (hs,i)

dt
= ds,i +

Ny∑
j=1

yj − ui, (15)

where ds denotes disturbance inflows to storage tanks, hs is
the water level in storage units and u is the sum of controlled

pump flows moving the water towards the next pumping
station in line. Note that u is equivalent to the inlet flow
q0,t of a gravity pipe located between interconnected storage
units, described in (11). Besides, Ny is the number of gravity-
driven transport links discharging to the ith storage unit and
yj is the arriving discharge from the jth upstream pumping
station, defined in (12). Ns denotes the overall number of
pumping stations in the UDN. Moreover, let us consider a
map fV : R+ → R+ from water level h to water volume V ,
where fV is strictly monotonic increasing.

Assumption 3: For storage elements, fV (h) in (15) is
approximated with a piece-wise linear, strictly monotonic
increasing function, parameterized by the level-flow constant
of storage tanks.

Retention pits classify for the assumption on piece-wise
linear behavior, while the relation between level and volume
simplifies to linear in case of single pits. The piece-wise linear
relation with the hydraulic structure is shown in Fig. 5.

h

V

Retention tank
WW pit

f−1
V (V )

K1

K2

Fig. 5. Level-Volume conversion for waste water pit with retention tank.

Tank constants K1 and K2 correspond to the slope of the
h− V conversion curve, where K2 is only relevant if pits are
equipped with retention tanks. Note that in dry weather the
storage capacity of pits is sufficient, hence wastewater flow is
typically bypassing the retention tank, acting as a single pit.

E. Network description

The links between system components define the topology
of the network. The topology considered is a directed tree-
graph with nodes representing storage (except the root) and
edges transporting flow in between the nodes towards the root.
The root of the graph is an outlet point, where the flow is
discharged to the receiving environment, e.g., to the WWTP.
The tree structure topology is shown in Fig. 6.

WWTP

s1

s6

s5

s4

s3

s2

g11

g12

g13

g31

g23

g22

g21

g44
g43

g42
g41

g34
g33

g32

g65

g64

g63

g62

g61

g55
g54

g53
g52

g51

u ≜ {u1, ..., u6} d ≜ {ds,dg}y ≜ {y1, ..., y6}

Fig. 6. Graph representation where the filled nodes are pumping stations,
empty nodes are manholes, whereas edges represent transport pipe segments.

Let us denote the set of nodes corresponding to tanks and pits
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at the pumping stations with S ≜
{
si = (hs,i, ds,i, ui) | i ∈

{1, ..., Ns}
}

, where hs,i is the water level, ds,i is the unknown
flow disturbance defined in (13) and ui is the controlled flow
of the ith pumping station. The remaining nodes represent
manholes along the gravity sewer transport links. These set
of nodes are denoted with G ≜

{
gij = (hg,ij , dg,ij) | i ∈

{1, ..., Ns}, j ∈ {1, ..., Ng}
}

, where hg,ij are the water levels
in the jth segment of the gravity pipe rooting from the ith

upstream station. Furthermore, dg,ij are lateral inflows along
the ith gravity pipe, entering through the jth manhole. These
disturbance components are given in (13). The numbering
of manholes along the gravity pipes denotes the upstream
pumping station (first digit) from which they are numbered
in an increasing order towards the downstream station (second
digit). The connections between the storage and junction nodes
are defined by the piping layout.

Note that the set of G junction points also represents
storage by means of the volume of pipe sections, as the
spatially discretized and reduced SV-based model is equivalent
to volumes connected in series, where the set of water levels
{hg,i1, ..., hg,iNg}, i ∈ {1, ..., Ns} relate to water volumes
stored in each segment. However, we distinguish between S
and G for the reason that nodes in S are subject to control u.

F. Discrete network model

In this study, discrete-time network dynamics are utilized for
solving the MHE and NMPC problems. The transport and stor-
age dynamics, described in Section III-B and Section III-D,
are given for each individual network element, respectively, as

ĥg(tk+1) =Fθ,λ

(
u(tk), ĥg(tk),dg(tk)

)
, (16a)

ĥs(tk+1) =H
(
u(tk), ĥs(tk), ds(tk), ŷ(tk)

)
, (16b)

ŷ(tk) =Gθ

(
ĥg(tk)

)
, (16c)

where the numerical integration from tk to tk+1 is done
by the fixed step, 4th order Runge-Kutta method. More-
over, ĥg(tk) ∈ RNx is the vector of water levels along
a transport link between two pumping stations. The system
dynamics corresponding to transport flows in (11) are defined
by Fθ,λ : R+ × RNx × RNx → RNx . The discrete storage
dynamics are given by H : R+ × R+ × R+ × RNy → R+,
where Ny is the number of transport links discharging to
the specific storage node. The outputs are represented by
Gθ : RNx → R, corresponding to the discharged gravity flow
previously described in (12).

