
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Solution Methods to the Nearest Rotation Matrix Problem in ℝ
3:

A Comparative Survey

S. Sarabandi | F. Thomas*

Institut de Robòtica i Informàtica Industrial

(CSIC-UPC), ETSEIB, Diagonal 647,

Pavelló E, planta 1, 08028 Barcelona, Spain

Correspondence

*F. Thomas, Email: f.thomas@csic.es

Summary

Nowadays, the Singular Value Decomposition (SVD) is the standard method of

choice for solving the nearest rotation matrix problem. Nevertheless, many other

methods are available in the literature for the 3D case. This paper reviews the most

representative ones, proposes alternative ones, and presents a comparative analysis

to elucidate their relative computational costs and error performances. This analysis

leads to the conclusion that some algebraic closed-form methods are as robust as the

SVD, but significantly faster and more accurate.

KEYWORDS:

Rotation matrices, quaternions, singular value decomposition.

1 INTRODUCTION

One of the most common ways of representing 3D rotations consists in using proper orthogonal matrices. As a consequence,

proper orthogonal matrices are also known as rotation matrices. A 3×3 matrix, say R, is said to be orthogonal if RRT = I, with

I the 3×3 identity matrix, and to be proper if, in addition, det(R) = 1. In other words, the three row and column vectors of R

represent a right-handed orthonormal reference frame.

In some applications — arising in different areas such as aeronautics, robotics, computer vision, and computer graphics —

the obtained rotation matrices do not exactly satisfy the two aforementioned conditions due to numerical or/and measurement

errors. It is then desired to find the nearest rotation matrix to a given noisy rotation matrix, in a given metrics, that exactly satisfy

them.

The available methods for computing the nearest rotation matrices are varied, but a coarse classification permits to divide

them into geometric or algebraic. The organization of this paper reflects this classification. Sections 2 and Section 3 review the

geometric methods and algebraic methods, respectively. Section 4 compares the performance of the described algebraic closed-

form methods — i.e., those that do not rely on any iterative numerical procedure — with respect to the method based on the

SVD. The analysis is limited to algebraic closed-form methods because they permit analyzing symbolically the influence of

each variable on the result; and their computational cost (in terms of the number of arithmetic operations) is constant, which is

important in real-time control loops. Geometric methods are excluded, despite they are also closed-form methods, because they

are mostly based on heuristic arguments. Nevertheless, as it shown in Section 3, they are of practical interest as preconditioners.

Finally, Section 5 summarizes the main conclusions.

1This study does not have any conflicts to disclose. It was partially supported by the Spanish Government through project PID2020-117509GB-

I00/AEI/10.13039/50110001103. This paper has supplementary downloadable material available at http://www.iri.upc.edu/people/thomas/Soft/ComparativeSurvey.zip.

This material consists of several MatlabⓇ scripts that permit to reproduce the results presented in Section 4. No particular requirements, except for an installed copy of

MatlabⓇ, release 2019b or higher, are needed. Contact F. Thomas for questions about this material.

2

2 GEOMETRIC METHODS

These methods are simple and intuitive. They consist in restoring the orthogonality of a noisy rotation matrix by using geometric

constructions built on the reference frame defined by either its row or column vectors. Although these methods do not use what

can be classified as a meaningful optimality criteria, their main virtue is that they provide a fast solution. Thus, the results they

provide can be used as a preconditioner for a more sophisticated method. Indeed, if R̄ is the orthonormalized matrix resulting

from the noisy rotation matrix R using a geometric method, then we can find the nearest rotation matrix to R̄TR ≈ I using any

other method which is known to behave well for matrices close to the identity. If R̂ is the orthonormalized matrix resulting from

this refinement, and the used method is invariant with respect to the reference frame, then the sought orthonormalized matrix is

clearly given by R̄R̂.

2.1 Dot product method and QR factorization

This method can be seen as the particularization of the Gram-Schmidt orthonormalization process1 to three dimensions. If we

denote R = (n o a) the noisy rotation matrix (we adhere here to the standard robotics notation2 p. 26), this method takes n as

a reference vector, then it subtracts from o its projection onto n, then subtracts from a its projections onto n and o, and, finally,

the three vectors are normalized. In algebraic terms, this reads

n̂ =
n

‖n‖ , (1)

ô =
o − (o ⋅ n̂) n̂

‖o − (o ⋅ n̂) n̂‖ , (2)

â =
a − (a ⋅ n̂) n̂ − (a ⋅ ô) ô

‖a − (a ⋅ n̂) n̂ − (a ⋅ ô) ô‖ . (3)

Then, we have that the orthonormalized rotation matrix is given by R̂ = (n̂ ô â). It is not difficult to prove that the original

rotation matrix R and the resulting orthogonal matrix R̂ are related through the expression

R = R̂U, (4)

where U is an upper triangular matrix with positive diagonal elements. Expression (4) is technically known as the QR factoriza-

tion of R3. There are other methods to compute this decomposition, besides the just described one based on the Gram-Schmidt

orthonormalization process. They include the modified Gramm-Schmidt method, and the methods based on Householder

transformations, or Givens rotations. All of them have a direct geometric interpretation. Each has several advantages and

disadvantages4, 5. The algorithm resulting from using Householder transformations is considered superior in terms of the

orthogonality of the resulting matrix, especially if R is close to be singular.

