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Abstract. Reinforcement Learning (RL) of trajectory data has been used in several
fields, and it is of relevance in robot motion learning, in which sampled trajectories
are run and their outcome is evaluated with a reward value. The responsibility on
the performance of a task can be associated to the trajectory as a whole, or dis-
tributed throughout its points (timesteps). In this work, we present a novel method
for attributing the responsibility of the rewards to each timestep separately by using
Mutual Information (MI) to bias the model fitting of a trajectory.
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1. Introduction

In the application of AI to robot motion learning, it is a common approach to use a policy
represented as a set of parameters that, applied to a parametrized family of functions,
define the robot motion at every timestep. These policy parameters are then perturbed in
order to generate new motions that are evaluated by a reward function. Then, a so-called
Policy Search (PS) [2,3] method obtains a new policy (set of parameters) from the sam-
ples and their measured performance. In generating these new samples, two approaches
were defined in [2]: step-based and episodic-based.

In step-based sampling, a perturbation of the policy is generated at every timestep
of the trajectory and so each trajectory is given a score (reward) value at every timestep.
On the contrary, episode-based sampling perturbs the parameters of a whole trajectory
and runs it. Whilst the step-based approach can provide more information when timestep
performance can be measured, its application to fields such as robotics can become dan-
gerous, as it induces high-frequency perturbations on the reference motion. This is why,
in robotics, step-based methods have been applied to episode-based samples, keeping the
idea of associating a reward to each timestep of a sampled trajectory, but with a smoother
profile. As an example of such methods, in Policy Improvement with Path Integrals (PI2)
[4], the authors define a cost-to-go associated to each sample in order to accordingly give
importance to each timestep of each trajectory. This cost-to-go is then associated with
a probability used as a weight for updating the policy parameters. This method assigns
a responsibility to each timestep by using the time remaining for the trajectory and its
deviation from the mean. However, there is no necessary correlation between the devi-
ation from the mean and the reward. A trajectory could present a lot of variability that
is completely unrelated to its performance. Therefore, in this work, we explore a way to
distribute responsibility by using an indicator of how two variables (deviation from the



mean at current timestep vs whole trajectory reward) are related, namely Mutual Infor-
mation (MI) [1]. By using MI, we obtain relative weights with which to bias the fitting of
the updated policy, i.e, the trajectory stochastic parametrization. In this paper, we firstly
present preliminary concepts in Sec. 2, followed by the proposed methodology in Sec. 3
and the conclusions in Sec. 4.

2. Preliminaries

2.1. Mutual Information

In this work, we will use the MI between two variables and its discretization. In general,
the mutual information between two random variables is a measure of their dependence,
or how much information is obtained from one variable after observing the other, and
is calculated as MI(X ;Y ) = ∑Y ∑X P(x,y)log

(
P(x,y)

P(x)P(y)

)
. In our applications, we neither

have discrete distributions nor have such analytical expressions so as to calculate the
MI. Therefore, we partition the data in bins of an equal number of data points and the
discrete version is used. Using such bins will prevent the method from outliers and non-
linearities.

2.2. Probabilistic Movement Primitives (ProMPs)

For motion characterization, Movement Primitives (MP) are a popular approach in or-
der to easily encode a trajectory. Amongst the most used MPs, Probabilistic Movement
Primitives (ProMPs) [5] present advantages such as that they can fit the time-dependent
variability of the motion, and probability operations such as product and conditioning
can be used on them. Given a number of basis functions per DoF, N f , ProMPs use a time-
dependent matrix Φt = [φ 1

t ; ...;φ
N f
t ] to encode position, φt being the vector of normalized

kernel basis functions (e.g., uniformly distributed Gaussian basis function over time).
Thus, the position and velocity state vector yt can be represented as yt = Φ

T
t ω + εy,

where εy ∼ N (0,Σy) is a zero-mean Gaussian noise and the weights ω are also treated
as random variables with a distribution p(ω) = N (ω|µω ,Σω). Subsequently, the pa-
rameters of the distribution θ = {µω ,Σω ,Σy}, Σy being the state covariance, are fitted by
means of a maximum likelihood estimate, i.e., we compute the sample mean and the sam-
ple covariance of ω . Then the probability of observing a trajectory τ can be expressed as
the product of all timestep probabilities: p(τ;θ) = ∏t

∫
N (yt |ΦT

t ω,Σy)N (ω|µω ,Σω )dω.

