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Abstract

This work is concerned with the design of a two-step distributed state estima-

tion scheme for large-scale systems in the presence of unknown-but-bounded

disturbances and noise. The set-membership approach is employed to construct

a compact set containing the states consistent with system measurements and

bounded noise and disturbances. The tightened feasible region is then provided

to a moving horizon estimator that determines the optimal state estimates. Par-

titioning of the overall problem and coordination of the resulting subproblems

are achieved using decomposition of the optimality conditions and community

detection. The proposed strategy is tested on a case study based on a reactor-

separator system widely used in the literature. Its performance is compared to

those of centralized and distributed (without set-membership) implementations,

allowing to highlight its effectiveness.
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1. Introduction

State estimation is of paramount importance in engineering, and has re-

ceived considerable attention from the research community for many decades.

Research on the topic builds upon the seminal results on Kalman filtering, which

uses probabilistic assumptions on disturbances and noise to minimize the error5

variance of the state estimate [1, 2]. Nevertheless, these assumptions might be

unrealistic and difficult to validate in real applications [3]. In this context, the

set-membership approach does not resort to assumptions on statistical prop-

erties, and norm-bounded uncertainty can be considered instead [4]. Its main

principle consists in building compact sets that bound the system states con-10

sistent with the norm-bounded uncertainty and the measurements [5]. On the

other hand, Kalman filtering is not concerned with the issue of constraints, thus

not making use of available physical and operational insight [6]. Moving horizon

estimation (MHE), an approach that is deemed to be the dual of model predic-

tive control (MPC), provides a framework that can deal with constraints in a15

straightforward manner [7]. The main principle consists in using an estimation

window of constant size, which is shifted in time, so as to process only the most

recent information and thus keep the problem computationally tractable [8, 9].

Regardless of the choice of state estimation approach, technological devel-

opments have resulted in large-scale systems, which usually consist of multiple20

interacting subsystems and are characterized by a growing complexity of op-

eration [10]. Therefore, centralized implementations present several important

drawbacks in the case of large-scale systems, such as reliability (single point of

failure) and non-scalability [11]. However, as a result of advances in information

and communication technologies, non-centralized strategies are possible nowa-25

days, thus improving traditional plant-wide model-based control and monitoring

[12].

Non-centralized approaches assume that a set of agents is deployed, each

in charge of a subsystem, or part of the overall system. Moreover, they are

usually categorized into two main groups, depending on information availabil-30

2



ity and interactions among the local agents. On the one hand, decentralized

approaches ignore interactions among subsystems, which might yield poor over-

all performances [13]. On the other hand, distributed approaches account for

interactions in the design of the subproblems, introducing cooperation and ne-

gotiation mechanisms so as to achieve optimal global performance [14]. Given35

the superior performance of distributed over decentralized approaches, the for-

mer are usually preferred when the degree of coupling is not negligible, although

this is achieved at the expense of computation time. Distributed state estima-

tion has been extensively studied, considering both set membership [15–18] and

MHE [19–22] approaches.40

Distributed state estimation approaches require, first of all, to split the prob-

lem into smaller subproblems. However, decomposition is a sensitive issue, as

different decompositions can lead to rather different overall performances and

computation times [23]. In this regard, graph theory and network science have

recently examined the property of community structure in networked systems,45

where systems with higher community structures exhibit nodes in tight clusters

among which there are fewer links [24]. Metrics to quantify this property have

been defined, and algorithms to generate system decompositions that maximize

such metrics have been devised. These tools can be of interest to decompose

state estimation problems, as the resulting subproblems are loosely coupled,50

thus keeping information exchanges to a minimum.

Once the subproblems have been generated, these can be solved in a dis-

tributed fashion. There exist multiple distributed optimization techniques,

which may be categorized into two main classes: on the one hand, approaches

based on augmented Lagrangian decomposition; on the other hand, techniques55

that employ the decentralized solution of the Karush-Kuhn-Tucker (KKT) opti-

mality conditions [25]. Examples of the former and the latter are the alternating

direction method of multipliers (ADMM) [26] and the optimality condition de-

composition (OCD) method [27], respectively. The main differences between

these two approaches reside in the construction of the Lagrangian function and60

the management of coupled variables. On the one hand, the Lagrangian func-
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tion used in ADMM is augmented with supplementary terms that are linked

to the constraint residuals [26], while OCD keeps complicating constraints, i.e.,

constraints including coupled variables, in the assigned subproblem but also re-

laxes them in the coupled subproblems [28]. On the other hand, ADMM creates65

copies of coupled variables in all coupled subproblems while adding equality con-

straints to guarantee solution compatibility among subproblems, thus requiring

a central coordinator. In contrast, each variable is assigned in OCD to exactly

one subproblem and optimizes its value in that subproblem, thus overriding the

need for a central coordinator [25]. Despite this, the literature review reveals70

that ADMM has been more widely applied than OCD to solve distributed state

estimation problems. Indeed, while the former has been used in, e.g., [22, 29–

31], no reference making an explicit use of the latter has been found, although

it shares some similarities with the method reported in [32].

The combination of the aforementioned set-membership and MHE allows75

for robust state estimation, a problem has been addressed from multiple differ-

ent perspectives. The authors of [33] made use of multi-parametric methods to

generate the dynamic equations and estimation error bounds for a linear con-

strained MHE. An initial high-gain observer was proposed in [34] to compute

confidence regions that contain the actual system state, feeding this information80

to an MHE. The authors of [35] designed an MHE that uses the convex hull

to compute guaranteed bounds for the state estimates. The design of an MHE

with real-time adaptive update of error variances was tackled in [36].

The results reported in the previous references were designed considering a

centralized architecture. Non-centralized implementations of robust state esti-85

mators based on MHE can also be found in the literature, although it must be

noted that none employs the set-membership approach. A robust distributed

MHE (DMHE) for nonlinear constrained systems was proposed in [37], adding

a consensus term to propagate information regarding local estimates. The au-

thors of [29] designed a DMHE for joint identification of corrupted SCADA90

measurements (as a result of unintentional metering faults) and state estima-

tion solving the relaxed `1-norm problem. Another approach considering the
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`1-norm was devised in [31], also under the assumption of compressed sensing.