Observe that in this method the sign of det(R̂) equals that of det(R) because the diagonal elements of the upper triangular

matrixU are positive. Thus, this method preserves the orientation of the reference frame defined by R. When the result is desired

to be proper orthogonal even when det(R) < 0, the following method is preferable.

2.2 Cross product method

Alternatively to the previous method, using cross products, we have that

n̂ =
o × a

‖o × a‖ , (5)

ô =
a × n̂

‖a × n̂‖ , (6)

â = n̂ × ô. (7)

Both, the dot and the cross product methods, have the disadvantage that the result is biased by the order in which the column

vectors are taken. Altering this order yields a different result. The cross product method is slightly less asymmetrical than the

dot product method and it is why it is, in general, preferred. The following two methods were designed to give an equal treatment

of the three vectors without preference to any one of them.

3

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

0

0.2

0.4

0.6

0.8

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450.05

10
-10

10
-5

10
-15

10
0

PSfrag replacements

Level of noise (�)Level of noise (�)

M
ea

n
F

ro
b
en

iu
s

n
o
rm

M
ea

n
o
rt

h
o
g
o
n
al

it
y

er
ro

r

FIGURE 1 Frobenius norm of R̂−R and orthogonality error of R̂ for the iterative cross product method as a function of the level

of noise, and for a different number of iterations. These plots result from averaging the estimations obtained using 105 random

matrices for each value of �. Observe how all the plots for the averaged Frobenius norm overlap thus indicating its independence

on the number of iterations.

2.3 Iterative cross product method

This method was proposed in6. It consists in obtaining each column from the other two and averaging the result with the original

value of the column. That is,

n̂ =
(o × a) + n

2
, (8)

ô =
(a × n) + o

2
, (9)

â =
(n × o) + a

2
. (10)

Then,

R̂ =

(
n̂

‖n̂‖
ô

‖ô‖
â

‖â‖
)

(11)

is clearly a new rotation matrix closer to be orthogonal. Then, the idea is simple: this operation can be iteratively repeated until

no relevant improvement is made.

In this method, an average of five iterations is enough to convergence with a variation in each element of the matrix lower

than 10−8 (see6 for details). To verify this result, a set of 105 random rotation matrices are generated1 whose elements are con-

taminated with additive uncorrelated uniformly distributed noise in the interval [−�, �]. Then, we evaluate the mean Frobenius

norm of the difference between these noisy matrices and the estimated rotation matrices, and the mean orthogonality error,

defined as the Frobenius norm of R̂R̂T−I, using an increasing number of iterations of this method. The result of this experiment

appears in Fig. 1 for values of � ranging from 0 to 0.5. We can see how the use of five iterations is enough to obtain excel-

lent results, thus concurring with the conclusions presented in6, where it is also concluded that this simple geometric iterative

method outperforms the two quadratically convergent methods explained in Section 3.

2.4 Equal mean direction method

This method was originally proposed in8 and rediscovered in9. It consists in first computing the mean direction of the column

vectors, that is,

c =
1

3

(
n

‖n‖ +
o

‖o‖ +
a

‖a‖
)
. (12)

Then, the goal is to find the proper rotation matrix that has the same mean direction but whose columns are as “close" as

possible to the columns of R.

Fist of all, let us define the plane Π ∶ {x ∣ (x − p) ⋅ p = 0}, where

p =
c

‖c‖
1√
3
. (13)

1To this end, random points in S
3 are generated using the algorithm described in 7 , which are then considered as unit quaternions that are translated into rotation

matrices.

4

Then,

xp =
‖c‖
n ⋅ c

1√
3
n,

yp =
‖c‖
o ⋅ c

1√
3
o,

zp =
‖c‖
a ⋅ c

1√
3
a,

are the position vectors of the intersections of the lines defined by n, o, and a with Π. Now, we can define the angles

�xy = arccos

⎛
⎜⎜⎝

(
xp − p

)
⋅

(
yp − p

)
‖‖‖xp − p

‖‖‖
‖‖‖yp − p

‖‖‖

⎞
⎟⎟⎠
,

�yz = arccos

⎛
⎜⎜⎝

(
yp − p

)
⋅

(
zp − p

)
‖‖‖yp − p

‖‖‖
‖‖‖zp − p

‖‖‖

⎞
⎟⎟⎠
,

and

�x =
2�xy + �yz − 2�

3
. (14)