3. Methodology

We assume we have a set of Nk trajectories with dimension D, and composed on Nt
timesteps each. Therefore, yk

td will correspond to the d-dimension on the t−th timestep
of the k−th trajectory. Associated with each trajectory, we have a reward Rk that is a
performance indicator. For each timestep t, we will compute the mutual information
MI({yk

td}k∈K ,{Rk}k∈K). Then, we can use an Expectation Maximization-based approach
with ProMPs, such as in [6]. However, in [6] the authors considered that the reward
for each trajectory has to be associated to the trajectory as a whole. In this paper, we



apply the same method with the following differences: The previous reference use a
linear dimensionality reduction in order to reduce the state space’s dimension. Here, we
omit this part, despite it would be straight-forward to add it if necessary. In this paper,
we compute the mutual information between the rewards of the demonstrations and the
variability of trajectories and use it to weigh data. Additionally, in order to penalize
higher mutual information values in low variance parts of the trajectory, we use the term

ηt = trace(Σy) ·MI({Rk}k=1..Nk,{ytk}k=1..Nk) (1)

By adding a factor of the trace of the variance at each time-step, we enforce that the
term ηt is higher when the trajectory values at that timestep present a high correlation
with the reward outcome, in addition to these trajectory values also presenting a higher
variability.

As we also know the rewards Rk (performance of each trajectory), we used Relative
Entropy Policy Search (REPS) in order to convert them to trajectory weights dk but,
differently from [6], we assign each data point ytk an importance equal to δk,t = ηt ·dk.

dk = PS({Rk}k=1..Nk)

3.1. Expectation-Maximization

In this section, we will point out to the main differences with [6] in the formula-
tion. The Expectation Maximization method consists of two steps: First, we evaluate
the probability of the model parameters given each trajectory Yk (vectorized as a col-
umn vector), p(Yk|ω) = N (Yk|ΨT ,INt ⊗ Σy), where ⊗ is the kronecker product and
Ψ

T is the matrix of concatenated kernel functions φt for different dimensions, i.e.,
Ψ

T = [Id ⊗Φ1; ...; Id ⊗ΦNt ]. By operating and using Bayes’ rule, we can obtain that
p(ω|Yk) = N (µk,Σk), with

µk = µω +Σω Ψ
(
INt ⊗Σy +Ψ

T
Σω Ψ

)−1
(Yk −Ψ

T
µω) (2)

Σk = Σω −Σω Ψ
(
INt ⊗Σy +Ψ

T
Σω Ψ

)−1
Ψ

T
Σω . (3)

We will then compute these µk,Σk, and use them on the Maximization step, where
we maximize the weighed expectation of the log-likelihood function in order to obtain
the new parameters θ :

L =
Nk

∑
k=1

Ny

∑
t=1

δtkEω|yk
t ;θ old

[
log
(

p(ω,yk
t ;θ)

)]
. (4)

By solving this equation (see [6]), we obtain that, at each iteration, the new policy pa-
rameters are:



Figure 1. Left: data trajectories used for the proof of concept experiment and their fitting with least-squares.
The red dot marks the desired via-point and the reward associated to each trajectory is the distance from that
viapoint. On the right plot, the proposed method (in black) against the reference [6]. We see that, while both
methods provide a similar result in the area where the reward is decided, at the end of the trajectory, the
proposed method allows for more variance, given the fact that the end position does not affect the reward. Note
different scales in the vertical axis.

µω =

(
Nk

∑
k=1

Nt

∑
t=1

δtk

)−1 Nk

∑
k=1

Nt

∑
t=1

δtkµk (5)

Σω =

(
Nk

∑
k=1

Nt

∑
t=1

δtk

)−1 Nk

∑
k=1

Nt

∑
t=1

δtk
[
Σk +(µω −µk)(µω −µk)

T ] , (6)

Σy =

(
Nk

∑
k=1

Nt

∑
t=1

δtk

)−1 Nk

∑
k=1

Nt

∑
t=1

δtk[Ψ
T
t ΣkΨtΩ

T +(yk
t −Ψ

T
t µk)(y

k
t −Ψ

T
t µk)

T ]. (7)

3.2. Results

In order to test this approach, we generated a set of random time-dependent trajecto-
ries with high variance around a viapoint and on the endpoint (see Fig. 1 left with the
trajectories and their respective mean and variance as a shaded area), and low variance
elsewhere. We defined a reward function for each trajectory that penalizes its distance
from the desired via-point (in red), i.e., the reward is determined by how far the trajec-
tory passes by a certain via-point. Then, we applied the method in [6] with r = d in the
paper, and our method by using REPS [7] to convert trajectory weights to rewards. The
results of fitting both methods are shown in Fig. 1 right, where the mean of both methods
(ours in black, [6] in green) is similar, but the variance at the endpoint is larger in our
method. This is mostly because the MI between the reward values and the endpoint of
the trajectories is small, therefore our method requires less precision and does not give
importance on the final point.



4. Conclusions

In this ongoing work paper, we devised a methodology for re-weighing data in order to
better distribute the responsibility of the reward throughout a trajectory. The preliminary
results in a proof of concept task displayed in Fig. 1 how the method is relieving of
responsibility those parts of the trajectory that do not provide a gain to the reward, and
therefore allow for more variance. In other words, relating the importance of a trajectory
data-point to how much it correlates with the overall performance at that point in the
trajectory allows for a better fitting of the trajectory.
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