The authors of [38] designed local MHE featuring complementary nonlinear ob-

servers to track the nominal states. A partitioned MHE using the method of95

largest normalized residuals was conceived in [30] to deal with outliers. Another

DMHE with guaranteed robustness to outliers introduced in cyberattacks was

developed in [22] using total-variation denoising and `1 trend filtering.

Summary of the paper and contribution

This work reports the derivation of a two-step distributed state estimation100

algorithm considering an unknown-but-bounded description of disturbances and

noise. As a first step, set-membership is used to tighten the physical and op-

erational bounds on states, making use of information regarding measurements

and uncertainty. These results are then provided to the MHE, which bene-

fits from the reduced feasible region computed in the previous step, and whose105

solution yields the optimal state estimates. Moreover, a community detection

algorithm and OCD are used to generate the subproblems and coordinate the

solutions. The performance is then tested on a case study based on a large-scale

reactor-separator plant widely used in the literature.

Contributions of the paper with regard to the state of the art are detailed110

next:

� The current paper builds on previous results reported in [39] concerning

the design of a distributed control approach using OCD and community

detection. Indeed, the main findings are used to consider a different prob-

lem, i.e., state estimation. To the best knowledge of the authors, the115

combined use of OCD and community detection for distributed state es-

timation is a novel approach.

� Moreover, the effect of disturbances and noise was not studied in [39].

In contrast, this issue is explicitly addressed in this paper, using the set-

membership approach to tighten the feasible region considering only the120

states that are consistent with measurements and the level of uncertainty.
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This facilitates the task of the MHE afterward. The review of the literature

confirms that a robust distributed state estimation approach based on the

combination of set-membership and moving horizon estimation has not

been proposed before.125

� While the goal of bound tightening is shared with other works [40–43],

these references consider the output feedback control problem. Therefore,

results on bound tightening are used to estimate the future evolution of the

system by means of a Luenberger observer, which introduces the additional

issue of appropriately tuning an observer gain [44]. In contrast, this paper130

makes use of bound tightening results for a different purpose, i.e., state

estimation using an MHE, which overrides the need to tune the observer

gain.

� Furthermore, the previous references propose centralized implementations.

Conversely, this is carried out in a distributed manner in this work, which135

gives rise to a distributed set-membership-based MHE algorithm, here-

inafter referred to as DMHE-SM.

The structure of the paper is as follows: Section 2 describes the problem

and presents the rationale behind the proposed approach. Section 3 details the

overall problem decomposition and coordination approach, which allows to de-140

vise the two-step distributed state estimation algorithm in Section 4. Finally,

Section 5 introduces the case study that is used to test and validate the ap-

proach, thus allowing to derive conclusions and elaborate on possible research

directions in Section 6.

Notation145

Let Z≥0, Rn and Rn×m denote the set of natural non-negative scalars, the

space of n-dimensional real column vectors and the space of n-by-m real matri-

ces, respectively. Moreover, Ai denotes the i-th row of matrix A. Scalars, vec-

tors and matrices are represented by either lowercase or uppercase letters, bold

lowercase letters and bold uppercase letters, respectively, while sets are denoted150
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with calligraphic symbols. Furthermore, let G = (N , E) represent an undirected

and connected graph, where N = {1, 2..., N} and E = {(i, j) : i, j ∈ N} ⊆

N ×N denote the sets of nodes and edges, respectively. Then, the set of neigh-

bors of node i is denoted by N (i) = {j : (i, j) ∈ E}.

2. Problem statement155

The problem tackled in this work regards the class of discrete-time invariant

linear uncertain systems

xk+1 = Axk + Buk + wk, (1a)

yk = Cxk + vk, (1b)

where xk ∈ Rnx , uk ∈ Rnu and yk ∈ Rny represent the state, input and output

vectors, respectively, with k ∈ Z≥0 the sample time. Moreover, wk ∈ Rnx and

vk ∈ Rny denote disturbance and noise vectors, respectively, and are considered160

to be unknown but bounded by known compact sets wk ∈ W and vk ∈ V that

contain the respective origins. Furthermore, the state-space matrices A, B and

C are of appropriate dimensions.

Given (1) and a set of input-output data, the goal consists in designing a

state estimation strategy that allows to fully reconstruct the vector of states at165

each time instant, as they are seldom completely available for measurement. It

should be noted that data generation is assumed to be out of the scope of the

problem. Then, a centralized MHE (CMHE) can be designed for (1) as follows:

min
{x̂i|k}ki=k−N+1

(
x̂k−N+1|k − xk−N+1

)ᵀ
P−1

(
x̂k−N+1|k − xk−N+1

)
+ (2a)

k−1∑
i=k−N+1

(
wᵀ

i|kQ
−1wi|k + vᵀ

i|kR
−1vi|k

)
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subject to

wi|k = x̂i+1|k −
(
Ax̂i|k + Bui

)
, i ∈ {k −N + 1, ..., k}, (2b)

vi|k = yi −Cx̂i|k, i ∈ {k −N + 1, ..., k}, (2c)

x̂i|k ∈ X , i ∈ {k −N + 1, ..., k}, (2d)

where
{
x̂i|k

}k
i=k−N+1

denotes the sequence of state estimates1 for (1) that are

most consistent with the provided input-output data2 {(ui,yi)}ki=k−N+1, with170

N the length of the moving estimation window. Moreover, xk−N+1 denotes the

most reasonable initial state (which may be selected based on knowledge of the

system), while X represents the feasible set of states according to operational

and physical constraints. Furthermore, P−1, Q−1 and R−1 are weighting ma-

trices inverses, and indicate confidence in the initial state, quality of the model175

and the measurements, respectively [7].

The last component of the optimal sequence
{
x̂i|k

}k
i=k−N+1

, i.e., x̂k|k, is

retained, and the rest are discarded. The window is then shifted forward in time

to utilize updated information, hence converting the initial open-loop approach

into a closed-loop one.180

Despite the fact that (1) describes a broad class of systems, state estima-

tion of large-scale systems is specifically addressed. Then, and owing to the

particular features of large-scale systems, non-centralized implementations are

preferred over their centralized counterparts. In particular, distributed schemes

allow for interactions among local agents, each in charge of only a part of the185

overall system. These local agents exchange information with each other in an

iterative manner until convergence.