IV. MOVING HORIZON ESTIMATION

In order to incorporate system knowledge in the state
and parameter estimation in form of constraints, a MHE
approach is utilized in this paper. Past data samples of the
inputs, i.e., pump flows {u(tk−He

), u(tk−He+1), ..., u(tk)}
and the outputs, i.e., discharged gravity pipe flows
{y(tk−He), y(tk−He+1), ..., y(tk)} are used up to the current
time sample tk, where He is the estimation horizon. More-
over, for each transport link i ∈ {1, ..., Ns}, let us define
hg,i ∈ RNx as the vector of water levels in all j ∈ {1, ..., Ng}

pipe segments. The MHE problem regarding states (MHSE)
and parameters (MHPE) is solved for each transport link
i individually. Therefore, we ease the notation and discard
the i and j indices and we present the parameter and state
estimation for a single transport link.

Additional outputs may be available by means of water
level sensor measurements, placed in manholes along the main
transporting sewers. Hence, we define C ∈ RN0×Nx matrix,
associated with a linear mapping which picks all the measured
states. N0 is the number of water level sensors along the
transport link. Then, the output vector is given by

zg = Chg + ν, (17)

where ν ∈ NID(0, σ2) is white Gaussian noise accounting
for measurement corruption, and zg ∈ RN0 . Past data samples
of these outputs {zg(tk−He

), zg(tk−He+1), ...,zg(tk)} are uti-
lized together with the input u and output y flow data.

The main purpose of the MHPE is to identify the unknown
dynamics of each transport link without using information
about the physical properties of sewer pipes, such as pipe
diameters, length, slope or roughness. Due to the linearized
level-flow scaling introduced by Assumption 1 in Section
III-A, fixed model parameters might result in inaccurate flow
predictions, based on whether the pipes are close to being filled
or semi-filled. These characteristics can change over time due
to seasonality, hence we utilize the MHPE method, attempting
to adapt the model parameters to varying flow conditions.
Moreover, the dynamics might change over time due to sludge
accumulating within certain sections of the pipes, for which
the proposed MHPE method is also able to account. As a
natural extension, the states are also estimated in a moving
horizon fashion (MHSE).

In the following, we distinguish between the horizons of
parameter and state estimations. For parameter estimation,
we denote the length of the horizon with Hpe and for state
estimation with Hse. Due to the slowly changing dynamics
of sewer pipes, we argue that the MHPE is sufficient to carry
out above the frequency of the NMPC, having at least one
day up to a week long Hpe horizon. However, the MHSE
problem is executed with a minimum of one day long horizon
and with the same frequency as the NMPC. The one day
long MHSE horizon is due to the inherent periodicity of the
waste water disturbance inflows dh. Moreover, by calling the
MHPE less frequent than the NMPC, we lower the typically
high computation demand of MHE algorithms, where state and
parameter estimations are carried out simultaneously [31].

A. Parameter estimation

The MHPE problem of transport flows is formulated as a
constrained, least-squares nonlinear minimization problem.

Remark 5: The control inputs u, depicted in Fig. 6, are
estimated considering the polynomial expression of fixed-
speed wastewater pumps in the form

û = sµ0 + sµ1∆p+ sµ2Pp, (18)

where s is the number of running pumps at the pumping
station, ∆p is the differential pressure and Pp is the power
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consumption of the pumps [19]. Besides, the outputs y cor-
responding to discharged flows in Fig. 6 are estimated using
mass conservation, detailed in [19]. In this work, we use the
outcome of the referenced flow estimation algorithm to provide
outputs for the MHE problem.

Let θ ≜ {θ1, θ2, θ3} ∈ R+ denote the set of bounded system
parameters and λ ∈ R denote the parameters corresponding to
the Fourier disturbance model. Then, for each transport link,
the initial states ĥg(t0), the parameters θ and λ are found by
solving the following finite-dimensional constrained Nonlinear
Programming (NLP) problem at time tk: θ∗

λ∗

ĥ∗
g(t0)

 = argmin
θ,λ,ĥg(t0)

k∑
i=k−Hpe

(
y(ti)− ŷ(ti)

)2
(19a)

+W1||zg(ti)− ẑg(ti)||2,
subject to sewer dynamics:

ĥg(ti+1) =Fθ,λ

(
u(ti), ĥg(ti),dg(ti)

)
, (19b)

ŷ(ti) =Gθ

(
ĥg(ti)

)
, (19c)

ẑg(ti) =Cĥg(ti), (19d)

and inequality constraints:

0 ≤ ĥg(ti) ≤ hg, (19e)

0 < θ ≤ θ, (19f)
0 ≤ ŷ(ti) ≤ y, (19g)

where ĥg(ti) ∈ RNx is the vector of states corresponding
to a transport link. Note that y represents the discharged flow,
while hg represents the vector of water levels in the manholes.
Therefore, we use W1 as a weighing constant in (19a), scaling
the water levels to the magnitudes of the discharged flows. The
constraints in (19e), (19f) and (19g) impose bounds on state
variables, parameters and the output, respectively. Note that the
states ĥg and the output variable y correspond to physically
measurable water levels and the discharged flow in sewer
pipes, respectively. The water level measurements addressed
in (17) are denoted by zg . The state and output bounds are
chosen consistent with physically meaningful values, such as
water levels and flows are never negative inside the pipes.