This allows us to build the auxiliary rotation matrix

R′ =

⎛
⎜⎜⎝

xp − p

‖‖‖xp − p
‖‖‖

c

‖c‖ a′×n′
⎞
⎟⎟⎠
. (15)

Finally, we obtain

R̂ = (n̂ ô â) , (16)

where

n̂ = p+

√
2

3
R′

(
cos �x sin �x 0

)T
,

ô = p+

√
2

3
R′

(
cos

(
�x+

2�

3

)
sin

(
�x+

2�

3

)
0
)T

,

â = p+

√
2

3
R′

(
cos

(
�x+

4�

3

)
sin

(
�x+

4�

3

)
0
)T

.

3 ALGEBRAIC METHODS

The algebraic methods are based on the minimization of a measure of closeness between the noisy rotation matrix R and the

estimated proper orthogonal matrix R̂. The usual practice is to adopt the Frobenius norm of their difference as the measure of

closeness which is denoted as
‖‖‖R−R̂

‖‖‖F (see10 for a geometric justification of this choice). Thus, the problem is stated as that

of finding R̂ that minimizes

‖‖‖R̂−R
‖‖‖
2

F
= Tr

(
(R̂−R)(R̂−R)T

)
= 3 + ‖R‖2

F
− 2Tr

(
R̂RT

)
, (17)

subject to R̂T R̂ = I. Therefore, the problem boils down to maximizing

Tr
(
R̂RT

)
, (18)

subject to R̂T R̂ = I.

Using Lagrange multipliers, it can be proved that the optimal solution to this constrained optimization problem, in the case

that R is not singular, is given by11, 12:

R̂ = R
(
RTR

)− 1

2 = R (I + E)−
1

2 , (19)

where

E = RTR − I (20)

5

can be seen as an error matrix.

It is easy to verify that R̂ thus obtained is orthonormal, i.e., R̂T R̂ = I. However, there is no guarantee that det(R̂) = +1. To

represent a proper rotation, the orthonormal matrix R̂ has to satisfy this condition as well. Otherwise it represents a reflection,

not a rotation. There is no easy way to enforce this condition, and with poor measurements, it might happen that det(R̂) = −1.

Alternatively, (19) can also be expressed as:

R̂ =
(
RRT

) 1

2
(
RT

)−1
=
(
I + Ē

) 1

2
(
RT

)−1
, (21)

where

Ē = RRT − I (22)

can also be seen as an error matrix.

While (19) is called the primal solution, (21) is referred to as the dual solution. A proof of equivalence between them can be

found in13 or14.

3.1 Series expansion method

This technique was first proposed in15. To obtain an approximate value of the primal solution in (19), we can compute some

terms of its Maclaurin series of (I + E)−
1

2 as follows:

R̂ = R(I + E)−
1

2 = R
(
I −

1

2
E +

3

8
E2 −

5

16
E3 +

35

128
E4 +…

)
. (23)

Likewise, to obtain an approximate value of the dual solution in (21), we can also compute some terms of its Maclaurin series

expansion of
(
I + Ē

) 1

2 as follows:

R̂ = (I + Ē)
1

2 (RT)−1 =
(
I +

1

2
Ē −

1

8
Ē2 +

1

16
Ē3 −

5

128
Ē4 +…

)
(RT)−1. (24)

Obviously, in both cases, only the first few terms are worth using. In many applications, only one term of the series expansion

suffices to get the desired accuracy15. However, for highly noisy systems, this method can not guarantee to converge to the

solution.

By taking up to the linear, quadratic, and cubic terms in (23) and (24), we obtain different levels of approximation. As

explained in16, the resulting formulas can also be applied iteratively in the hope that the result converges to the solution. They are

compiled, after simplification, in Table 1 and Table 2, respectively. The iterative application of these formulas was rediscovered

in17, 18 as the result of reformulating the problem as a dynamical system. However, solving the nearest rotation matrix problem

using these iterative methods is, in general, computationally costly.

To see the influence of the number of iterations in the quality of the result, we can proceed as in Section 2.3. Figs. 2, 3, and

4 show the results for the quadratically, cubically and quadrically convergent formulas, respectively. Two conclusions can be

drawn from these plots:

– The dual formulas perform much better than their primal counterparts. However, this does not come without a cost: the

dual formulas require the computation of the inverse of RT .

– The quadrically convergent formulas do not provide an improvement, with respect to the cubically convergent ones,

deserving the effort of their computation.

There are other iterative methods, derived using other algebraic arguments. One example is the one described in12 resulting

from a gradient projection technique. Unfortunately, its rate of convergence was shown to be linear19 and hence its little prac-

tical interest. Another example is the two-step iterative algorithm proposed in6 where it was also shown to be inferior to the

quadratically convergent primal and dual methods. A particularization of this latter method reappeared in26 using the matrix

sign function to compute the square root of positive definite matrices. Next, we analyze three other methods that deserve some

attention due to their simplicity: the matrix sign function method, the Padé approximant method, and the continued fraction

method. They can also be implemented in iterative form.