Distributed schemes offer an interesting alternative to centralized approaches

given the minor loss of performance that comes at the benefit of reduced com-

putation times. Indeed, performing a single iteration in a distributed approach190

is usually much faster than solving the overall problem. As the subproblems can

1
{
x̂i|k

}k

i=k−N+1
,

{
x̂k−N+1|k, x̂k−N+2|k, · · · , x̂k|k

}
2{(ui,yi)}k−1

i=k−N+1 , {(uk−N+1,yk−N+1) , (uk−N+2,yk−N+2) , · · · , (uk,yk)}
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be solved in parallel, the duration of a single iteration amounts to the time re-

quired to solve the largest subproblem. However, the choice of the convergence

error threshold has implications on the amount of iterations needed. Although

this number could be reduced by increasing the threshold, this is not desirable195

as it leads to a degraded performance. Instead, the physical feasible region

can be further constrained by eliminating solutions that are inconsistent with

the measured outputs and the noise bounds. Such strategy is known as the

set-membership approach.

With all this, the proposed solution consists in designing a DMHE enhanced200

with a set-membership scheme that computes tightened bounds at each time in-

stant (DMHE-SM). Nevertheless, overall problem decomposition into subprob-

lems and definition of the coordination policy need to be carried out first. Hence,

these are discussed in the next section. The derivation of the DMHE-SM will

be tackled afterward.205

3. Decomposition and coordination via OCD and community detec-

tion

3.1. Optimality condition decomposition

The OCD is considered to be a particular Lagrangian relaxation implemen-

tation. As its name suggests, it makes use of the optimality conditions of a210

problem to divide it into smaller subproblems. Moreover, not only does it al-

low for overall system partitioning, but also determines the coordination policy

among subproblems [25, 45].

The centralized estimation problem (2) is restated for convenience:

min
x̂

f(x̂) (3a)

subject to

a (x̂) = 0, (3b)

b (x̂) ≤ 0, (3c)
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where x̂ ∈ Rnx , f (x̂) : Rnx → R, a (x̂) : Rnx → Rna and b (x̂) : Rnx → Rnb .215

Without loss of generality, (3) can be further simplified by only retaining the

inequality constraints. Indeed, those cases featuring equality constraints can be

dealt with in an analogous fashion [45]. The problem is restated as shown below:

min
x̂

f(x̂) (4a)

subject to

b (x̂) ≤ 0. (4b)

The OCD assumes that (4) can be divided into subproblems. To illustrate

this, the following reformulation is introduced:220

min
{x̂(i)}L

i=1

L∑
i=1

f (i)
(
x̂(i)
)

(5a)

subject to

h
(
x̂(1), ..., x̂(L)

)
≤ 0, (5b)

g(i)
(
x̂(i)
)
≤ 0, i ∈ {1, ..., L}, (5c)

where L represents the total number of subproblems into which (4) decomposes,

x̂(i) represents the subset of states to be estimated in the i-th subproblem and

f (i)(x̂(i)) denotes the cost function associated with the i-th subproblem. Fur-

thermore, (5b) comprises the complicating constraints, i.e., constraints that fea-

ture variables pertaining to different subproblems, and whose existence prevents225

the overall problem from decomposing into L completely independent subprob-

lems.

The method of Lagrange multipliers can be used to simplify the resolution

of a problem. Therefore, (5) can be relaxed as follows:

min
{x̂(i)}L

i=1

L∑
i=1

f (i)
(
x̂(i)
)

+

L∑
i=1

λ(i)h(i)
(
x̂(1), ..., x̂(L)

)
(6a)
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subject to

h(i)
(
x̂(1), ..., x̂(L)

)
≤ 0, i ∈ {1, ..., L}, (6b)

g(i)
(
x̂(i)
)
≤ 0, i ∈ {1, ..., L}, (6c)

where λ(i) is the vector of Lagrange multipliers associated to h(i), with i =230

1, ..., L.

The relaxed overall problem (6) can be decomposed in L subproblems if the

values of those variables pertaining to the rest of subproblems are fixed. Then,

the i-th subproblem can be posed in the following manner:

min
x̂(i)

f (i)
(
x̂(i)
)

+

L∑
j=1,j 6=i

f (j)
(

¯̂x(j)
)

(7a)

+

L∑
j=1,j 6=i

λ̄(j)h(j)
(

¯̂x(1), ..., ¯̂x(i−1), x̂(i), ¯̂x(i+1), ..., ¯̂x(L)
)

subject to

h(i)
(

¯̂x(1), ..., ¯̂x(i−1), x̂(i), ¯̂x(i+1), ..., ¯̂x(L)
)
≤ 0, (7b)

g(i)
(
x̂(i)
)
≤ 0, (7c)

and the variables with an overline represent fixed values. Moreover, note that235

different distributions of complicating constraints among the subproblems yield

the same solution.

The OCD achieves coordination among subproblems by relaxing those com-

plicating constraints of the j-th block that include variables from the i-th sub-

problem in the i-th subproblem. In this way, the effect of the solution of the240

i-th subproblem on the j-th subproblem is directly accounted for in the cost

function of the i-th subproblem. Thus, coordination of subproblems regarding

complicating constraints is straightforward, and is accomplished by performing

the multiplier updates as

λi ← λi + αhi, i ∈ {1, ..., L}, (8)
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with α an appropriate constant and hi is evaluated using the latest solution.245

The methodology performs decomposition of the global problem by means

of the manipulation of the KKT conditions, which can be expressed as [46]:

∇x̂(i)fi

(
x̂
(i)
∗

)
+

L∑
i=1

∇ᵀ
x̂(i)h

(i)
(
x̂
(1)
∗ , ..., x̂

(L)
∗

)
λ
(i)
∗ (9a)

