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Abstract

This brief proposes a novel decision-making model for generalized Nash equilibrium seeking in the context of full-potential
population games under capacity and migration constraints. The capacity constraints restrict the mass of players that are
allowed to simultaneously play each strategy of the game, while the migration constraints introduce a networked interaction
structure among the players and rule the strategic switches that players can make. In this brief, we consider both decoupled
capacity constraints regarding individual strategies, as well as coupled capacity constraints regarding disjoint groups of
strategies. As main technical contributions, we prove that the proposed decision-making protocol guarantees the forward time
invariance of the feasible set, and we provide sufficient conditions on the connectivity level of the migration graph to guarantee
the asymptotic stability of the set of generalized Nash equilibria of the underlying game when the game is a full-potential
population game with concave potential function. Furthermore, we also provide an alternative discrete-time analysis of the
proposed evolutionary game dynamics, which allows us to formulate a population-game-inspired distributed optimization
algorithm that guarantees the hard satisfaction of the constraints over all iterations. Finally, the theoretical results are validated
numerically on a constrained networked congestion game.
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1 Introduction

Consider a large population of decision-making agents,
represented by a continuum of mass m ∈ R>0, that
are engaged in a game with a set of strategies S =
{1, 2, . . . , n}, where n ∈ Z≥2. At any time, the mass
of agents choosing strategy i ∈ S is given by xi ∈
R≥0, and the strategic distribution of the population is
described by the vector x = [x1, x2, . . . , xn]> ∈ Rn≥0.
Hence, the set of possible strategic distributions of the
population is ∆ =

{
x ∈ Rn≥0 : 1>x = m

}
, where 1 is
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the vector of ones with appropriate dimension. More-
over, each strategy i ∈ S has an associated payoff func-
tion fi : Rn≥0 → R, and thus the so-called payoff vec-

tor f(x) = [f1(x), f2(x), . . . , fn(x)]
> ∈ Rn provides the

payoff for all strategies at x ∈ ∆. In summary, the play-
ers of the game are the population agents (modeled as a
continuum of mass m), the set of available strategies is
S, and the payoffs perceived by the players are given by
f(·). Throughout, we refer to f(·) as the population game
to cope with the notation in the literature on population
games (Sandholm 2010). Furthermore, we focus on the
family of so-called full-potential population games.

Definition 1 (Sandholm 2010, Section 3.1.2) The
game f : Rn≥0 → Rn is a full-potential game if there

exists a continuously differentiable (potential) function
ϕ : Rn≥0 → R such that ∇ϕ(x) = f(x) for all x ∈ Rn≥0,

i.e., ∂ϕ(·)/∂xi = fi(·), for all i ∈ S.

Under the considered framework, the population agents
are regarded as non-cooperative players that seek to
play the strategy leading to the highest payoff. To se-
lect which strategy to play, each player is equipped with
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a stochastic alarm clock and a revision protocol. The
clock of each player provides strategic revision oppor-
tunities according to a rate R exponential distribution.
The revision protocol, on the other hand, is a map of the
form ρij : Rn×Rn → R≥0 that provides the conditional
switch rate from strategy i ∈ S to strategy j ∈ S, for all
i, j ∈ S (for simplicity we let ρij , ρij (x, f(x))). From
the microscopic perspective, it is thus assumed that if
a player playing i ∈ S receives a revision opportunity,
then such a player switches to strategy j ∈ S \ {i} with
probability ρij/R, and remains at strategy i ∈ S with
probability 1−

∑
j∈S\{i} ρij/R. As in (Sandholm 2010,

Section 4.1), it is assumed that R is large enough so that
ρij/R is a valid probability for all i, j ∈ S and all x ∈ ∆.
Consequently, given that the number of players is large,
and following the ideas in (Sandholm 2010, Section 4.2),
the macroscopic dynamics that describe the evolution of
the (mean) strategic distribution of the population are
given by

ẋi =
∑
j∈S

xjρji −
∑
j∈S

xiρij , ∀i ∈ S. (1)

Namely, xjρji is the mass of players switching from j
to i, and xiρij is the mass of players switching from i
to j. Therefore, given a game f(·) and a revision pro-
tocol ρij(·, ·), for all i, j ∈ S, the temporal evolution of
the strategic distribution x can be analyzed by means
of (1). For instance, by analyzing the dynamics in (1)
for a given game and revision protocol, one might deter-
mine whether the population reaches a Nash equilibrium
(NE) of the game. That is, a self-enforceable strategic
distribution where no player can increase her payoff by
unilaterally deviating from her selected strategy.

Contributions of this brief: Based on the aforementioned
model, in this brief we formulate a novel revision pro-
tocol that allows the players to asymptotically converge
to a generalized Nash equilibrium (GNE) of the popula-
tion game. Namely, a GNE is a self-enforceable strate-
gic distribution of the population where: i) no player
can increase her payoff by unilaterally deviating from
her selected strategy; and ii) some coupled constraints
over the players’ decisions are satisfied. More precisely,
in this brief we consider two types of constraints: capac-
ity constraints and migration constraints. The capacity
constraints restrict the mass of players that are allowed
to simultaneously play each strategy of the game. Here,
we consider both decoupled capacity constraints regard-
ing individual strategies, as well as coupled capacity con-
straints regarding disjoint groups of strategies. Clearly,
both classes of capacity constraints couple the decision-
making process of the population players. On the other
hand, the migration constraints are graphical interaction
constraints that rule the strategic switches that players
can make. Namely, the migration constraints determine
whether a player playing strategy i can switch to strat-
egy j, for all i, j ∈ S. Note that the migration constraints

do not couple the players decisions, but impose a net-
work structure in the strategic interaction of the popula-
tion. In summary, our main technical contributions are
fourfold. First, we provide sufficient conditions on the
migration graph to guarantee that the set of equilibria
of the dynamics in (1) (under the proposed revision pro-
tocol) coincides with the set of generalized Nash equi-
libria of capacity-constrained population game. Second,
we prove that the subset of ∆ that satisfies the consid-
ered capacity constraints is positively invariant under
the dynamics in (1) when the proposed revision protocol
is considered. That is, if the initial strategic distribution
of the population satisfies the capacity constraints, then
the (mean) strategic distribution of the population sat-
isfies the capacity constraints for all future times. Third,
we provide sufficient conditions to guarantee the asymp-
totic stability of the set of equilibria of the dynamics in
(1) under the proposed revision protocol and when the
population game is a full-potential game (c.f., Definition
1). Finally, we analyze a discretized version of the dy-
namics in (1) given by

xi[k + 1] = xi[k] + εx̂i[k], ∀i ∈ S, (2)

where x̂i[k] =
∑
j∈S xj [k]ρji[k] −

∑
j∈S xi[k]ρij [k];