6

TABLE 1 Series expansion of the primal solution and derived iterative methods.

Closed-form solution R̂ = R(RTR)−
1

2

Error matrix E = RTR − I

Series solution R̂ = R
(
I −

1

2
E +

3

8
E2 −

5

16
E3 +…

)

Quadratically convergent R0 = R

iterative solution Rn+1 =
1

2
Rn(3I −RT

n
Rn)

Convergence conditions det(R) ≠ 0, 0 ≤ max{�i} ≤
√
3

References 6, 13, 16–20

Cubically convergent R0 = R

iterative solution Rn+1 =
1

8
Rn

(
15I − 10RT

n
Rn + 3(RT

n
Rn)

2
)

Convergence conditions det(R) ≠ 0, 0 ≤ max{�i} ≤ 1.5275

References 17, 18

Quartically convergent R0 = R

iterative solution Rn+1 =
1

16
Rn

(
35I − 35RT

n
Rn + 21(RT

n
Rn)

2 − 5(RT
n
Rn)

3
)

Convergence conditions det(R) ≠ 0, 0 ≤ max{�i} ≤
√
3

References 17, 18, 21

TABLE 2 Series expansion of the dual solution and derived iterative methods.

Closed-form solution R̂ = (RRT)
1

2 (RT)−1

Error matrix Ē = RRT − I

Series solution R̂ =
(
I +

1

2
Ē −

1

8
Ē2 +

1

16
Ē3 −…

) (
RT

)−1

Quadratically convergent R0 = R

iterative solution Rn+1 =
1

2
(RT

n
)−1 +

1

2
Rn

Convergence conditions det(R) ≠ 0

References 6, 13, 22–24

Cubically convergent R0 = R

iterative solution Rn+1 = Rn(3I + RT
n
Rn)(I + 3RT

n
Rn)

−1

Convergence conditions det(R) ≠ 0

References 17, 18, 24

Quartically convergent R0 = R

iterative solution Rn+1 = Rn(I + 3RT
n
Rn)

(
3RT

n
Rn + (RT

n
Rn)

2
)−1

Convergence conditions det(R) ≠ 0

References 17, 18, 25

7

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

0

0.5

1

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

10
-10

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

0

0.5

1

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

10
-10

10
0

PSfrag replacements

Level of noise (�)Level of noise (�)

M
ea

n
F

ro
b
en

iu
s

n
o
rm

M
ea

n
o
rt

h
o
g
o
n
al

it
y

er
ro

r

FIGURE 2 Frobenius norm of R̂−R and orthogonality error of R̂ for the primal quadratically convergent formula (top row)

and its dual (bottom row) as a function of the level of noise, and for a different number of iterations. 106 random matrices are

generated for each value of �.

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

0

0.2

0.4

0.6

0.8

0.05 0.1 0.2 0.25 0.3 0.35 0.4 0.45 0.50.15

10
-10

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

0

0.2

0.4

0.6

0.8

0.05 0.1 0.2 0.25 0.3 0.35 0.4 0.45 0.50.15

10
-10

PSfrag replacements

Level of noise (�)Level of noise (�)

M
ea

n
F

ro
b
en

iu
s

n
o
rm

M
ea

n
o
rt

h
o
g
o
n
al

it
y

er
ro

r

FIGURE 3 Frobenius norm of R̂−R and orthogonality error of R̂ for the primal cubically convergent formula (top row) and its

dual (bottom row) as a function of the level of noise, and for a different number of iterations. 106 random matrices are generated

for each value of �.

3.2 Matrix sign function method

Given the positive definite matrix A, its sign is defined as:

sign(A) = A
(
A2

)− 1

2 . (25)

It is possible to derive iterative methods for computing the square root of a matrix by relying on this function. In our case, the

one described in20, based on the matrix sign function algorithm described in27, permits computing the square root of RRT using

the iterative application of the following formula

Sn+1 =
1

2

(
Sn + S0S

−1
n

)
, (26)

8

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

0

0.5

1

0.05 0.1 0.2 0.25 0.3 0.35 0.4 0.45 0.50.15

10
-10

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

0

0.5

1

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

10
-10

PSfrag replacements

Level of noise (�)Level of noise (�)

M
ea

n
F

ro
b
en

iu
s

n
o
rm

M
ea

n
o
rt

h
o
g
o
n
al

it
y

er
ro

r

FIGURE 4 Frobenius norm of R̂−R and orthogonality error of R̂ for the primal quadrically convergent formula (top row) and its

dual (bottom row) as a function of the level of noise, and for a different number of iterations. 106 random matrices are generated

for each value of �.