+

L∑
i=1

∇ᵀ
x̂(i)g

(i)
(
x̂
(i)
∗

)
ν
(i)
∗ = 0, i ∈ {1, ..., L},

h(i)
(
x̂
(1)
∗ , ..., x̂

(L)
∗

)
≤ 0, i ∈ {1, ..., L}, (9b)(

h(i)
(
x̂
(1)
∗ , ..., x̂

(L)
∗

))ᵀ
λ
(i)
∗ = 0, i ∈ {1, ..., L}, (9c)

λ
(i)
∗ ≥ 0, i ∈ {1, ..., L}, (9d)

g(i)
(
x̂
(i)
∗

)
≤ 0, i ∈ {1, ..., L}, (9e)(

g(i)
(
x̂
(i)
∗

))ᵀ
ν
(i)
∗ = 0, i ∈ {1, ..., L}, (9f)

ν
(i)
∗ ≥ 0, i ∈ {1, ..., L}, (9g)

where ∗ indicates optimal value.

All in all, OCD is a decomposition and coordination approach that resorts

to the generation and manipulation of the KKT matrix associated to the overall250

problem. As a result, a suitable set of subproblems can be determined. However,

the OCD does not yield the optimal decomposition; nor is it concerned with

identifying the subproblems. Hence, a complementary method to the OCD that

provides the optimal partitioning is discussed next.

3.2. Community-detection-based optimal partitioning255

The KKT matrix contains information regarding the system structure and

connections among variables. The same information can be expressed by means

of the graph G = (N , E). In the case of an estimation problem, G captures the

connections among outputs, system states and unmeasurable system states [47].

Partitioning the KKT matrix can thus be approached using graph theory260

techniques. Traditional methods have generally aimed at determining block-
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diagonal or block-triangular structures [23]. A different approach known as

community detection has emerged more recently, and is concerned with identi-

fying community structures within networks, i.e., clusters of densely connected

nodes which are more sparsely connected to other clusters [24]. A metric called265

modularity is employed to assess this property for a certain network decompo-

sition, and is defined as [48]

M =
1

2m

∑
i,j

(
Aij −

kikj
2m

)
δ (ci, cj) , (10)

where M quantifies the resulting decomposition modularity, m denotes the sum

of weights of the edges, Aij is the weight of the edge connecting the i-th and j-th

nodes, ki and kj denote the sum of weights of all edges that connect the i-th270

and j-th nodes with the remaining nodes, respectively, ci and cj indicate the

communities that the i-th and j-th nodes belong to, respectively, and δ (ci, cj)

is the Kronecker delta function:

δ (ci, cj) =

1 if the i-th and j-th belong to identical communities,

0 otherwise.

(11)

In the light of the above information, community detection seeks to de-

termine the decomposition for which a maximal modularity is attained [49].275

Although modularity maximization is an NP-hard problem [50], various ap-

proaches that provide near-optimal performances have been developed, such as

fast unfolding [51] and spectral clustering [52]. Fast unfolding is selected in this

work to determine communities into which the overall system decomposes. It

consists of two phases that are reiterated until no further improvement is pos-280

sible, hence generating the optimal partitioning. An initial partition consisting

of a single node per community is considered. The first phase (modularity opti-

mization) requires to compute the modularity gain obtained if the i-th node is

assigned to a neighboring community. This is done for each node in the graph.

The second phase (community aggregation) involves adding each node to the285
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Algorithm 1 The fast unfolding algorithm

Require: graph G

1: Initialization: assign each node in N to a different community

2: Evaluate modularity gain ∆M resulting from allocating the i-th node in the

j-th community ∀i, j ∈ N and j ∈ N (i), as

∆M =

(∑
in +ki,in

2m
−
(∑

tot +ki
2m

)2
)
−

(∑
in

2m
−
(∑

tot

2m

)2

−
(
ki
2m

)2
)
,

with
∑

in the total weight of edges in the community of destination,
∑

tot

the total weight of edges connected with the community of destination, ki

the sum of weights of edges incident to the i-th node, ki,in the total weight

of edges linking the i-th node to the j-th community and m the total weight

of all edges in the network

3: Place i-th node in the community for which ∆M is maximum

4: Repeat 2–3 for all nodes until no additional improvement is possible

5: Build a new network with identified communities as nodes

6: Repeat 2–5 until communities remain invariable and a maximum M is

achieved

neighboring community that yields the maximal modularity gain. This proce-

dure is repeated iteratively on the resulting network, in which the communities

formed in the prior phase are the new nodes, and the new weights of the edges

can be obtained as the sums of all edges among communities. Algorithm 1

summarizes these steps and provides additional insight.290

Finally, the partitioning approach is incorporated into the final OCD-based

decomposition and coordination scheme sketched in Algorithm 2.

4. Distributed state estimation

The approach described in the previous section allows to decompose (2)

into a set of minimally coupled subproblems and address coordination of the295

solutions. Building on these results, a DMHE-SM algorithm is introduced to
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Algorithm 2 OCD-based decomposition and coordination scheme

Require: overall MHE problem (2)

1: Formulate KKT matrix for (2) using (9)

2: Determine graph G equivalent to the KKT matrix

3: Execute Algorithm 1

4: Rearrange matrix of KKT conditions according to final communities

5: Formulate MHE local subproblems based on rearranged KKT matrix

deal with the subproblems.

The overall state estimation strategy can be thought of as a two-step ap-

proach. In a first stage, the feasible region (according to physical and operational

constraints) of state estimates is tightened by using the consistency between the300

system outputs and the disturbance and noise bounds. Then, the DMHE solves

a distributed estimation problem with tightened bounds that yields the optimal

state estimates.