Moreover, the upper bound on the states hg is the maximum
allowed water level in manholes defined by the physical height
from the bottom to the surface. From (8), we know that
the pipe parameters θ are positive. Besides, using (8), we
approximate a physically meaningful maximum value for the
pipe diameters, spatial step, time steps, and friction values.
In (19g), the flow is assumed to be non-negative inside the
pipe and the maximum is defined as the physically possible
full-pipe flow. The bound constrained nonlinear minimization
problem in (19) is then solved via a gradient descent algorithm.

Note that the number of sections Nx, illustrated in Fig. 4,
is treated as an auxiliary variable in the NLP, meaning that
the MHPE problem can be carried out multiple times with
different grid sizes to find the optimal number of sections
regarding some performance index, e.g., Root Mean Squared
Error (RMSE). This procedure is not detailed here, as the
reader may consult a previous study focusing on how to choose
grid size for a flow-based SV-PDE model in [17].

B. State estimation

Full state measurement in the proposed sewer system model
requires sensor installation inside all available manholes within
the network. This is neither economically feasible, nor re-
quired by the control point of view. However, it is assumed
that there is a subset of states zg which are measured.
Similarly to the MHPE problem in (19a), the full system
states, i.e., hg water levels are being reconstructed out of a
few output measurements by means of the MHSE. However
opposed to the MHPE problem in (19a), the state estimation
is solved at each control time step tk, thus providing ini-
tial state estimates for the NMPC. The MHSE reconstructs
hg(tk−Hse

), ...,hg(tk) states, based on the measured inputs
u(tk−Hse

), ...,u(tk), measured outputs y(tk−Hse
), ..., y(tk)

and zg(tk−Hse
), ...,zg(tk) over the horizon Hse, while the

dynamics are provided as constraints. The MHSE is defined
by the following optimization problem:ĥ∗

g(tk−Hse)
...

ĥ∗
g(tk)

 = argmin
ĥg(tk−Hse),...,ĥg(tk)

k∑
i=k−Hse

(
y(ti)− ŷ(ti)

)2
+W2||zg(ti)− ẑg(ti)||2,

(20)

subject to the dynamics in (19b) to (19d), the state constraint
in (19e) and the output constraint in (19g). W2 is a weighing
matrix for scaling levels to flows, similarly as in (19a). Note
that from the solution of the MHSE problem in (20), the
estimated state vector at the current time step ĥ∗

g(tk) is used.
The same gradient descent algorithm [32] is used to solve the
problem in (20), as for the MHPE.

V. CONTROL DESIGN

The vector of control variables is defined by u ∈ RNs ,
where all individual pump flows are aggregated at the nodes
s ∈ S, representing the Ns pumping stations in the network.
The states correspond to levels along transport links and levels
in storage units, e.g., pits. The state vector is defined by:

h ≜ (h⊺
s ,h

⊺
g,1,h

⊺
g,2, ...,h

⊺
g,Ns

)⊺, (21)

where hs ∈ RNs represents the vector of levels in storage ele-
ments and for each i ∈ {1, ..., Ns} transport link hg,i ∈ RNx,i

consists of Nx,i entries depending on how many sections each
transport link is discretized into. The outputs, i.e., discharged
flows at the end of each transport link, are given by:

y ≜ (y1, y2, ..., yNs
)⊺, (22)

where the last element yNs
is the discharged flow leading to

the root of the network, which we hereinafter denote as yw.
Introduced previously, the closed-loop control scheme together
with the MHE problem is depicted in Fig. 2. Note that the
rain run-off dynamics along with the weather forecasts provide
flow inputs to the proposed closed-loop control scheme.
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A. NMPC problem

To account for both the dry- and wet-weather loads in a
computationally efficient way, the NMPC problem is formu-
lated over two subsequent prediction horizons. To this end, let
Hp1

denote the predictions over the near future (nowcasts) and
Hp2

the predictions further in the future (forecasts), respec-
tively. This formulation of the NMPC problem is motivated
by the inherent periodicity of the household disturbances dh,
which typically corresponds to one day. However, the network
is exposed to large disturbance loads in terms of the dr rain
run-off, where the so-called nowcasts are reliable only within
a short horizon. According to [25], rainfall radars can provide
sufficient accuracy of spatial and temporal resolution for urban
catchments only up to a 2 (h) horizon. Therefore, computing
the decision variables for T = 24 (h) is unnecessary, and re-
sults in high computational costs. Instead, let Hp = Hp1

+Hp2

be the entire length of the horizon, Ts the time step and let
us define h ≜ [h⊺

s ,h
⊺
g ]

⊺ as the entire state vector. Then, the
NMPC problem for the entire network is given as

min
∆u(0),...,∆u(Hp1 )

∆u(Hp1
+1),...,∆u(Hp−1)

Hp−1∑
k=0

L
(
∆u(tk),h(tk), yw(tk)

)
(23a)

+ S
(
h(tHp)

)
subject to transport link dynamics

hg(tk+1) =Fθ,λ

(
u(tk),hg(tk),dg(tk)