ρij [k] , ρij (x[k], f (x[k])); and ε ∈ R>0 is the (fixed)
discretization time. By analyzing the dynamics in (2),
we provide theoretical upper bounds on the discretiza-
tion time ε that ensure the preservation of the invari-
ance and convergence properties of the dynamics in
(1) in their discretized counterpart given by (2). Con-
sequently, such a discrete-time analysis of (1) allows
us to formulate a population-game-inspired distributed
optimization algorithm (with fixed step size ε) that
guarantees the hard satisfaction of the constraints over
all iterations. Notice that the discrete-time analysis of
the dynamics in (1) has also been studied in our prelim-
inary work Martinez-Piazuelo, Diaz-Garcia, Quijano &
Giraldo (2022), but only for the capacity-unconstrained
case. Hence, in this brief we generalize such previous
results to the context of GNE seeking. Moreover, in
contrast with Martinez-Piazuelo, Diaz-Garcia, Quijano
& Giraldo (2022), we provide the self-contained analy-
ses for both the continuous-time and the discrete-time
perspectives.

Related work: Recently, the problem of distributed
NE/GNE seeking in classical non-cooperative multi-
player games has received significant attention. Such a
problem refers to the task of designing decision-making
algorithms that allow non-cooperative players to reach
an NE/GNE of the game while interacting over a (non-
complete) network. Regarding distributed NE seeking
problems, a common approach relies on gradient play
and consensus-based algorithms. Namely, gradient play
is employed to update the players’ decisions in the di-
rection that minimizes their given cost functions, while
consensus-based algorithms are applied to estimate the
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joint action profile of the players in partial-decision in-
formation scenarios ruled by the interaction network.
Such an approach has been recently considered both
from continuous-time (Ye & Hu 2021, Gadjov & Pavel
2019, De Persis & Grammatico 2019) and discrete-
time perspectives (Tatarenko et al. 2021, Bianchi &
Grammatico 2021). In the context of distributed GNE
seeking, on the other hand, several approaches rely on
primal-dual methods where dual variables are included
to handle the coupled constraints over the players’ de-
cisions. In this context, consensus-based algorithms are
also employed either to estimate the joint action profile
and/or to enforce the players’ agreement on the opti-
mal dual variables. Recent approaches have considered
such a framework both in full-decision information sce-
narios, where players directly observe the interfering
action profile (Yi & Pavel 2019a,b, Chen et al. 2020), as
well as in partial-decision information scenarios, where
players indeed estimate the interfering actions through
consensus-based methods (Pavel 2020, Yi & Pavel 2020,
Belgioioso et al. 2021). Still in the context of distributed
GNE seeking, some alternative approaches have consid-
ered penalty-based methods where the cost functions of
the players are extended with penalty terms to handle
the coupled constraints. As shown in Facchinei & Kan-
zow (2010), penalty-based approaches allow to recast
the GNE problem as an NE seeking task that does not
involve coupled dual variables. Some recent approaches
in this direction are the ones in Sun & Hu (2021a,b) and
Romano & Pavel (2020, 2021). As highlighted in Ro-
mano & Pavel (2021), a significant advantage of penalty-
based methods over primal-dual approaches is that the
former can be designed to enforce the constraints’ satis-
faction over the whole transient of the decision-making
process and not only at the equilibrium of the game.

The problem of distributed NE/GNE seeking has also
received some attention from the perspective of evo-
lutionary game theory. For instance, the authors in
Barreiro-Gomez et al. (2017) and Como et al. (2021)
have introduced non-complete networked interaction
structures within the aforementioned population games
framework, and have provided sufficient conditions on
the game and interaction network to guarantee the con-
vergence to an NE for various classes of revision proto-
cols. Such non-complete interaction schemes have been
shown to be relevant for distributed optimization and
control applications including distributed extremum
seeking (Poveda & Quijano 2015) and distributed pre-
dictive control in resource allocation systems (Barreiro-
Gomez et al. 2019), among others (Quijano et al. 2017).
In the aforementioned approaches, the control objec-
tive is related to reaching an NE of the underlying
game. Regarding GNE seeking problems in evolution-
ary games, on the other hand, different approaches
have been recently proposed. Namely, Barreiro-Gomez
et al. (2016) consider the migration-constrained pop-
ulation games of Barreiro-Gomez et al. (2017) in the
context of density-dependent population games (i.e.,

population games where the total mass of players is
not constant), and propose a primal-dual approach to
include affine constraints over the strategic distribution
of the population. The proposed approach is illustrated
on distributed GNE seeking problems in water distri-
bution systems. On a similar vein, Martinez-Piazuelo,
Quijano & Ocampo-Martinez (2022) propose a primal-
dual-based approach for GNE seeking in population
games under affine equality constraints. The proposed
method considers dynamic payoff mechanisms (Park
et al. 2019), where the payoffs perceived by the players
are determined by an auxiliary dynamical system in
feedback interconnection with the population of play-
ers. The proposed approach is illustrated in the context
of congestion games, yet only complete interaction
structures are considered. Similar to the primal-dual
classical game theoretical approaches, the aforemen-
tioned primal-dual GNE seeking methods for evolu-
tionary games only guarantee the satisfaction of the
constraints at the equilibrium of the game. To cope
with such an issue, Barreiro-Gomez & Tembine (2018)
propose a novel form of revision protocols to include
capacity constraints that restrict the mass of players
that can simultaneously choose the same strategy. The
proposed approach guarantees the satisfaction of the
capacity constraints over the whole transient of the
decision-making process. Besides, the proposed revision
protocols also incorporate migration constraints to ac-
commodate for networked interaction structures over
the players. Consequently, such an idea has been ex-
ploited in distributed GNE seeking applications under
hard constraints regarding optimal frequency control
(Barreiro-Gomez et al. 2018) and charging coordination
of electric vehicles (Martinez-Piazuelo et al. 2020).