4.1. Bound tightening using the set-membership approach

Physical bounds on the states can be tightened considering the measured305

system outputs and known noise bounds. The set-membership approach con-

structs a compact set that bounds the system states that are compatible with

the measurements and the noise bounds [5]. These sets can be represented using

different geometric figures, e.g., ellipsoids, polytopes and zonotopes [53]. While

general polytopes yield tighter enclosures than ellipsoids, efficient results can310

only be obtained in those cases with a reasonable amount of observations and

order of the system [4]. Conversely, the use of ellipsoids might yield rough en-

closures of the consistent state sets [54]. Zonotopes constitute an interesting

trade-off, as they are characterized by superior compactness over ellipsoids, and

offer reduced complexity with respect to polytopes [3].315

Zonotopes are described by a center and a generator matrix (also referred to

as matrix of segments), and can be used to represent sets W and V introduced

in Section 2 as follows:
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W = 〈cw,Ew〉, (12a)

V = 〈cv,Ev〉, (12b)

where cw ∈ Rnx and cv ∈ Rny are the centers, and Ew ∈ Rnx×nx and Ev ∈

Rny×ny are the generator matrices. Moreover, Ew and Ev are diagonal matrices320

whose entries correspond to disturbance and noise bounds, respectively.

The zonotopic set-membership approach employed in this work follows the

design reported in [4]. The main steps performed at each time instant are sum-

marized in Algorithm 3. It should be noted that, with some abuse of notation,

the second step is carried out by successively updating the center and segments325

considering one measurement from the output vector at a time. Moreover, it

can be observed that the computation of R
(c)
k results in matrices of increasing

dimensions. To this end, the reduction operations given by [54, Eqs. (8)–(10)]

must be performed.

Algorithm 3 needs to be adapted so that it can provide an appropriate330

input to the DMHE. Indeed, states are estimated in each subproblem for a

certain input-output data window, hence bounds should be computed for the

same whole window. To this end, some ideas presented in [17] to compute

tightened bounds in a distributed manner are used. Then, Algorithm 4 provides

the integration of the set-membership approach within the DMHE framework,335

sketching the steps followed by the l-th agent at every time instant within the

window, with l = 1, ..., L, and L is the total number of subproblems. The result

is a set of tightened bounds for all subproblems for the corresponding window.

4.2. The DMHE-SM algorithm

The final solution combines the CMHE (2), Algorithms 1 and 2 for de-340

composition of (2) and determination of the coordination policy for the iden-

tified subproblems, and Algorithms 3 and 4 for bound tightening using the

set-membership approach. Note that Algorithms 1 and 2 can be solved offline,

and their solution should be available before the start of online computations.
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Algorithm 3 The zonotopic set-membership approach [4]

Require: A, B, C, Ew, Ev, c
(c)
k−1, R

(c)
k−1, input-output data

1: Step 1 (prediction). Use the corrected zonotope
〈
c
(c)
k−1,R

(c)
k−1

〉
at the previ-

ous time instant to compute

c
(p)
k = Ac

(c)
k−1 + Buk−1,

R
(p)
k = [AR

(c)
k−1 Ew],

where c
(p)
k and R

(p)
k are the predicted center and segments of the zonotope

at current time instant k.

2: Step 2 (update). Update
〈
c
(p)
k ,R

(p)
k

〉
using the i-th output as follows:

3: for i = 1 : ny do

4: Compute the free vector λi ∈ Rnx as

λi =
(
R

(c)
k−1

(
R

(c)
k−1

)ᵀ
Cᵀ

i

)(
CiR

(c)
k−1

(
R

(c)
k−1

)ᵀ
Cᵀ

i + EviE
ᵀ
vi

)−1
such that λi minimizes the Frobenius norm of the zonotope.

5: Correct the zonotope as

c
(c)
k = c

(p)
k + λi

(
yi −Cic

(p)
k

)
,

R
(c)
k = [(I− λiCi)R

(p)
k − λiEvi ],

and construct tightened bounds at time instant k using
〈
c
(c)
k ,R

(c)
k

〉
.

6: end for

The DMHE problem solved by the l-th agent can be formulated based on345

(2) and (7) as follows:

min
{x̂(l)

i|k}
k
i=k−N+1

J (l)
(
x̂
(l)
i|k

)
+

∑
m∈N (l)

J (m)
(
x̂
(m)
i|k

)
+ (13a)

λ(m)

[(
w

(m)
i|k −

(
x̂
(m)
i+1|k −A(m)x̂

(m)
i|k −B(m)u

(m)
i

))
+
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Algorithm 4 Set-membership bound tightening in the DMHE framework

Require: parameters in Algorithm 3

1: for i = (k −N + 1) : k do

2: Send
〈
c
(c,l)
i−1 ,R

(c,l)
i−1

〉
to all neighbors

3: Receive
〈
c
(c,m)
i−1 ,R

(c,m)
i−1

〉
, ∀m ∈ N (l)

4: Obtain input-output data pair
(
u
(l)
k ,y

(l)
i

)
5: Compute

〈
c
(c,l)
i ,R

(c,l)
i

〉
using Algorithm 3 and [17, Eqs. (6) and (23)]

6: end for

7: Obtain tightened bounds X (l)
SM for the considered time window

(
v
(m)
i|k −

(
y
(m)
i −C(m)x̂

(m)
i|k

))]

subject to

w
(l)
i|k = x̂

(l)
i+1|k −

(
A(l)x̂

(l)
i|k + B(l)u

(l)
i

)
, i ∈ {k −N + 1, ..., k − 1}, (13b)

v
(l)
i|k = y

(l)
i −C(l)x̂

(l)
i|k, i ∈ {k −N + 1, ..., k − 1}, (13c)

x̂
(l)
j|k ∈ X

(l)
SM , j ∈ {k −N + 1, ..., k}, (13d)

where l andm represent information pertaining to the l-th and m-th subsystems,

respectively. It is recalled that the values of the variables with the superscript

m are determined in the m-th subsystems, and are thus regarded as parameters

in the l-th subsystems. Note also that the l-th and m-th problems are coupled350

(or equivalently, neighbors) if one or more variables appear in the equations of

both subproblems, which may be expressed as m ∈ N (l). Moreover, J (l) and

J (m) are as in (2a), but adapted to the l-th and m-th subsystems, respectively.

With all this, Algorithm 5 describes the main steps that must be followed to

carry out the online DMHE-SM approach. As mentioned before, the solutions355

of Algorithms 1 and 2 need to be available before online computations can start.