)
, (23b)

u(tk+1) =u(tk) + ∆u(tk), (23c)

yw(tk) =Gθ

(
hg(tk)

)
, (23d)

storage dynamics

hs(tk+1) =H
(
u(tk),hs(tk),ds(tk),y(tk)

)
, (23e)

state, input and output constraints

V + Vof (tk) ≤ fV

(
hs(tk)

)
≤ V + Vof (tk), (23f)

0 ≤ hg(tk) ≤ hg, (23g)
u ≤ u(tk) ≤ u, (23h)
0 ≤ yw(tk) ≤ yw, (23i)

terminal constraint

V ≤ fV

(
hs(tHp

)
)

≤ V , (23j)

0 ≤ hg(tHp
) ≤ hg, (23k)

where ∆u(tk) ≜ u(tk+1) − u(tk) is the input change.
The integral action accounts for smooth and slow sys-
tem response, avoiding sudden jumps in the control action.
The proposed optimization problem in (23a) is solved for
[∆u⊺(0), ...,∆u⊺(Hp1)]

⊺ ∈ RHp1 , whereas the problem of
finding the decision variables over Hp2 is reduced to finding
Hp2/τ number of optimization variables, where τ defines how
many Ts control steps each decision variable is kept constant.
This is due to the fact that the control over Hp2

does not
require the same precision as for the nowcasts over Hp1 .
The stage and terminal costs formulated in (23a) are sums of
square-type functions, and the multiple operational objectives
in the stage cost L are detailed in Section V-B.

The dynamics Fθ,λ, H and Gθ are defined in (16a), (16b),
(16c) for the entire network and the output equation in (23d)
is formulated on the discharged flow yw arriving to the root
of the network. The nonlinear level to volume conversion is
kept outside of the optimization, where fV is a piece-wise
linear map from (15). Furthermore, the control is subject to
state constraints on pipe states in (23g) and storage states in
(23f), where Vof ∈ RNs is the vector of slack variables,
lifting the upper and lower state bounds. This variable is
considered as a virtual volume triggered at times when the
physical limits of storage elements are extended. In case of an
overflow, the slack variable lifts both the lower V and upper
V state bounds, thereby keeping track of the excess storage
[14]. The upper bound of states corresponds to the physically
maximum volume capacity in the storage nodes. The lower
limit is defined by the user with the criteria that a minimum
volume of water needs to be kept in the storage tanks at all
times to fully cover the wastewater pumps, hence avoiding the
dry-run of pumps.

Remark 6: In case of overflows, the excess water volume
leaves the network immediately. This is assured by constrain-
ing the slack variables

0 ≤ Vof (tk), (24)

meaning that spilled sewage escapes all s ∈ S storage nodes.
Furthermore, (23h) imposes physical bounds on the minimum
and maximum flow capacity of pumps. Equation (23i) formu-
lates a constraint regarding the inflow capacity of the WWTP,
where yw is the maximum allowed inflow defined by the
size of the WWTP. For closed-loop stability considerations
of the NMPC, the terminal constrains in (23j) and (23k)
are introduced along with the terminal cost S in (23a) to
enforce stability [31]. The formulation in (23a) is solved via a
gradient descent algorithm, where the dynamics are discretized
according to Section (III-F).

B. Objectives

The control problem addressed in (23) has multiple objec-
tives with different priorities. For an extensive analysis on
choosing objectives in UDN control, consult [7], [15]. To
prioritize objectives, the stage cost is formulated as a linearly
weighted sum and the terminal cost is given as

L
(
∆u(tk),h(tk), yw(tk)

)
≜

Γ∑
j=1

λjµjFj(tk), (25a)

S
(
h(tHp

)
)
≜ h⊺(tHp

)Ph(tHp
), (25b)

where λj denotes the scaling weights among the different
objectives and Γ is the total number of the control objectives.
The scaling constants µj normalize each objective term to
dimensionless values, such that water levels and flows become
comparable. Furthermore, the terminal cost S is defined for
all states, where the symmetric positive definite matrix P
is the solution to the associated Ricatti equation. Note that
P is designed based on the weights λj on the state and
input terms in the stage cost function L. Moreover, the
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Jacobian linearization of the network model is considered at an
operating point, where state values are at their 25 % utilization
of their upper limit. Furthermore, disturbance and input flows
are considered at the daily mean of household wastewater
production without rain.

The most common control criteria in sewer network control
is related to overflow minimization

F1(tk) ≜ V ⊺
of (tk)Ω1Vof (tk), (26)

where Vof ∈ RNs is the vector of slack variables, represent-
ing overflow volumes. The overflows Vof between stations
are prioritized according to the diagonal Ω1 matrix, where
diag (Ω1) ∈ [0, 1]. Note that the weight corresponding to
the overflow objective λ1 is significantly higher than any
other weights, in order to make the use of the overflow slack
variables undesirable if possible.