Motivated by Barreiro-Gomez & Tembine (2018), in this
paper we propose a novel form of revision protocol that
allows the hard satisfaction of strategic capacity con-
straints over the whole transient of the decision-making
process, as well as the consideration of migration con-
straints that rule the interaction between the population
players. In contrast with Barreiro-Gomez & Tembine
(2018), however, our proposed revision protocol allows
the consideration of both decoupled capacity constraints
regarding individual strategies, as well as coupled ca-
pacity constraints regarding disjoint groups of strategies
(the approach in Barreiro-Gomez & Tembine (2018) only
allows for decoupled capacity constraints). We highlight
that some particular coupled capacity constraints have
also been considered in Martinez-Piazuelo et al. (2020)
in the context of aggregative games. In contrast, the ap-
proach in this brief considers more general games, ca-
pacity constraints, and graphical interaction structures
among the players. Finally, we highlight that in contrast
with the aforementioned penalty-based methods studied
in classical game theoretical perspectives, the approach
proposed in this brief does not require the design of any
penalty/barrier functions to ensure the satisfaction of
the capacity constraints over the whole transient.
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The remainder of this brief is organized as follows. First,
we formulate our proposed revision protocol (Section 2).
Second, we analyze the resulting population dynamics
and their discretized counterpart (Section 3). Third, we
present an illustrative example (Section 4). Finally, we
provide some concluding remarks and future directions
of research (Section 5). Besides, all the proofs of our
theoretical developments are provided in Section 6.

2 Proposed revision protocol

In this section, we formally define the capacity and mi-
gration constraints considered in this paper, and we for-
mulate our proposed revision protocol.

Capacity constraints: In this paper, we consider two
types of capacity constraints: decoupled and coupled.
The decoupled constraints restrict the maximum mass
of players that can simultaneously play the same strat-
egy. The coupled ones, on the other hand, restrict the
maximum mass of players that can simultaneously play
strategies that belong to the same group of strategies,
here referred to as a policy. More formally, we con-
sider that the set of strategies S is partitioned by a
(given) set of P ∈ Z≥1 disjoint policies indexed by
P = {1, 2, . . . , P}. Namely, the set Sp ⊆ S denotes the
set of strategies that belong to policy p, for all p ∈ P,
and S = ∪p∈PSp and Sp ∩ Sq = ∅, for all p, q ∈ P with
p 6= q, i.e., each strategy i ∈ S belongs to exactly one
policy in P. To ease the forthcoming discussions, we
define the index-valued function h : S → P, which pro-
vides the index of the policy for a given strategy. More
precisely, for all i ∈ S and all p ∈ P, h(i) = p⇔ i ∈ Sp.

To formally define the capacity constraints, let di ∈ R>0

be the maximum (decoupled) capacity of the strategy
i ∈ S, and let ch(i) ∈ R>0 be the maximum (cou-
pled) capacity of the policy h(i) ∈ P. Additionally, let
αi(xi) = di − xi and βi (x) = ch(i) −

∑
j∈Sh(i) xj , for

all i ∈ S, and let α(·) = [α1(·), α2(·), . . . , αn(·)]> ∈ Rn,

and β(·) = [β1(·), β2(·), . . . , βn(·)]> ∈ Rn. Therefore,
a strategic distribution (also referred to as population
state) x ∈ ∆ is feasible if and only if x ∈ X , where

X = {x ∈ ∆ : α(x) � 0, β(x) � 0} . (3)

Here, (�) denotes the element-wise inequality, and 0 is
the zero vector of appropriate dimension. Besides, we
impose the following assumption on the capacity con-
straints.

Standing Assumption 1: The total population mass
and the capacity constraints satisfy that m <

∑
i∈S di,

and that m <
∑
p∈P c

p.

Under Standing Assumption 1, it follows that the fea-
sible set X is nonempty. Moreover, note that because

X ⊆ ∆, for every di > m we could set di = m without
changing the feasible set X . Similarly, for every cp > m
we could set cp = m without changing X . Hence, with-
out loss of generality, under the considered framework it
is always possible (if required) to upper bound the ca-
pacities by the total population mass m. This observa-
tion might be useful to obtain smaller α∗ terms in the
forthcoming Theorems 3 and 5.

To capture the information regarding the capacity con-
straints at a given population state x, we further define
the map φij : Rn → R≥0, for all i, j ∈ S, given by

φij(x) =

{
[αj(xj)]0 , if h(i) = h(j),

min
{

[αj(xj)]0 , [βj(x)]0
}
, if h(i) 6= h(j).

(4)

Here, [·]0 , max{·, 0}. In particular, observe that
φij(x) > 0 if and only if strategy j ∈ S and policy
h(j) ∈ P have enough capacity to receive a player from
strategy i ∈ S at the population state x. Namely, φij(x)
provides the capacity of strategy j ∈ S to receive a
player from strategy i ∈ S at the population state x.

Migration constraints: Besides the aforementioned ca-
pacity constraints, we consider some graphical interac-
tion constraints over the strategies of the game. Namely,
let G = (S, E ,W) be the migration graph of the game,
where S is the set of nodes; E = {(i, j) : i, j ∈ S} is the
set of edges; and W ∈ Rn×n≥0 is the weighted adjacency
matrix that describes the structure of the graph, i.e.,
wij > 0 if (i, j) ∈ E and wij = 0 otherwise. Moreover,
let Ni = {j ∈ S : wij > 0} ∪ {i} be the set of strategies
that the players playing i ∈ S can migrate to (and thus
interact with). The interpretation of the migration con-
straints is as follows. A player playing i ∈ S is able to
switch to j ∈ S only ifwij > 0. In addition, a player play-
ing i ∈ S has information regarding j ∈ S if and only if
wij > 0. We further impose the following assumptions.

Standing Assumption 2: For all i ∈ S, fi(·) depends
only on local information available over Ni.