4.3. Convergence analysis of the DMHE-SM

Algorithm 5 can be employed for the purpose of state estimation for any sys-

tem that can be described by (1), provided that input-output data is available.
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Algorithm 5 Online DMHE-SM algorithm

Require: Subproblems (13);
{(

u
(l)
i ,y

(l)
i

)}
, l = 1, ..., L

1: while k ≤ tsim do

2: Initialize Lagrange multipliers in all subproblems

3: Provide
{(

u
(l)
i ,y

(l)
i

)}k

i=k−N+1
to the l-th subproblem, l = 1, ..., L

4: Execute Algorithm 4 and obtain tightened bounds

5: Perform one iteration for each subproblem

6: while stop criterion not satisfied do

7: Exchange last solution among coupled subproblems

8: Update Lagrange multipliers using (8)

9: Perform a new iteration for each subproblem

10: end while

11: Extract x̂
(l)
k|k, l = 1, ..., L

12: k ← k + 1

13: end while

Then, convergence of the proposed approach can be examined in two steps:360

1. The first part is concerned with the set-membership approach. The method-

ology devised in [4] is followed, which determines a guaranteed bound of

the uncertain system trajectory at every sampling instant [4, Property 3].

2. The second part examines the convergence of the DMHE, which can be

analyzed with independence of the set-membership results. Indeed, the365

set-membership approach only tightens the original bounds, hence the

MHE formulation remains invariable. Then, its convergence can be dis-

cussed at two different levels:

2.1. Convergence of the decomposition algorithm (OCD) is guaranteed by

[45, Eqs. (5.97)–(5.100)].370

2.2. The choice and update of certain weighting matrices guarantees con-

vergence of the DMHE [19, Theorem 1]. In particular, the initial

19



penalty matrix, which is denoted with P−1 in this paper, can be up-

dated as described in [19, Eqs. (26)–(28)]. Another possibility con-

sists in using the tightened bounds (computed in the set-membership375

step detailed in Algorithm 4) to update the initial penalty matrix as

in [54, Definition 4], where a procedure to generate this covariance

matrix from the zonotope generator matrix is provided.

5. Case study

The efficacy of the proposed distributed state estimation methodology is380

assessed by means of a typical reactor-separator process. This benchmark case

study has been widely employed in the literature to illustrate many control and

state estimation approaches [12, 38, 55–63].

5.1. System description

The reactor-separator system, depicted in Fig. 1, features two continuously385

stirred tank reactors and a vapor-liquid separator [12, 57]. Two streams of pure

reactant A, denoted by Ff1 and Ff2 , are fed to both reactors and transformed

into desired product B according to the first-order reaction A
r1−→ B. A second

parallel first-order reaction B
r2−→ C causes B to be lost to side product C, where

r1 and r2 represent the reaction rates [56]. The stream leaving the first reactor,390

i.e., F1, is fed to the second reactor, and contains all components A, B and

C. In turn, the outlet stream of the second reactor, i.e., F2, is supplied to the

separator, which works at equilibrium conditions to isolate B from the mixture

[62]. A recycle stream Fr is supplied by the separator to the first reactor, while

simultaneously purging a small ratio, denoted by ε, to prevent accumulation of395

C [58]. Furthermore, the heat flows Q1, Q2 and Q3 are supplied by the jackets

to the two reactors and the separator, respectively.

The subsequent model characterizes the holdup, temperature and concen-

tration dynamics of species A and B:
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Figure 1: Schematic representation of the reactor-separator process

dV1
dt

= Ff1 + Fr − F1, (14a)

dV2
dt

= Ff2 + F1 − F2, (14b)

dV3
dt

= F2 − (1 + ε)Fr − F3, (14c)

dT1
dt

=
Ff1

V1
(T0 − T1) +

Fr

V1
(T3 − T1) +

Q1

ρCpV1
(14d)

− µ

Cp

(
∆Hr1k

0
1 exp

(
−E1

RT1

)
xA1 + ∆Hr2k

0
2 exp

(
−E2

RT1

)
xB1

)
,

dT2
dt

=
Ff2

V2
(T0 − T2) +

F1

V2
(T1 − T2) +

Q2

ρCpV2
(14e)

− µ

Cp

(
∆Hr1k

0
1 exp

(
−E1

RT2

)
xA2 + ∆Hr2k

0
2 exp

(
−E2

RT2

)
xB2

)
,

dT3
dt

=
F2

V3
(T2 − T3) +

Q3

ρCpV3
, (14f)

dxA1

dt
=
Fr

V1

(
αAxA3

αAxA3 + αBxB3 + αC (1− xA3
− xB3

)
− xA1

)
(14g)

+
Ff1

V1
(xA0 − xA1)− k01 exp

(
−E1

RT1

)
xA1,

dxB1

dt
=
Fr

V1

(
αBxB3

αAxA3 + αBxB3 + αC (1− xA3 − xB3)
− xB1

)
(14h)

− Ff1

V1
xB1 + k01 exp

(
−E1

RT1

)
xA1 − k02 exp

(
−E2

RT1

)
xB1,
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Table 1: Description of the process parameters

Parameter Description Value Unit

ρ Flow stream density 1000 kg/m3

Cp Flow stream heat capacity 4.2 kJ/kgK

xA0 Mole fraction of A in pure reactant stream 1 –

T0 Temperature of pure reactant streams 359.1 K

{k01, k02} Pre-exponential factors for reactions 1, 2 {2.77, 2.5} × 103 1/s

{E1, E2} Activation energies of reactions 1, 2 {5, 6} × 104 kJ/kmol

{∆H1,∆H2} Enthalpies of reactions 1, 2 −{6, 7} × 104 kJ/kmol

{αA, αB , αC} Relative volatilities of A, B, C {5, 1, 0.5} –

R Universal gas constant 8.314 kJ/kmolK

ε Purge ratio 0.02 –

µ Flow stream molality 0.00279 kmol/kg

dxA2

dt
=
Ff2

V2
(xA0 − xA2) +

F1

V2
(xA1 − xA2)− k01 exp

(
−E1

RT2

)
xA2, (14i)

dxB2

dt
=
F1

V2
(xB1 − xB2)− Ff2

V2
xB2 + k01 exp

(
−E1

RT2

)
xA2 (14j)