The penalty on water level in storage elements is given by

F2(tk) ≜ h⊺
s (tk)Ω2hs(tk), (27)

where hs ∈ RNs is the vector of water levels in stor-
age nodes and Ω2 is the diagonal weighting matrix, where
diag (Ω2) ∈ [0, 1]. The level in storage nodes is minimized to
avoid long retention times and thus odor problems occurring in
the waste water tanks. Moreover, the weight matrix Ω2 allows
to adjust the filling sensitivity of storage elements, meaning
that sensitive tanks are filled slower and emptied faster than
less sensitive storage tanks.

The inputs are minimized such that

F3(tk) ≜ ∆u⊺(tk)Ω3∆u(tk), (28)

where ∆u ∈ RNs is the vector of input change regarding
the aggregated flows delivered by sewer pumps placed at each
network node s ∈ S. Moreover, Ω3 is the weighting matrix
between the network nodes, where diag (Ω3) ∈ [0, 1].

The system states in any g ∈ G nodes, i.e., gravity pipe
sections are water levels, representing storage along the edges
of the underlying network graph. Hence, we penalize manholes
prone to suffer overflows:

F4(tk) ≜ h⊺
g(tk)Ω4hg(tk), (29)

where hg is the vector consisting of selected network nodes
which can overflow under high loads. Similarly to all objec-
tives, diag (Ω4) ∈ [0, 1] allows to adjust priority of overflows
and filling sensitivity of manholes.

In this work, we consider the objective of controlling the
inflow to the WWTP, which is formulated as follows

F5(tk) ≜
(
yw(tk)−

1

Hp

Hp−1∑
k=0

yw(tk)
)2

, (30)

where the inflow variation to the WWTP is minimized. This is
achieved, by calculating a reference flow as an average inflow
over the same time period as the time periodicity of the dh

houshold disturbances, which typically corresponds to one day.
This objective allows to correct the irregular inflow pattern
to the root of the network, which influences negatively the
operation of the WWTP. An extensive study on the regulation
of inlet flow to the WWTP is detailed in [33].

VI. NUMERICAL RESULTS

We now present the numerical results. The results are
related to the closed-loop control scheme performance when
both the MHE and NMPC are considered. As presented in
Section III-F, the network model uses the fixed step, 4th order
Runge-Kutta method for the finite-difference approximation
of the derivative terms. The optimization problem related to
the MHSE and MHPE has been solved via a Gauss-Newton
gradient-based method. This solver is chosen due to the reli-
able estimate of the Hessian for least-squares type problems,
such as the MHE formulation in this paper [32]. Furthermore,
the optimization problem related to the NMPC has been
solved via direct multiple shooting in the symbolic framework
CasADI [34]. A primer-dual interior point solver IPOPT [35]
has been chosen to solve the nonlinear optimization problem
in (23), due to its ability to leverage sparse linear algebra
computations. Since the sampling interval is significantly short
compared to the dynamics and the sampling time of the
NMPC, the optimization problem has been solved by warm-
starting at each control time step. Error tolerance of 10−5 has
been chosen in both the MHE and NMPC problems. Moreover,
all the numerical experiments have been carried out on a 2.6
(GHz), Intel Core i7 machine with 16-GB RAM.

Following the model methodology discussed in Section III,
the control-oriented model is identified based on measure-
ments extracted from a physically-based HiFi network, shown
in Fig. 7 (left). The topological representation as a directed
graph along with the location of sensors are depicted in Fig.
7 (right). To test the NMPC with the MHE strategy, real
rain intensity and wastewater flow are utilized starting from 1
September 2019 to 30 September 20193. These data are used
as the load to the HiFi case study network.

A. Baseline controller

In this work, we follow the guidelines proposed in [4] to
benchmark the MPC performance, where the current state-of-
art uses CSO and flooded volume as an evaluation measure.
The proposed NMPC/MHE strategy is tested against an on/off
rule-based controller, most commonly used as baseline control
in both practice and literature [4], [2].

The switching rule together with the aggregated flow pro-
vided by the pumps at each pumping station under the rule-
based control is given by

u(tk) =


u, if hs(tk) ≥ hs, ∀tk,
u, if hs(tk) ≤ hs, ∀tk,
u(tk−1), otherwise, ∀tk,

(31)

where hs(tk) is the measured water level in the storage
element. Upper and lower bounds of the inlet flow u, u are
equivalent to the bounds in (23h), corresponding to the max-
imum and minimum flow capacity of the pumps. Threshold
values hs, hs are equivalent to (23f).

3Rain intensity data have been extracted from the weather archive of the
Danish Meteorological Institute (DMI), while the domestic wastewater flow
measurement data have been obtained and scaled down from the municipality
of Fredericia, Denmark.
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Fig. 7. High-fidelity network model in the MIKE Urban simulation software (left), and the graph representation (right), where the number of empty nodes
represents the number of discretized sections. The filled, yellow nodes represent level sensors placed in manholes.

B. Case study
The topological properties of the HiFi network shown in

Fig. 7 are summarized in Table I.

TABLE I
MIKE URBAN HIFI SIMULATION PROPERTIES.