Standing Assumption 3: For all i, j ∈ S, it holds that
if h(i) = h(j), then wij > 0. Additionally, W = W>.

Revision protocol: Based on the considered framework,
in this paper we propose the revision protocol given by

ρij (x, f (x)) = wijφij (x) [fj (x)− fi (x)]
γ
0 , ∀i, j ∈ S,

(5)

where [·]γ0 , min {[·]0 , γ}; and γ ∈ R>0 is a (fixed) pa-
rameter of the decision-making mechanism and is as-
sumed equal for all players. In particular, ρij > 0 if and
only if wij > 0, φij(x) > 0, and fj(x) > fi(x). Hence,
the proposed revision protocol considers the migration
constraints imposed by G, the capacity constraints char-
acterized by φij(·), and the underlying game f(·).
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To end this section, we highlight two observations re-
garding the proposed revision protocol in (5). First, note
that under Standing Assumptions 2 and 3, each player is
able to evaluate her corresponding revision protocol in
a distributed fashion without the need of centralized in-
formation schemes. In consequence, the discretized dy-
namics in (2) (under the revision protocol in (5)) can
be implemented in a distributed fashion with the mi-
gration graph G playing the role of the communication
graph between the nodes that update each xi[k]. Sec-
ond, notice that the saturation provided by γ implies
that ρij (x, f (x)) ≤ wijφij (x) γ, for all x ∈ ∆. That is,
the probability of a player switching from strategy i to
strategy j is upper bounded by wijφij (x) γ/R, for all
i, j ∈ S, and such an upper bound is independent of
the game f(·). The fact that the maximum conditional
switch rate between the strategies of the game is inde-
pendent of the payoff vector f(·) plays an important role
in the invariance analysis of the discretized dynamics
(c.f., Theorem 3 and Remark 1).

3 Analysis of the proposed dynamics

In this section, we analyze the dynamics in (1) (and (2))
for the case when the revision protocol is set according
to (5). Notice that such dynamics are equivalent to

ẋi =
∑
j∈S

θij(x) (fi(x)− fj(x)) , ∀i ∈ S, (6)

where, for all i, j ∈ S,

θij(x) =


xiwijφij(x)ζij(x), if fi(x) < fj(x),

xjwjiφji(x)ζji(x), if fi(x) > fj(x),

0, if fi(x) = fj(x),

ζij(x) =

 1, if |fi(x)− fj(x)| ≤ γ,
γ

|fi(x)−fj(x)| , if |fi(x)− fj(x)| > γ.

Clearly, θij(·) = θji(·) and ζij(·) ≤ 1, for all i, j ∈ S.
Additionally, such dynamics can be expressed in matrix
form as ẋ = L(x)f(x), where L(x) ∈ Rn×n is a ma-
trix whose elements are `ii (x) =

∑
j∈S\{i} θij (x), and

`ij(x) = −θij(x), for all i, j ∈ S with i 6= j. Moreover,
we provide the auxiliary Lemma 1 regarding L(·).

Lemma 1 For all x ∈ X , L(x) is positive semi-definite;

(f(x))
>

L(x)f(x) = 0 ⇔ θij(x) (fi(x)− fj(x)) = 0, for

all i, j ∈ S; and L(x)f(x) = 0⇔ (f(x))
>

L(x)f(x) = 0.

3.1 Analysis of the set of equilibria

In this section, we provide sufficient conditions on
the graph G to guarantee that the set of equilibria

of the dynamics in (1) (and equivalently (2)) un-
der the revision protocol in (5) coincides with the
set of generalized Nash equilibria of the underlying
capacity-constrained population game. Throughout,

let Φi(·) = [φi1(·), φi2(·), . . . , φin(·)]> ∈ Rn and let
Ci(·) = supp (Φi(·)), for all i ∈ S (here, supp (Φi(x))
denotes the support of vector Φi(x)). Namely, Ci(x)
is the set of strategies that have available capacity to
receive a player from strategy i ∈ S at the strategic
distribution x.

Definition 2 Given a population game f(·) and the fea-
sible set X in (3), the set of generalized Nash equilibria
of f(·) is defined as

GNE(f) =

{
x ∈ X :

xi > 0⇒ fi(x) ≥ fj(x),

∀i ∈ S, j ∈ Ci(x)

}
.

Similarly, the set of graph-dependent generalized Nash
equilibria of f(·) is defined as

GNEG(f) =

{
x ∈ X :

xi > 0⇒ fi(x) ≥ fj(x),

∀i ∈ S, j ∈ Ci(x) ∩Ni

}
.

The interpretation of Definition 2 is as follows. At any
x∗ ∈ GNE(f) no player can increase her payoff by uni-
laterally deviating from her selected strategy to any
other strategy with available capacity. Similarly, at any
x∗ ∈ GNEG(f) no player can increase her payoff by
unilaterally deviating from her selected strategy to any
other strategy in her neighborhood with available capac-
ity. Clearly, GNE(f) ⊆ GNEG(f). Moreover, when the
game f(·) is continuous, it immediately follows that a
GNE exists and, therefore, the set GNE(f) is nonempty.

Lemma 2 Let f(·) be continuous. Then, the set GNE (f)
is nonempty and compact.

Hence, from Lemma 2 it follows that a GNE always ex-
ists for any full-potential population game under the
considered capacity constraints. We now provide formal
connections between the set GNE(f) and the set of equi-
libria of the considered dynamics.

Lemma 3 Consider the dynamics in (1) under the revi-
sion protocol in (5). A population state x∗ ∈ X is an equi-
librium of these dynamics if and only if x∗ ∈ GNEG(f).

Lemma 3 guarantees the coincidence of the set of equi-
libria of the dynamics and the set GNEG(f). Under some
assumptions on the graph G, it is possible to further
prove that x ∈ GNEG(f)⇔ x ∈ GNE(f).

Definition 3 Given the feasible region X in (3), a strat-
egy s ∈ S is said to be a support strategy at a state x ∈ X ,
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if it holds that 0 < xs < ds and βs(x) > 0. Conse-

quently, S̃(x) = {s ∈ S : 0 < xs < ds, βs(x) > 0} is the
set of support strategies at the state x.