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

0

0.5

1

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

10
-10

10
0

PSfrag replacements

Level of noise (�)Level of noise (�)

M
ea

n
F

ro
b
en

iu
s

n
o
rm

M
ea

n
o
rt

h
o
g
o
n
al

it
y

er
ro

r

FIGURE 5 Frobenius norm of R̂−R and orthogonality error of R̂ for the sign matrix method as a function of the level of noise

and for a different number of iterations. 106 random matrices are generated for each value of �.

with S0 = RRT . This iterative formula converges to S = (RRT)
1

2 . As a consequence,

R̂ = S
(
RT

)−1
. (27)

In20, this method is compared with the quadratically convergent primal and dual methods to conclude that it behaves better in

terms of convergence. To verify this result, we can perform a similar analysis to that in Section 2.3. The result appears in Fig. 5.

If we compare it with that in Fig. 2, it is easy to conclude that, while this method clearly performs better than the quadratically

convergent primal method, it performs similarly to its dual counterpart. As a consequence, the improvement reported in20 is not

remarkable.

3.3 Padé approximant method

Using Padé approximants, we have that28, 29

(
RTR

) 1

2 = (I + E)
1

2 ≈ I +

m∑
j=1

a
(m)
j

(
I + b

(m)
j

E
)−1

E, (28)

9

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

0

0.5

1

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

10
-10

10
0

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

0

0.2

0.4

0.6

0.8

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.05

10
-10

10
0

PSfrag replacements

Level of noise (�)Level of noise (�)

M
ea

n
F

ro
b
en

iu
s

n
o
rm

M
ea

n
o
rt

h
o
g
o
n
al

it
y

er
ro

r

FIGURE 6 Frobenius norm of R̂−R and orthogonality error of R̂ for the Padé approximant method (top row) and the continued

fraction method (bottom row) as a function of the level of noise and for different approximation orders. 106 random matrices

are generated for each value of �.

where

a
(m)
j

=
2

2m + 1
sin2

j�

2m + 1
, (29)

b
(m)
j

= cos2
j�

2m + 1
. (30)

Observe that in this method the values of the coefficients of the expansion vary with the number of taken terms, that is, with

the order of the approximation.

3.4 Continued fraction method

Since S2 = RTR, we have that

(S − I)(S + I) = S2 − I = E. (31)

Then,

S = I + E(I + S)−1. (32)

Therefore, using rational notation and recursively substituting the value of S in the right-hand side of (32) by itself, we have

that

(RTR)
1

2 = S = I +
E

I +
E

I +
E

I +…

(33)

which leads to the following elegant formula

R̂ =
R

I +
E

I +
E

I +
E

I +…

(34)

By truncating this continued fraction, we get different approximation orders.

To observe the influence of the approximation order in the Padé approximant method and this method on the result, we can

perform a similar analysis to that in Section 2.3 where the number of iterations is substituted with the approximation order.

10

The results appear in Fig. 6. It can be concluded that the Padé approximant method performs better than the continued fraction

method for the same approximation order.

3.5 Logarithm method

Euler’s theorem of rigid-body rotations states that the orientation of a body after having undergone any sequence of rotations

is equivalent to a single rotation of that body through an angle � about an axis that we will represent by the unit vector n =

(nx, ny, nz)
T (see30 pp. 118-123 for a proof of this theorem in terms of rotation matrices). We can associate the following 3×3

skew-symmetric matrix with this unit vector

N =

⎛
⎜⎜⎝

0 −nz ny
nz 0 −nx
−ny nx 0

⎞
⎟⎟⎠
. (35)

It is easy to verify that, for v ∈ ℝ
3,

n × v = Nv, (36)

where × stands for the vector cross product.

Now, consider the following problem: given the unit vector n ∈ ℝ
3 and an angle � ∈ ℝ, find the rotation matrix R that rotates

any vector through the angle � about an axis given by n. The matrix exponential gives the elegant solution31 p. 29

R = e�N, (37)

which can be rewritten, using the series expansion of the exponential, as

R =

∞∑
k=0

(�N)k

k!

= I + �N +
1

2!
(�N)2 +

1

3!
(�N)3 +…

= I + (sin �)N + (1 − cos �)N2, (38)

which is commonly known as Rodrigues’ formula.