Attribute Number Variable Unit

Single pits 3 hs (m)
Retention pits 1 hs (m)
Pumping stations 4 u (m3/h) or (m3/s)
Level sensors in manholes 7 hg (m)
Catchment runoff 45 dr (m3/h) or (m3/s)
Waste water inflow 10 dh (m3/h) or (m3/s)
Treatment plants 1 yw (m3/h) or (m3/s)

We consider a combined sewer network, where both rain
runoff and wastewater enters the sewer via the catchments
(yellow areas) and the manholes (junction points), respectively.
The network consists of 170 manholes, 170 gravity pipes,
moreover three single pits (s1, s3 and s4) and a retention
pit (s2). Using the proposed modelling methodology, the tree
graph representation of the UDN and the control variables in
the reduced graph representation are given by:

u ≜(u1, u2, u3, u4)
⊺, (32a)

h ≜(hs1 , hs2 , hs3 , hs4 ,h
⊺
g1 ,h

⊺
g2 ,h

⊺
g3 ,h

⊺
g4)

⊺, (32b)

y ≜(y1, y2, y3, yw)
⊺, (32c)

d ≜(ds1 , ds2 , ds3 , ds4 , dg13 , dg22 , dg33 , dg43)
⊺, (32d)

where the state vector h consists of the gravity pipe subvector
states hg1 ∈ R5, hg2 ∈ R3, hg3 ∈ R4, hg4 ∈ R5. Moreover,
the number of pumping stations is Ns = 4 and the rain
and domestic wastewater disturbances are concentrated on
certain network nodes. The control time step of the NMPC is
TNMPC = 10 (min), while the rule-based controllers operate
with a TOn/Off = 1 (min) sampling period. The prediction
horizon for nowcasts is Hp1

= 2 (hours) and for the forecasts
Hp2

= 22 (hours), summing up to a total of one-day horizon.

The MHPE is carried out with a horizon Hpe = 2 (day) and
utilized with a Tpe = 6 (hours) period time. At every 6 (hours),
the MHPE uses data from the past two days and updates
the θ system and λ disturbance parameters accordingly. A
minimum of two days has been chosen to detect the one-
day periodicity of the household wastewater with the Fourier
disturbance model. The MHSE is carried out with the same
horizon as the MHPE, i.e., Hse = 2 (day) and utilized with
the same frequency as the NMPC, i.e., Tse = 10 (min).

C. Simulation environment

To test the NMPC/MHE controller, the MIKE Urban [21]
simulation software has been used to simulate the HiFi net-
work model depicted in Fig. 7. MIKE Urban allows for the
hydraulic and hydrodynamic simulation of flows and water
levels by numerically solving the full SV equations in (1). The
model of the network in MIKE Urban is defined by the true
physical parameters of the hydraulic components. In Fig. 7, the
catchments (yellow areas) are connected to manholes, hence
water volumes enter the pipe network through the network
nodes. The simulation is done in two steps: First, the network
loads are computed with the catchment dynamics. Then, the
rain runoff together with the household waste and groundwater
appears as a load (marked with red arrows in Fig. 7).

In this work, the NMPC/MHE strategy is used as an upper
level controller, where the MIKE Urban model is simulated
as a virtual reality. To this end, we utilize the MIKE 1D
Application Programming Interface (API) [36], [37] which
allows us for setting flow references to the pumps and reading
flow and level values of hydraulic structures during simulation.
These flow references are calculated at every TNMPC time
and then used as set-points for local PID controllers based
on (virtual) flow sensor measurements placed right after the
downstream end of the pumps. The HiFi model runs with a
sampling time of Ton/off, however the set-points for the PIDs
are kept constant during the time interval TNMPC.
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D. Identification results

To estimate the parameters and the initial states in transport
pipes, the measurements z along with the historical data on
the estimated inlet and discharged flows u and y are utilized.
To show the capabilities of the MHE approach, the initial
conditions estimated for the problem in (23) are compared
to the measurements in the HiFi simulation, shown in Fig 8.
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Fig. 8. One-step prediction of y1, y2 and y3 gravity flows.

The results show 15 days, where the estimated flow ŷ(t0) is the
result of the MHPE and MHSE blocks depicted in Fig. 2. Note
that instead of showing the estimated states ĥg(t0), we rather

show the discharged flow ŷ(t0), obtained by (19c). From the
application point of view, this is reasonable, since the water
level in the last section of a transport pipe does not indicate
how the volume is affected in the receiving hydraulic structure
(storage tanks), opposed to the volumetric flow rate. Besides,
for each transport link g1, g2 and g3, we show the average
pipe fullness along x ∈ L length of the pipes, indicating the
capacity of each pipeline.

In the HiFi simulation environment, all sewer pipes are cir-
cular, hence the flow-level translation imposed by Assumption
1 (Section III) is only accurate for small variations of water
level. In order to show the variations of water levels inside
gravity pipes, we illustrate two different operating regions
(shaded areas in Fig. 8.). The middle range of the pipe is
defined between 25 − 75 %, moreover the lower and upper
regions between 0 − 25 % and 75 − 100 %, respectively.
Small level variations within these regions are expected to
yield accurate flow estimates based on Assumption 1.