Assumption 1 For every x∗ ∈ GNEG(f) it holds that:

i) the set S̃(x∗) is nonempty; ii) the subgraph of G that

considers only the strategies in S̃(x∗) is connected; and

iii) S̃(x∗) ∩Ni is nonempty, for all i ∈ S.

Theorem 1 Consider the dynamics in (1) under the re-
vision protocol in (5). Besides, suppose that Assumption
1 holds. Then, a population state x∗ ∈ X is an equilib-
rium of the dynamics if and only if x∗ ∈ GNE(f), i.e.,
L (x∗) f (x∗) = 0⇔ x∗ ∈ GNE(f).

We highlight that Assumption 1 is not a necessary con-
dition for Theorem 1 to hold. Consider for instance the
case where the set S̃(x∗) is empty for some popula-
tion state x∗ ∈ GNEG(f), but the migration graph G is
complete. Under such a scenario it trivially holds that
GNE(f) = GNEG(f), yet Assumption 1 does not hold.
Moreover, observe that if GNEG(f) ⊆ relint(X ), where
relint(X ) is the relative interior of X , then Assumption
1 reduces to the standard connectivity of G. In Section
4, we further illustrate a less restrictive scenario where
Assumption 1 readily holds.

Besides the coincidence of GNE(f) and the set of equilib-
ria of the considered dynamics, if f(·) is a full-potential
game (c.f., Definition 1), then it is possible to derive
some additional results.

Lemma 4 Let f(·) be a full-potential game with concave
potential function ϕ(·). Then, x∗ ∈ GNE(f) if and only
if x∗ ∈ arg maxx∈X ϕ(x).

To end this section, we remark that the set of equilibria
of the continuous-time dynamics in (1) is aligned with
the set of equilibria of their discretized counter part in
(2). Hence, the results of Lemma 3 and Theorem 1 are
also valid for the discretized dynamics in (2) when the
revision protocol in (5) is considered.

3.2 Invariance analysis

In this section, we show that the feasible set X is pos-
itively invariant under the dynamics in (1) when the
proposed revision protocol in (5) is considered. Further-
more, we also provide sufficient conditions to extend such
a result to the discretized dynamics in (2).

Theorem 2 Consider the dynamics in (1) under the re-
vision protocol in (5), and consider the feasible set X in
(3). If x(0) ∈ X , then x(t) ∈ X for all t ≥ 0.

Theorem 3 Consider the dynamics in (2) under the re-
vision protocol in (5), and consider the feasible set X in

(3). Moreover, let α∗ = maxi∈S di, η
∗ = maxp∈P

∣∣Sp∣∣,
and δ∗ = maxi∈S

∑
j∈S wij. If 0 < ε ≤ (γα∗η∗δ∗)−1,

then it holds that x[k] ∈ X ⇒ x[k+1] ∈ X , for all k ≥ 0.

Remark 1 Notice that the upper bound on ε in Theorem
3 is independent of the game f(·). The parameters α∗,
η∗, and δ∗ are fully determined by the constraints of the
problem, and the parameter γ is fixed by the revision
protocol. Besides, α∗ ∈ R>0 because di ∈ R>0, for all
i ∈ S; η∗ ∈ R>0 because minp∈P |Sp| ≥ 1; and δ∗ ∈ R>0

because wii > 0, for all i ∈ S [c.f., Standing Assumption
3]. Hence, (γα∗η∗δ∗)−1 is positive and finite.

3.3 Convergence analysis

In this section, we provide sufficient conditions to guar-
antee the asymptotic stability of the set GNE(f) under
the dynamics in (1) when the revision protocol in (5) is
considered and when the game is a full-potential popu-
lation game with concave potential function (c.f., Def-
inition 1). Besides, we also extend the analysis for the
discretized dynamics in (2).

Assumption 2

i) The game f(·) is a full-potential game with concave
potential function ϕ(·).

ii) Moreover, ϕ(·) is twice continuously differen-
tiable and L-smooth under the Euclidean norm.
Thus, ‖∇ϕ(x)−∇ϕ(y)‖2 ≤ L‖x − y‖2, for some
L ∈ R>0 and for all x,y ∈ Rn≥0.

Theorem 4 Consider the dynamics in (1) under the re-
vision protocol in (5), and consider the feasible set X in
(3). Moreover, suppose that Assumptions 1 and 2i) hold,
and let x(0) ∈ X . Then, the set GNE(f) is asymptoti-
cally stable under the considered dynamics.

Theorem 5 Consider the dynamics in (2) under the re-
vision protocol in (5), and consider the feasible set X in
(3). Moreover, suppose that Assumptions 1 and 2 hold,
let x[0] ∈ X , and let ε satisfy the conditions of Theorem

3. If in addition ε < (Lmα∗δ∗)
−1

, then the set GNE(f)
is asymptotically stable under the considered dynamics.

Theorems 3 and 5 show that, under the proposed re-
vision protocol in (5), the discretized dynamics in (2)
serve as a discrete-time distributed optimization algo-
rithm (with fixed step size ε) that allows the hard satis-
faction of the capacity constraints for all forward times.
Such a hard satisfaction of constraints is a significant
advantage over other recent distributed optimization al-
gorithms that only satisfy constraints in the asymptotic
sense (Falsone et al. 2020, Liang et al. 2020, Yang et al.
2019). Moreover, similar to Remark 1, and using the facts
that L ∈ R>0 and m ∈ R>0, it follows that the upper
bound on ε in Theorem 5 is positive and finite. Further-
more, although the parameters α∗, η∗, and δ∗ might be
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computed distributedly in some special cases (e.g., ho-
mogeneous capacity constraints under doubly stochas-
tic migration graphs), the parameters L and m rely on
global information that must be known in advance by
the nodes that compute the discretized dynamics in (2).
We leave it for future research to explore how to remove
such an informational requirement.

4 An illustrative example

Population games have been recently applied to model
various control problems in the context of dynamic re-
source allocation (Quijano et al. 2017, Barreiro-Gomez
& Tembine 2018, Martinez-Piazuelo et al. 2020). In this
section, we illustrate our developed theory on a (con-
strained) congestion game, which is a game-theoretical
abstraction useful to model several of the aforemen-
tioned engineering problems and have been also con-
sidered in recent researches in the field of population
games (Park et al. 2019, Martinez-Piazuelo, Quijano &
Ocampo-Martinez 2022).