Now, decomposing equation (38) into its symmetric and skew-symmetric components, we have that

1

2
(R+RT) = I+(1− cos �)N2, (39)

1

2
(R−RT) = sin �N. (40)

Then, from (39) and (40), it can be concluded that

Tr(R) = 1 + 2 cos � (41)

and

N =
1

2 sin �
(R − RT), (42)

respectively. This allows us to conclude, using (37), that

�N = log(R) =
�

2 sin �
(R − RT). (43)

The logarithm method can be summarized as follows. First, we compute M = log(R). If R is a noisy rotation matrix, M is

not skew-symmetric. Then, it can be decomposed into the sum of a skew-symmetric matrix and a symmetric residual matrix as

follows

M =
1

2

(
M +MT

)
+

1

2

(
M −MT

)
. (44)

Now, by simply canceling the symmetric residual, we have that

M̂ =
1

2

(
M −MT

)
. (45)

As a consequence,

�̂ =
1√
2

‖‖‖M̂
‖‖‖F (46)

11

and

N̂ =
1

�̂
M̂. (47)

Finally, we can recover from N̂ the sought proper orthogonal rotation matrix, R̂, using Rodrigues’ formula. Thus, the logarithm

method essentially reduces to the computation of M = log(R) and hence its name. The problem is that the computation of the

logarithm of a matrix is not a trivial operation as not all matrices have a logarithm, and those matrices that do have a logarithm

may have more than one. Function logm in MatlabⓇ implements the algorithm presented in32. Since the exponential function

is not one-to-one for complex numbers, numbers can have multiple complex logarithms, and this is the ultimate reason why

some matrices may have more than one logarithm. If R is singular or has an eigenvalue on the negative real axis, its logarithm

is undefined33. Moreover, even if it is defined, it is not necessarily a real matrix. A real matrix has a real logarithm if and only

if it is invertible and each Jordan block belonging to a negative eigenvalue occurs an even number of times34.

Observe that, according to (40), even the logarithm of non-noisy rotation matrices may be numerically imprecise for � → n�,

n ∈ ℤ. Nevertheless, if ‖R − I‖2
F
< 1, the logarithm of R can be computed by means of the following power series

log(R) =

∞∑
n=1

(−1)n+1

n
(R − I) = (R − I) −

1

2
(R − I)2 +

1

3
(R − I)3 −…

Therefore, as explained at the beginning of Section 2, we can change the reference frame so that ‖R − I‖2
F
< 1 and use few

terms of the above power series to obtain a good approximation of log(R). For example, the computation of the logarithm of

R =

⎛
⎜⎜⎝

0.8510 0.4687 0.2397

0.4684 −0.8823 0.0602

0.2402 0.0598 −0.9681

⎞
⎟⎟⎠

(48)

fails because its eigenvalues are 1.0006,−1.0011,−0.9990, and the matrix logarithm is not defined for matrices with nonpositive

real eigenvalues. A way around this inconvenience is to introduce a preconditioner, that is, an estimation of the nearest rotation

matrix using a fast geometric method that is used to change the reference frame.

The result of applying the dot product method to matrix (48) is

R̄ =

⎛
⎜⎜⎝

0.8504 0.4683 0.2395

0.4684 −0.8814 0.0602

0.2393 0.0609 −0.9690

⎞
⎟⎟⎠
, (49)

and the nearest rotation matrix to R̄−1R, using the logarithm method, is

̄̄R =

⎛
⎜⎜⎝

0.9999 −0.0004 0.0004

0.0004 0.9999 −0.0004

−0.0004 0.0004 0.9999

⎞
⎟⎟⎠
. (50)

Then, the resulting nearest rotation matrix to R is

R̂ = R̄ ̄̄R =

⎛
⎜⎜⎝

0.8505 0.4681 0.2397

0.4680 −0.8815 0.0609

0.2398 0.0604 −0.9689

⎞
⎟⎟⎠
. (51)

3.6 Matrix factorization methods

We have shown how the dot product method can be formalized as the QR factorization of the noisy rotation matrix, but this is

not the only matrix factorization that can be useful to solve the problem.

3.6.1 Polar decomposition method

The first use of the concept of polar decomposition in the context of the problem tackled in this paper appears in35. For details

on this matrix factorization and its applications the reader is referred, for example, to36.

It follows from Theorem 1 in37 p. 169 (alternatively, see also36), that a square matrix R can be factorized as:

R = WY, (52)

12

where W is an orthogonal matrix and Y is a positive semi-definite symmetric matrix. Matrix Y is unique, even if R is singular,

and is given by

Y =
(
RTR

) 1

2 . (53)

Therefore, its substitution in (52) yields

W = R
(
RTR

)− 1

2 . (54)

Now, if we compare (19) and (54), we conclude that W in (52) coincides with R̂. In general, to compute the polar decomposition,

W is obtained using iterative algorithms38–40. These algorithms exactly correspond to the iterative formulas appearing in Table 1.

In this context, these formulas are called Heron’s, Halley’s, and Housholder’s formulas, depending on the order of convergence.

Thus, the polar decomposition itself does not provide any new insight into the problem. It simply provides a more elegant

formulation. The operations required to obtain it are exactly the same as those described in Section 3.