As shown in Fig. 8, the one-step predictions of the MHE
strategy produces accurate estimates of the discharged flows
ŷ(t0) in comparison with the flow measurements (y(t0)) from
the HiFi model. This is achieved without using any flow
sensor in the network, however, assuming the linear flow-
level relation in the internal model. The prediction results in
Fig. 8 show inaccurate flow estimates at certain time steps
imposed by the simplified pipe geometries. This is because
the internal model with the simplified geometry attempts to
produce flows close to the ones obtained by the linear flow-
level mapping, rather than the actual flow. This is most visible
on y3 at periods encircled with dashed black lines. During
both of these periods, the pipes are filled up from 25 % to
50 %, where the previous level with the time window of the
MHPE only provides information of low-filled, slow-varying
level conditions. Hence, the internal model underestimates the
actual flow by calculating lower volume than there is inside
the middle operating range of circular pipes.

E. Control results

The control results aim to show the benefits of distributing
level sensors along the network to obtain the data-driven
network model from the full SV-PDEs. The proposed method-
ology is compared with a traditional, two-point controller
detailed in Section VI-A, most commonly used by water utility
operators. The NMPC acts as a global controller and computes
reference points to local controllers (as depicted in Fig. 2).
To evaluate the closed-loop performance of the NMPC/MHE
strategy, we selected two days with heavy overflows due to
the insufficient capacity in the network. The numerical results
are shown in Fig. 9 for each i ∈ {1, ..., Ns} pumping station,
showing the time evaluation of the disturbances, overflows,
tank levels and the pumped inlet flows. In the case study, all
Ω weight values are set equal, hence none of the stations are
prioritized over the other. This means that overflow and the
filling sensitivities are not prioritized. As the overflows are not
avoidable over the selected two days period, the overall goal
is to reduce the amount of flooded volume.
The disturbance signals used in the HiFi simulator are historic
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Fig. 9. NMPC with MHPE and MHSE results compared with rule-based control. (a), (b), (i), (j) show disturbance inflows ds,i, (c), (d), (k), (l) show overflows
qofs,i, (e), (f), (m), (n) show states (water levels), while (f), (h), (o), (p) show inputs (pump flows) for each i ∈ {1, ..., Ns} station, respectively.

rain and wastewater flows. To evaluate the NMPC/MHE per-
formance under uncertainty, we generated imperfect forecasts
for the internal model of the NMPC. To this end, n = 10
different disturbance scenarios have been created by adding
normally distributed random data on top of the historic flow

signals. As shown in Fig. 9(a), (b), (i), and (j), a set of
ensemble of forecasts is produced, indicating a range of
possible disturbances. The characterization of the uncertainty
for each disturbance is given in the Appendix.

To show the deviation between the prediction by the con-
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troller and the state measurement retrieved from the HiFi
simulator under uncertainty, we indicated the one-step pre-
dictions in Fig. 9(e), (f), (m), and (n) with the dashed red
line. Note that the upper constraint is violated under over-
flow events, due to the slack approximating the volume of
overflows. Furthermore, the lower bounds are violated in case
the forecasts indicate higher volumes than expected, ending
up in the dry-run of the pumps. The NMPC/MHE strategy
overflows the upstream tanks (s1, s3 and s4) at times where
the rule-based method avoids overflows. This is depicted in
Fig. 9(c), (k) and (l), where all storage nodes are prepared
by being emptied before the load increases on the network
and therefore the controllers distribute the flooded volumes
among the corresponding stations, as shown in Fig. 9(e), (m)
and (n). Opposed to the rule-based strategy, the overflows
are intentional and coordinated, thereby avoiding the overload
on the retention tank s2 during the heavy load period. As
the system states (i.e., water levels) show, the overflows are
shifted in time as the storage nodes attempt to hold back water
until their capacity allows. Note that the precise flow-level
translation and the precise discharged flow predictions (y1, y3
and y4) guarantee the proper management of the pits (s1, s3,
s3) and the retention pit (s2), mitigating the overflow volumes
optimally. The comparison of overflow reduction between the
baseline and NMPC controllers is shown in Fig. 10.
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Fig. 10. Overflow comparison throughout the entire network.

Applying the proposed NMPC/MHE strategy results in 28
% cumulative overflow volume decrease over the considered
period.

To comprehensively illustrate the practicability of imple-
menting the NMPC/MHE framework, we report on the com-
putational complexity and the dimensions of the optimization
problem. To this end, we reduced the network graph shown
in Fig. 7, by excluding one and two pumping stations, re-
spectively. The results, along with the size of the optimization
problem, are shown in Table II.
The optimization problem is carried out on the case study
network scaling from two pumping stations to the full extent of
the network. As shown, the size of the optimization problem is
increasing with including more pumping stations and transport
links, however, the computation remains low, as all constraints
can be cast as linear equalities and inequalities. Moreover, the
average and maximum CPU times for the full scale of the net-

TABLE II
COMPUTATION COMPLEXITY WITH DIFFERENT NUMBER OF STATIONS.

Num. of
stations

Avg. CPU
time (s)

Max CPU
time (s)

Decision
var. Constr. Param.