Consider a population of players, represented by a con-
tinuum of mass m = 1, that seek to go from A to B
using 7 possible roads as shown in Fig. 1a. Namely, S =
{1, 2, 3, 4, 5} , {{r1, r2}, {r1, r3}, {r4}, {r5, r7}, {r6, r7}}.
Furthermore, let the strategies be partitioned into 3
policies as S1 = {1, 2}, S2 = {3}, S3 = {4, 5}. The cor-
responding capacity constraints are x1 ≤ 0.1, x2 ≤ 0.4,
x3 ≤ 1.1, x4 ≤ 0.2, x5 ≤ 0.3, x1 + x2 ≤ 0.3, and
x4+x5 ≤ 0.5, and the migration constraints are depicted
in Fig. 1b. Observe that sincem < 1.1 andm > 0.3+0.5,
it follows that for every x ∈ X , 0 < x3 < 1.1. Thus,
Strategy 3 (r4) plays the role of a support strategy (c.f.,
Definition 3) and Assumption 1 holds. Besides, from the
considered parameters it follows that α∗ = 1.1, η∗ = 2,
and δ∗ = 1. Now, similar to Park et al. (2019) (yet with-
out loss of generality), let the payoffs be determined
by f1(x) = −2x1 − x2, f2(x) = −x1 − 2x2, f3(x) =
−2ν(t)x3, f4(x) = −2x4 − x5, and f5(x) = −x4 − 2x5,
where ν(t) ∈ {1, 2} is an exogenous time-varying signal
that decreases/increases the congestion cost of r4. It
is straightforward to verify that the game f(·) satisfies
Assumption 2 with a concave quadratic potential func-
tion with L = 4. Finally, for our numerical simulation
we set γ = 1, and so ε = 0.22 satisfies the conditions
of Theorems 3 and 5. As illustration, Fig. 2 depicts
the temporal evolution of the (discretized) dynamics in
(2) under the proposed revision protocol of (5). Note
that both the asymptotic stability of GNE(f) and the
invariance of X are verified.

5 Concluding remarks

In this brief, we have proposed and analyzed a novel
decision-making mechanism for generalized Nash equi-
librium seeking in full-potential population games un-
der capacity and migration constraints. Furthermore, we

A B
1

2

3

4

5

(a) (b)

Fig. 1. Considered congestion game. (a) Considered topology
for the congestion game. (b) Migration graph G.
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Fig. 2. Temporal evolution of the population state x, with
x(0) = [0, 0, 1, 0, 0]> ∈ X . For t ≤ 600, ν(t) = 1 and
x converges to x∗ = [0.1, 0.2, 0.3, 0.2, 0.2]> ∈ GNE(f).
For t > 600, ν(t) = 2 and x converges to
x∗ = [0.1, 0.2, 0.2, 0.2, 0.3]> ∈ GNE(f).

have also developed a discrete-time analysis of the pro-
posed dynamics and derived a discrete-time population-
game-inspired distributed optimization algorithm that
allows the satisfaction of the capacity constraints for all
times. Future research should explore the extension of
the developed theory to more general families of games,
e.g., stable/monotone games, as well as the characteri-
zation of the convergence rate of the resulting dynamics.

6 Proofs

6.1 Proof of Lemma 1

First, observe that for every x ∈ X , L (x) is a sym-
metric diagonally dominant real matrix with non-
negative diagonal elements. Hence, L (x) is posi-
tive semi-definite for all x ∈ X . Second, note that

(f(x))
>

L(x)f(x) =
∑

(i,j)∈E θij(x) (fi(x)− fj(x))
2

(this follows from the quadratic form of Laplacian ma-
trices). Since x ∈ X ⇒ θij(x) ≥ 0, for all i, j ∈ S,

it holds that (f(x))
>

L(x)f(x) = 0 if and only if
θij(x) (fi(x)− fj(x)) = 0, for all i, j ∈ S. Finally, it is

obvious that L(x)f(x) = 0 ⇒ (f(x))
>

L(x)f(x) = 0.
Moreover, from (6) it is straightforward to check that if
θij(x) (fi(x)− fj(x)) = 0, for all i, j ∈ S, then ẋi = 0,
for all i ∈ S, and thus L(x)f(x) = 0. �
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6.2 Proof of Lemma 2

Notice that GNE(f) in Definition 2 is equivalent to
GNE(f) =

{
x ∈ X : x ∈ arg maxy∈X y>f(x)

}
, which

implies that x∗ ∈ GNE (f) ⇔ (x∗)
>

f (x∗) ≥ y>f (x∗),
for all y ∈ X . Consequently, the considered set GNE(f)
coincides with the set of solutions of the variational
inequality VI (X ,−f) given by: find x ∈ X such that

(y − x)
>

(−f(x)) ≥ 0, for all y ∈ X . Since f(·) is con-
tinuous and X is nonempty, convex, and compact, it
follows from (Facchinei & Pang 2003, Corollary 2.2.5)
that GNE(f) is nonempty and compact. �

6.3 Proof of Lemma 3

Note that x∗ ∈ X is an equilibrium of the dynamics if
and only if L (x∗) f (x∗) = 0. Therefore, using Lemma 1,
it follows that x∗ is an equilibrium of the dynamics if and
only if θij (x∗) (fi (x∗)− fj (x∗)) = 0, for all i, j ∈ S.
Hence, we must prove that such a condition holds if and
only if x∗ ∈ GNEG(f).

(Sufficiency) Let x∗ ∈ GNEG(f). If x∗i > 0, then
fi (x∗) ≥ fj (x∗), for all j ∈ Ci (x∗) ∩ Ni. Moreover, if
fi (x∗) > fj (x∗), then x∗j = 0 and θij (x∗) = θji (x∗) =
0. Thus, θij (x∗) (fi (x∗)− fj (x∗)) = 0, ∀i, j ∈ S.