A method to obtain the polar decomposition of a 3×3 matrix using a closely related approach to that presented in Section

3.7 was presented in41 where it was was shown to be stable and more efficient than a standard SVD. Contrarily to the method

in Section 3.7, it is an iterative method because, in some cases, it relies on a Newton’s method. It will be used in Section 4 for

comparison purposes with the identified closed-form methods.

3.6.2 SVD method

The singular value decomposition (SVD) was introduced in this context in42. The central role of the SVD in matrix nearness

problems was first identified in43 where an early description of what is now the standard algorithm for computing the SVD. In

our case, the SVD of the noisy rotation matrix R can be expressed as

R = U�VT , (55)

where UTU = VTV = I and � = diag(�1 �2 �3). �. The singular values of R, �1 > �2 > �3, are nonnegative square roots of the

eigenvalues of RtR. Then, if R̂ is the orthogonal matrix that minimizes the Frobenius norm error with respect to R, we have that

� =
‖‖‖R − R̂

‖‖‖
2

F
=
‖‖‖U�V

T − UUT R̂VVT ‖‖‖
2

F
=
‖‖‖� − R̃

‖‖‖
2

F
. (56)

where R̃ = UT R̂V is another orthogonal matrix. Now, observe that minimizing (56) is equivalent to minimizing
‖‖‖R̃T� − I

‖‖‖
2

F
,

which in turn is equivalent to maximizing Tr(�R̃), which is maximized for R̃ = I. Thus, the optimal rotation matrix is R̂ = UVT ,

if det(U)det(V) = +1. In the case in which det(U)det(V) = −1, it can be shown that the optimal rotation matrix is given by

R = U diag(1, 1, 1,−1) VT 44.

Now, observe that from the SVD of R, we have that

R = U�VT = UVTV�VT = WY (57)

where W = R̂ and Y = V�VT . In other words, the polar decomposition can be obtained as a byproduct of the SVD.

It is finally interesting to mention that there are methods that compute the square of a matrix based on its Schur complement.

In this way the problem comes down to computing the square root of an upper triangular matrix45 p. 313. This method was

first proposed in46. Nevertheless, since in our case the matrix is real symmetric, the computation of its Shur complement is

equivalent to compute its SVD.

3.6.3 Closed-form diagonalization method

This method was proposed in10. We next summarize it.

If det(R) ≠ 0, A = RTR is symmetric, positive definitive. Then, it can be diagonalized as follows:

A = ZT
⎛
⎜⎜⎝

�1 0 0

0 �2 0

0 0 �3

⎞
⎟⎟⎠
Z, (58)

13

where {�i} is the set of non-negative real eigenvalues of A. Then, it can be proved that47

A
−

1

2 = ZT

⎛
⎜⎜⎜⎜⎝

1√
�1

0 0

0
1√
�2

0

0 0
1√
�3

⎞
⎟⎟⎟⎟⎠
Z. (59)

A simple method to compute {�i} can be found in48, where it is shown that

�1 = m + 2
√
p cos �, (60)

�2 = m − 2
√
p(cos � +

√
3 sin �), (61)

�3 = m − 2
√
p(cos � −

√
3 sin �), (62)

where

m = Tr(A)∕3, (63)

p = Tr[(A − mI)(A − mI)T]∕6, (64)

� =
1

3
atan2

(√
p3 − q2, q

)
, (65)

with q = det(A − mI)∕2.

The term p3−q2 corresponds to the discriminant of the characteristic polynomial of A49. When A has two equal eigenvalues,

round-off errors might lead to a small negative value for this discriminant. Any implementation should consider this possibility.

Now, if we apply the Cayley-Hamilton theorem to the characteristic polynomial of A
1

2
50, we have that(

A
1

2 −
√
�1I

)(
A

1

2 −
√
�2I

)(
A

1

2 −
√
�3I

)
= A

3

2 − a2A + a1A
1

2 − a0I = 0, (66)

where

a2 =
√
�1 +

√
�2 +

√
�3,

a1 =
√
�1�2 +

√
�1�3 +

√
�2�3,

a0 =
√
�1�2�3.

Then, after some simply algebraic manipulations, it can be finally proved that

A−
1

2 = b2A
2 − b1A + b0I, (67)

where

b2 =
a2

a0(a2a1 − a0)
, (68)

b1 =
a0 + a2(a

2
2
− 2a1)

a0(a2a1 − a0)
, (69)

b0 =
a2a

2
1
− a0(a

2
2
+ a1)

a0(a2a1 − a0)
. (70)

Now, it is worth observing what happens for low levels of noise. In this case, �i ≈ 1. Then, a2 ≈ 3, a1 ≈ 3, and a0 ≈ 1. As a

consequence,

R̂ ≈
1

8
R(3RTRRTR − 10RTR + 15I). (71)

It is interesting to realize that this formula coincides with the one obtained by computing the Taylor series expansion of E up to

the third term and substituting the result in (19). This formula is actually used in18 in an iterative algorithm intended to converge

to R̂.