4 (s1,2,3,4) 2.14 8.37 5361 8385 1216
3 (s1,2,3) 1.8 4.36 3912 6072 912
2 (s1,2) 1.15 1.86 2608 4192 610

work are only 2.14s and 8.37s. This is acceptable in practice,
considering that the worst-case calculations (occurring under
overflow events) utilize less than 2 % of the sampling interval
TNMPC = 10 (min).

The numerical results carried out on the HiFi network show
the feasibility of the proposed data-driven design and provide
a basis for onward development. A key outcome of the system
identification and control results is that the reduced physically-
based SV-PDE flow model can be obtained based on water
level measurements, moreover, the discharge predictions are
accurately computed via the moving horizon parameter and
state estimation.

VII. DISCUSSION

Our framework aims to allow operators at wastewater
utilities to build internal models of the main transport lines
and storage nodes in UDNs based on easy-accessible level
measurements. Identifying the internal model parameters au-
tomatically from standard measurements is therefore one of
our contributions. The proposed NMPC/MHE strategy has
comparable performance as standard predictive control strate-
gies reported in the literature, benchmarked with rule-based
controllers. For instance, references [20], [16] report on a
hybrid strategy where the internal MPC models exploit all
available knowledge from the HiFi network of the UDN. As
opposed to [20], we report on the modularity of our approach,
focusing on an internal model obtained by water level data.

Practical implementation of using the method includes the
fact that water level sensors need to be deployed in the
network to identify the transport dynamics between stations
and the periodic household disturbances. Furthermore, our
identification approach exploits knowledge about the high-
level layout of the network, which is typically available at
water utilities. To carry out the experimental implementation
of the work, a reliable mapping between rain intensity and
the actual flow appearing in the system is needed. Besides,
an implementation of a communication strategy is required,
where the calculated flow references are translated to reference
signals at the local pumping units.

VIII. CONCLUSIONS AND FUTURE WORK

In this article, a new methodology for data-driven predictive
control in urban drainage networks has been presented and
tested. The proposed data-driven modeling approach is based
on the physical characteristics of open-channel unpressurized
flow, governed by the reduced Saint-Venant partial differential
equations. A modified version of this model has been used
for predicting the internal water levels in the sewer network,
moreover to predict the discharged flows to the storage units.
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To update the model from data, level sensors have been
distributed in manholes to enhance the internal prediction
performance by taking into account periodic and non-periodic
lateral inflows along the pipelines. Moving horizon parameter
estimation has been proposed to overcome the inaccuracy
issues, introduced by the linearization of the pipe geometries
and the approximation of the reduced Saint-Venant partial
differential equations. To overcome the problem of limited
sensor measurements in the network, moving horizon state
estimation has been proposed. The nominal nonlinear multi-
objective optimization problem has been solved in a receding
horizon fashion, along with the proposed state and parameter
estimations. The performance of the proposed methodology
has been successfully tested on a high-fidelity sewer network
simulator with real rain and domestic wastewater inflow mea-
surement data.

In future work, the methodology will be tested on urban
drainage networks with different sizes and topologies. More-
over, it will be interesting to investigate the proposed method
in different applications, e.g., stormwater collection networks.
Also, an investigation into how rain and domestic wastewater
uncertainties can be integrated with the current modeling and
control methodology is a matter of future work.

APPENDIX

In this appendix we provide the numerical values of the
control parameters, the constraint bounds and the main phys-
ical attributes of the HiFi simulation network.

TABLE III
NETWORK ATTRIBUTES FOR PIPES.

Attributes Pipe g1 Pipe g2 Pipe g3 Pipe g4 Unit

Geometry circular circular circular circular (-)
Diameter (d) 0.4 0.6 0.45 0.35 (m)
Slope (Sb) 0.03 0.05 0.02 0.02 (-)
Roughness (n) 0.013 0.013 0.013 0.013 (-)
Length (L) 0.9 0.45 2 2.4 (km)

Note that the values for the upper height constraints h are
equivalent to the diameter of the pipes.

TABLE IV
NETWORK ATTRIBUTES FOR PITS.

Attributes Pit s1 Pit s2 Pit s3 Pit s4 Unit

Constant (K1) 21.5 30 30 43 (m2)
Constant (K2) - 130 - - (m2)
Volume (V ) 43 95 60 86 (m3)
Pump flow (u) 162 198 162 90 (m3/h)

TABLE V
SIMULATION PARAMETERS.

TNMPC Ton/off Hp1 Hp2 Hpe Hse Tse

10 (m) 1 (m) 2 (h) 22 (h) 48 (h) 48 (h) 10 (m)

The disturbance model uses k = 2 frequency terms and ω = 1
(day) frequency for all pipes. Moreover, the disturbance signal
scenarios are characterized by normally distributed, zero mean
random uncertainty, where σ2

s1 = 30.6, σ2
s2 = 5.4, σ2

s3 = 27
and σ2

s4 = 10.8 (m3/h). The lateral inflows along the gravity
pipelines are all characterized by σ2

g = 15 (m3/h).
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