− k02 exp

(
−E2

RT2

)
xB2,

dxA3

dt
=
F2

V3
(xA2 − xA3) (14k)

− (1 + ε)Fr

V3

(
αAxA3

αAxA3 + αBxB3 + αC (1− xA3
− xB3

)
− xA3

)
,

dxB3

dt
=
F2

V3
(xB2 − xB3) (14l)

− (1 + ε)Fr

V3

(
αBxB3

αAxA3 + αBxB3 + αC (1− xA3 − xB3)
− xB3

)
,

where V , T , xA and xB are the system variables and denote volumetric holdup,400

temperature and mole fractions of A and B, respectively. Moreover, the sub-

scripts 1, 2 and 3 denote magnitudes associated with the outlet stream of the

first and second reactors and the separator, respectively. Furthermore, Ff1 , Ff2 ,

F1, F2, F3, Fr, Q1, Q2 and Q3 are the manipulated inputs. The remaining terms

in (14) are physical parameters described in Table 1.405
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Table 2: Reference values of each state

State Tracking zone I Tracking zone II Tracking zone III

V ref
1 [m3] 1 1.6 1.2

V ref
2 [m3] 0.5 0.8 0.6

V ref
3 [m3] 1 1.4 1.1

T ref
1 [K] 432.4 410.2 447.1

T ref
2 [K] 427.1 407.5 442.3

T ref
3 [K] 432.1 411.0 447.4

xrefA1
0.536 0.733 0.265

xrefB1
0.448 0.264 0.657

xrefA2
0.545 0.724 0.287

xrefB2
0.438 0.272 0.636

xrefA3
0.298 0.507 0.103

xrefB3
0.670 0.485 0.765

5.2. Experimental design

Testing the effectiveness of the set-membership based distributed state esti-

mation approach requires input-output process data to be available. To this end,

the output tracking problem designed in [62] is implemented. This regulation

problem considers three tracking zones, which correspond to intermediate, low410

and high overall conversion of A into B. The reference values of the states and

the corresponding steady state inputs are given in Tables 2 and 3, respectively.

Moreover, the initial state values are provided in Table 4.

It should be noted that the output tracking problem is solved in the presence

of measurement and process noise. Hence, white noise with a signal-to-noise415

ratio of 40 dB is added to each sample, following the approach presented in [62].

Note that this information allows to define numerical values for (12).

Once the input-output data has been generated for the whole duration of the

simulation, appropriate truncated data sequences are supplied to the DMHE-

SM at every sampling instant. However, only a subset of the states are assumed420
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Table 3: Steady-state input values

Input Tracking zone I Tracking zone II Tracking zone III

F ss
f1

[m3/h] 5.04 8.06 4.03

F ss
f2

[m3/h] 5.04 7.05 3.53

F ss
1 [m3/h] 22.04 35.26 17.63

F ss
2 [m3/h] 27.08 42.31 21.16

F ss
3 [m3/h] 9.74 14.57 7.29

F ss
r [m3/h] 17 27.2 13.6

Qss
1 [kJ/h] 715.3 ×103 786.8 ×103 572.2 ×103

Qss
2 [kJ/h] 579.8 ×103 637.8 ×103 463.8 ×103

Qss
3 [kJ/h] 568.7 ×103 625.6 ×103 455.0 ×103

Table 4: Initial state values

State Value State Value

V 0
1 [m3] 0.7 T 0

1 [K] 400

V 0
2 [m3] 0.7 T 0

2 [K] 400

V 0
3 [m3] 1.5 T 0

3 [K] 400

x0A1
0.65 x0B1

0.3

x0A2
0.65 x0B2

0.3

x0A3
0.65 x0B3

0.3

to be measurable, while the rest must be estimated. The choice of measured

states in this work is aligned with that of [64], thus considering that only holdup

volumes and temperatures can be measured online.

The estimation problem is solved considering the same sampling time and

prediction horizon reported in [62] for the output tracking problem, i.e., Ts =425

180 s and N = 15 samples. Simulations are then performed in a computer

with an Intel Core i7-8665U processor running at 1.9GHz with 8GB RAM.
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Furthermore, simulation results are obtained in Matlab R2020b3 using IBM

ILOG CPLEX Optimization Studio V12.10.04 and the YALMIP toolbox [65].

5.3. Results and discussion430

Before proceeding with the analysis of results, it should be mentioned that

the issue of input-output data generation via MPC is not addressed in this

paper. Indeed, the proposed approach assumes that suitable data sequences are

provided at regular time intervals. The interested reader is advised to check [62]

for a comprehensive control problem description and analysis of results.435

As a first step, the CMHE problem for the reactor-separator system is formu-

lated as in (2). Choice of physical bounds and weighting matrices is as follows

[47]:

� Physical bounds on state estimates are chosen to be the same as those

considered in the MPC. Therefore, a ±80% bound on the states (with440

respect to reference values) is selected.

� Diagonal weighting matrices are defined so as to compensate the different

magnitudes of the states, thus assigning equal priorities. Therefore, inverse

values of the corresponding reference values are selected.

The KKT conditions associated to the resulting CMHE can be formulated445

using (9). Since the objective function is completely separable, its associated

graph can be constructed following the procedure reported in [60]. Then, the

fast unfolding algorithm5 allows to identify three communities, one per vessel,

thus matching the results reported in [64]. More precisely, the i-th community

consists of states Vi, Ti, xAi and xBi , with i = 1, 2, 3. Hence, the following450

couplings among subsystems can be identified:

3https://nl.mathworks.com/products/new_products/release2020b.html
4https://www.ibm.com/support/pages/downloading-ibm-ilog-cplex-optimization-studio-v12100
5https://perso.uclouvain.be/vincent.blondel/research/louvain.html
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ψ1,2 = {T1, xA1
, xB1

},

ψ2,3 = {T2, xA2 , xB2},

ψ3,1 = {T3, xA3
, xB3

},

where ψi,j represents the states that are associated with (and hence optimized

in) the i-th subproblem, and at the same time influence the j-th subproblem,

with i, j = 1, 2, 3. Then, three local problems are derived from the overall

problem using (13), and the DMHE-SM approach is executed as in Algorithm455

5.