(Necessity) Let θij (x∗) (fi (x∗)− fj (x∗)) = 0, for
all i, j ∈ S, but suppose that x∗ ∈ X \ GNEG(f).
Hence, there is some x∗i > 0 such that fi (x∗) <
fj (x∗) for some j ∈ Ci (x∗) ∩ Ni. Thus, θij (x∗) =
wijx

∗
iφij (x∗) ζij (x∗) > 0, leading to a contradiction. �

6.4 Proof of Theorem 1

(Sufficiency) Recall from Lemma 3 that a state x∗ ∈ X
is an equilibrium of the dynamics if and only if
x∗ ∈ GNEG(f). Since GNE(f) ⊆ GNEG(f), every
x∗ ∈ GNE(f) is also an equilibrium of the dynamics.

(Necessity) Recall Lemma 3. To prove that x∗ ∈ X is
an equilibrium of the dynamics only if x∗ ∈ GNE(f),
we must show that, under the given assumptions, it
holds that x∗ ∈ GNEG(f) ⇒ x∗ ∈ GNE(f). Let x∗ ∈
GNEG(f) but suppose that x∗ /∈ GNE(f). By definition,
there is an i ∈ S and a j ∈ Ci(x∗) \ Ni such that x∗i > 0
and fi(x

∗) < fj(x
∗). Moreover, from the Standing As-

sumption 3 we can conclude that h(i) 6= h(j). Now,
from Assumption 1 and the fact that x∗ ∈ GNEG(f),
it follows that there is some connected path of support
strategies between i and j. Furthermore, by definition,
all the support strategies have the same payoffs. Thus,
let s, z ∈ S̃(x∗) so that fs(x

∗) = fz(x
∗). In addition, let

s ∈ Ni and z ∈ Nj . Since h(i) 6= h(j) and j ∈ Ci(x∗), it
follows that j ∈ Cz(x∗). Moreover, since x∗ ∈ GNEG(f),
it must hold that fj(x

∗) = fz(x
∗) = fs(x

∗) ≤ fi(x
∗).

Clearly, this is a contradiction with fj(x
∗) > fi(x

∗),
and, in consequence, x∗ ∈ GNE(f). �

6.5 Proof of Lemma 4

Recall that GNE(f) in Definition 2 is equivalent to
GNE(f) =

{
x ∈ X : x ∈ arg maxy∈X y>f(x)

}
. Since

ϕ(·) is concave and differentiable and ϕ(·) = ∇f(·),
it follows that x∗ ∈ arg maxx∈X ϕ(x) if and only if
(x−x∗)>f(x∗) ≤ 0, for all x ∈ X , which is equivalent to
(x∗)>f(x∗) ≥ x>f(x∗), for all x ∈ X . Clearly, it follows
that (x∗)>f(x∗) ≥ x>f(x∗), for all x ∈ X , if and only if
x∗ ∈ GNE(f). �

6.6 Proof of Theorem 2

First, note that ∆ is positively invariant under
the considered dynamics. To see this, observe that∑
i∈S ẋi =

∑
i∈S
∑
j∈S xjρji −

∑
i∈S
∑
j∈S xiρij = 0.

Hence,
∑
i∈S xi(0) = m ⇒

∑
i∈S xi(t) = m, for all

t ≥ 0. Additionally, notice that xi = 0 implies that
ẋi ≥ 0. Thus, x(0) ∈ Rn≥0 ⇒ x(t) ∈ Rn≥0, for all t ≥ 0.

Second, note that ifαi(xi) = 0, then ρji = 0 for all j ∈ S,
and so ẋi ≤ 0. Hence, α(x(0)) � 0 ⇒ α(x(t)) � 0, for
all t ≥ 0. Finally, observe that if βi(x) = 0, then ρji = 0

for all j ∈ S \ Sh(i), and so
∑
s∈Sh(i) ẋs ≤ 0. Thus,

β(x(0)) � 0⇒ β(x(t)) � 0, for all t ≥ 0. �

6.7 Proof of Theorem 3

We divide the proof in four parts. First, we prove that
x[k] ∈ X ⇒ 1>x[k + 1] = m. Second, we prove that
x[k] ∈ X ⇒ x[k + 1] � 0. Third, we prove that x[k] ∈
X ⇒ α (x[k + 1]) � 0. Finally, we prove that x[k] ∈
X ⇒ β (x[k + 1]) � 0. Together these facts lead to the
desired result [c.f., (3)].

(
x[k] ∈ X ⇒ 1>x[k + 1] = m

)
Let x[k] ∈ X . As in the

proof of Theorem 2, note that
∑
i∈S x̂i[k] = 0, for all k.

Hence, 1>x[k] = m⇒ 1>x[k + 1] = m.

(x[k] ∈ X ⇒ x[k + 1] � 0) Let x[k] ∈ X . From (2),

xi[k + 1] ≥ xi[k]− ε
∑
j∈S

xi[k]ρij [k]

=

1− ε
∑
j∈S

ρij [k]

xi[k].

Therefore, to guarantee the non-negativity of xi[k + 1]
we must show that 1 ≥ ε

∑
j∈S ρij [k], for all i ∈ S. Here,

since φij (x[k]) ≤ α∗ and [fj (x[k])− fi (x[k])]
γ
0 ≤ γ, for
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all i, j ∈ S, it holds that

ε
∑
j∈S

ρij [k] ≤ εγα∗
∑
j∈S

wij [using (5)]

≤ εγα∗δ∗ [since δ∗ = max
i∈S

∑
j∈S

wij ]

≤ 1 [since ε ≤ (γα∗η∗δ∗)
−1

and η∗ ≥ 1].

Thus, x[k] ∈ X ⇒ x[k + 1] � 0.

(x[k] ∈ X ⇒ α (x[k + 1]) � 0) Let x[k] ∈ X . From (2)
and the definition of αi(·) it follows that

αi (xi[k + 1]) = αi (xi[k])− εx̂i[k]

≥ αi (xi[k])− ε
∑
j∈S

xj [k]ρji[k]

≥ αi (xi[k])− εαi (xi[k]) γ
∑
j∈S

wjixj [k]

=

1− εγ
∑
j∈S

wjixj [k]

αi (xi[k])

≥ (1− εγα∗δ∗)αi (xi[k]) ,

where we have used the facts that φji (x[k]) ≤ αi (xi[k])
and that x[k] ∈ X ⇒ xj [k] ≤ α∗, for all i, j ∈ S.

Hence, with ε ≤ (γα∗η∗δ∗)
−1

, it follows that 1 ≥ εγα∗δ∗
(because η∗ ≥ 1), and, consequently, αi (xi[k]) ≥ 0 ⇒
αi (xi[k + 1]) ≥ 0, for all i ∈ S.

(x[k] ∈ X ⇒ β (x[k + 1]) � 0) Let x[k] ∈ X . From (2),
notice that the change of mass regarding policy p ∈ P is

∑
i∈Sp

x̂i[k] =
∑
i∈Sp

∑
j∈S

xj [k]ρji[k]−
∑
i∈Sp

∑
j∈S

xi[k]ρij [k]

=
∑
i∈Sp

∑
j /∈Sp

xj [k]ρji[k]−
∑
i∈Sp

∑
j /∈Sp

xi[k]ρij [k]

≤
∑
i∈Sp

∑
j /∈Sp

xj [k]ρji[k].

Here, j /∈ Sp is to be understood as j ∈ S \ Sp. Hence,
from the definition of βi(·) it follows that

βi (x[k + 1]) = βi (x[k])− ε
∑

z∈Sh(i)

x̂z[k]

≥ βi (x[k])− ε
∑

z∈Sh(i)

∑
j /∈Sh(i)

xj [k]ρjz[k].

Here, observe that ρjz[k] ≤ wjzφjz (x[k]) γ, and that
φjz (x[k]) ≤ βz (x[k]) = βi (x[k]) because h(j) 6= h(z)

and h(z) = h(i). Thus, ρjz[k] ≤ wjzβi (x[k]) γ and

βi (x[k + 1]) ≥

1− εγ
∑

z∈Sh(i)

∑
j /∈Sh(i)

wjzxj [k]

βi (x[k])

≥ (1− εγα∗η∗δ∗)βi (x[k]]) ,

where we have used the facts that x[k] ∈ X ⇒ xj [k] ≤
α∗; that

∑
j /∈Sh(i) wjz ≤ δ∗; and that

∑
z∈Sh(i) 1 ≤ η∗.

Consequently, if ε ≤ (γα∗η∗δ∗)
−1

, then βi (x[k]) ≥ 0⇒
βi (x[k + 1]) ≥ 0, for all i ∈ S. �

6.8 Proof of Theorem 4

First, from Theorem 2 it holds that x(t) ∈ X for
all t ≥ 0. Second, recall Lemma 4 and consider the
Lyapunov function candidate V (x) = ϕ (x∗) − ϕ(x),
where x∗ ∈ GNE(f). Clearly, ∇V (x) = −f(x), and,

in consequence, (∇V (x))
>

ẋ = − (f(x))
>

L(x)f(x).
Hence, using Lemma 1 and Theorem 1 we conclude that

(∇V (x))
>

ẋ ≤ 0 for all x ∈ X , and that (∇V (x))
>

ẋ = 0
if and only if x ∈ GNE(f). Thus, GNE(f) is asymptoti-
cally stable under the considered dynamics. �

6.9 Proof of Theorem 5

First, observe that from Theorem 3 it holds that x[k] ∈
X , for all k ≥ 0. Second, recall Lemma 4 and consider the
Lyapunov function V (x) = ϕ (x∗) − ϕ(x), where x∗ ∈
GNE(f). To prove the asymptotic stability of GNE(f),
we must show that V (x[k + 1]) − V (x[k]) < 0, for all

x[k] ∈ X \ GNE(f). Thus, let V̂ [k] , V (x[k + 1]) −
V (x[k]). Clearly, V̂ [k] = ϕ (x)− ϕ (x + εLf), where we

have set x , x[k], L , L (x[k]), and f , f (x[k]). Since
ϕ(·) is twice continuously differentiable, using (Nocedal
& Wright 2006, Theorem 2.1) and L = L>, it follows

that ϕ(x+ εLf) = ϕ(x)+ εf>Lf + ε2

2 f>LH(q)Lf , where

Hq , ∇2ϕ(x + qεLf) for some q ∈ (0, 1). Thus, V̂ [k] =

−ε
(
f>Lf − (ε/2)f>LĤ(q)Lf

)
, with Ĥq = −Hq. Since

ε > 0, to guarantee V̂ [k] < 0 it must hold that f>Lf >

(ε/2)f>LĤqLf . Applying the eigen-decomposition on L,
that is L = PΛP>, it follows that

f>LĤqLf = f>PΛ1/2
(
Λ1/2P>ĤqPΛ1/2

)
Λ1/2P>f

≤
∥∥∥Λ1/2

∥∥∥
2

∥∥∥P>ĤqP
∥∥∥
2

∥∥∥Λ1/2
∥∥∥
2
f>Lf

= r
(
Ĥq

)
r (L) f>Lf ,

where r(Z) is the spectral radius of Z, and r
(
Ĥq

)
=

r
(
P>ĤqP

)
because P>ĤqP is similar to Ĥq. More-

over, from Assumption 2ii) it follows that r
(
Ĥq

)
≤ L,
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for all x ∈ X and all q ∈ (0, 1). In contrast, from
the Gershgorin Circle Theorem, r (L) ≤ 2¯̀, where
¯̀ = maxx∈X ,i∈S `ii(x), i.e., ¯̀ is an upper bound
on the maximum diagonal element of L over X .
In consequence, V̂ [k] ≤ −ε

(
f>Lf − εL¯̀f>Lf

)
≤

−ε (1− εLmα∗δ∗) f>Lf , where we have used the def-
initions of `ii(·) and θij(·) to assert that ¯̀ ≤ mα∗δ∗.
Since L is positive semi-definite [c.f., Lemma 1], it holds

that 0 < ε < (Lmα∗δ∗)
−1

implies that V̂ [k] ≤ 0, for all

k ≥ 0, and that V̂ [k] = 0 ⇔ f>Lf = 0. Therefore, us-
ing Lemma 1 and Theorem 1, we further conclude that
V̂ [k] = 0 ⇔ x[k] ∈ GNE(f). Thus, the set GNE(f) is
asymptotically stable under the considered dynamics. �
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