The solutions obtained using three different MHE schemes are presented

and compared next, namely the centralized (CMHE) and two distributed ap-

proaches, one with (DMHE-SM) and another without set-membership bound

tightening (thus removing line 4 in Algorithm 5). Then, the state estimates460

computed using each approach for the first, second and third subsystems are

depicted in Figs. 2, 3 and 4, respectively. It is worth noting that there is no

significant difference in terms of performance between the DMHE-SM and the

DMHE with physical bounds, which in turn does not seem to deviate much

from the CMHE results. Moreover, it can be observed that the set-membership465

approach allows for bound tightening with respect to physical bounds (which

are not even reproduced to offer better visualization of the results).

In the light of the results, the DMHE schemes appear to perform only slightly

worse than the CMHE. To ascertain whether this is the case, centralized and

distributed performances can be further compared using the cumulative cost470

over the entire simulation duration This information is presented in Fig. 5, and

allows to conclude that both DMHE lead to a minor decrease of performance,

which amounts to less than 3% with respect to that of the CMHE. This is-

sue is directly linked to the stop criterion mentioned in Algorithm 5, which is
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Figure 2: State estimation results for the first subsystem: CMHE (blue solid line), DMHE

(red solid line), SM bounds (gray solid line) and references (black dashed line)
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Figure 3: State estimation results for the second subsystem: CMHE (blue solid line), DMHE

(red solid line), SM bounds (gray solid line) and references (black dashed line)

formulated following the ideas in [39, 45] as475

√√√√ 3∑
l=1

(
max

(∣∣∣h(l)
∗

∣∣∣))2

≤ 10−2, (15)
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Figure 4: State estimation results for the third subsystem: CMHE (blue solid line), DMHE

(red solid line), SM bounds (gray solid line) and references (black dashed line)
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Figure 5: Cost function evaluation for CMHE and DMHE (blue: zone I; red: zone II; yellow:

zone III)

where h
(l)
∗ denotes the values of the complicating constraints once the solutions

are substituted, and the threshold is selected bearing in mind the trade-off

between accuracy of the solution and computational burden.

Even though centralized implementations result in optimal performances,

distributed strategies can lead to lower computation times (among other ad-480
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Figure 6: Evaluation of total computation times for CMHE and DMHE (blue: zone I; red:

zone II; yellow: zone III)

Table 5: Summary of average computation times

Approach Nr. iterations Bound tightening [s] Total comp. time per sample [s] Time reduction w.r.t. CMHE [%]

CMHE 1 — 0.1794 —

DMHE ≤ 4 — 0.1533 14.55

DMHE-SM ≤ 2 0.0586 0.1352 24.61

vantages), thus offering an interesting trade-off. This issue is examined by

determining the total computation times of the three approaches, which are de-

picted in Fig. 6. It can be noted that the distributed architectures require lower

computation times with respect to the centralized scheme. Although the sub-

problems solved by the former approaches are smaller than the overall problem,485

several iterations are often needed to ensure convergence as defined in (15). Re-

garding the comparison between distributed schemes, bound tightening carried

out in the DMHE-SM approach results in less iterations than the DMHE with

physical bounds. Furthermore, additional overhead derived from computation

of tightened bounds is compensated by the reduction of number of iterations.490

A summary of computation times and required number of iterations is pro-

vided in Table 5. It can then be resolved that the DMHE-SM ultimately con-

stitutes the most suitable approach, as it is almost 25% faster than the CMHE

with a mere relative loss of performance below 3%.

29



6. Conclusions495

This work has presented a two-step state estimation approach for large-scale

systems, combining set-membership and moving horizon estimation. The former

is used at the initial stage, tightening physical bounds on states using the consis-

tency between the model, the measured outputs and the disturbance and noise

bounds. An MHE is then employed to determine the optimal state estimates,500

benefiting from a tightened feasible region. Although not explicitly considered

in this paper, the methodology could be further enhanced to tackle the case of

systems characterized by parametric uncertainty, using results available in the

literature [66, 67].

The state estimation strategy is implemented and solved in a distributed505

manner. To this end, the set of subproblems is coordinated using the OCD.

This is a particular implementation of Lagrangian relaxation, and consists in

manipulating the KKT optimality conditions to yield subproblems whose solu-

tion converges to the optimal centralized solution. However, system partitioning

needs to be determined separately, as the OCD addresses the coordination but510

not the decomposition. Hence, system partitioning is determined using commu-

nity detection techniques, as close-to-optimal modularity decompositions are

obtained. While this step is carried out in an offline manner, future research

could regard the issue of online re-partitioning. Then, the initial partitioning,

which would still be computed offline, could evolve based on time-varying cou-515

pling conditions. The complete approach is then tested considering a typical

reactor-separator system employed in the process industry, comparing its per-

formance to those of a CMHE and a DMHE without set-membership. The

results allow to validate the approach and highlight its performance, as it im-

proves computational time while keeping loss of performance at a minimum with520

respect to the CMHE.

The distributed state estimation approach derived in this work complements

and extends the results reported in [39], which mainly dealt with distributed

control of large-scale systems without explicit consideration of the effect of dis-
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turbance and noise. The combination of the two algorithms would allow for525

robust distributed control and state estimation of large-scale systems, which is

stated to be the main motivation behind the developments in [39]. Indeed, the

aim is that of developing a methodology that enables to manage inland wa-

terways in an optimal manner, and which is robust to natural and operational

disturbances, e.g., unknown flows and lock operations, thus extending the cen-530

tralized results provided in [68]. However, inland waterways models belong to

the class of time-delay systems. Therefore, the application of the methodol-

ogy to inland waterways would require an in-depth theoretical analysis, as it

has been developed for systems that are not characterized by system delays.

Another extension could regard the integration of the scheme within the hierar-535

chical architecture presented in [69], thus allowing to tackle other features, e.g.,

the effect of tides and the existence of controlled infrastructure that can only

apply actions from a set of discrete values.
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