The above formulation fails if one of the eigenvalues is zero10. Moreover, since the sign of det(R̂) is the same as that of

det(R), it actually provides a closed-form formula for the nearest orthogonal matrix, not the nearest rotation matrix. Thus, it is

only valid if det(R)>0. Moreover, for exact rotation matrices, the three eigenvalues of A are equal to 1, but as noise is added

these eigenvalues start to differ significantly in magnitude which leads to a loss of accuracy51, 52. The bound in the level of noise

for this method to work correctly is evaluated in Section 4.

14

3.7 Closed-form quaternion method

As already mentioned in Section 3.5, Euler’s theorem of rotations states that the rotation resulting from any sequence of rotations

is equivalent to a single rotation through an angle � about an axis that we will represent by the unit vector n = (nx ny nz)
T . Then,

it can be proved that a general rotation matrix can be written as

R =
1

e2
0
+e2

2
+e2

3
+e2

4

⎛
⎜⎜⎝

2(e2
0
+e2

1
)−1 2(e1e2−e0e3) 2(e1e3+e0e2)

2(e1e2+e0e3) 2(e2
0
+e2

2
)−1 2(e2e3−e0e1)

2(e1e3−e0e2) 2(e2e3+e0e1) 2(e2
0
+e2

3
)−1

⎞
⎟⎟⎠
. (72)

where

e0 = cos(�∕2), (73)

e1 = nx sin(�∕2), (74)

e2 = ny sin(�∕2), (75)

e3 = nz sin(�∕2). (76)

The vector e = (e0 e1 e2 e3)
T is defined as the vector of Euler parameters. The elements of this vector are usually arranged in

quaternion form and hence the name given to this method, despite the algebra of quaternions is not required in its derivation.

Observe that the elements of e are not independent as they are related through the following equation:

eT e = 1. (77)

Nevertheless, in practice, this condition can be relaxed by representing e in homogeneous coordinates. Expression (72) is actually

valid for this general case (observe that e is implicitly normalized).

To obtain the Euler parameters corresponding to a given rotation matrix, we have to solve the system of equations resulting

from equating R = (rij), 1 ≤ i, j ≤ 3, to (72), which can be reorganized in matrix form as

P = K, (78)

where

P = e eT =

⎛
⎜⎜⎜⎜⎝

e0e0 e0e1 e0e2 e0e3
e1e0 e1e1 e1e2 e1e3
e2e0 e2e1 e2e2 e2e3
e3e0 e3e1 e3e2 e3e3

⎞
⎟⎟⎟⎟⎠

(79)

and

K =
1

4

⎛
⎜⎜⎜⎜⎝

r11+r22+r33+1 r32−r23 r13−r31 r21−r12
r32−r23 r11−r22−r33+1 r21+r12 r31+r13
r13−r31 r21+r12 r22−r11−r33+1 r32+r23
r21−r12 r31+r13 r32+r23 r33−r11−r22+1

⎞
⎟⎟⎟⎟⎠
. (80)

Now, let us suppose that, instead of computing directly R̂, we first compute the Euler parameters of R, ê = (ê0 ê1 ê2 ê3)
T , from

which we can then derive R̂ using (72).

Therefore, the maximization of (18) is equivalent to maximize

Tr

⎡
⎢⎢⎣

⎛
⎜⎜⎝

2(ê2
0
+ê2

1
)−1 2(ê1ê2−ê0ê3) 2(ê1ê3+ê0ê2)

2(ê1ê2+ê0ê3) 2(ê2
0
+ê2

2
)−1 2(ê1ê3−ê0ê1)

2(ê1ê3−ê0ê2) 2(ê2ê3+ê0ê1) 2(ê2
0
+ê2

3
)−1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

r11 r21 r31
r12 r22 r32
r13 r23 r33

⎞
⎟⎟⎠

⎤
⎥⎥⎦
= êTGê, (81)

where

G = 4(K − I), (82)

subject to the constraint êT ê = 153.

Using Lagrange multipliers, we have that the value of ê that maximizes the quadratic form êTGê subject to the constraint

êT ê = 1, is obtained by solving
)(eTGe)

)e
= �

)(eT e)

)e
. (83)

That is,

Ge = �e. (84)

15

Equivalently, substituting (82) in (84),

Ke =
� + 1

4
e. (85)

Thus, we have four solution candidates for our optimization problem: the four eigenvectors ofG (equivalently, the eigenvectors

of K). Nevertheless, the one that maximizes the quadratic form is clearly the one corresponding to the largest eigenvalue of G.

Since G is symmetric, its eigenvalues are real. Therefore, the determination of the largest eigenvalue of G requires computing

the largest root of the following quartic characteristic polynomial:

�4 + �3�
3 + �2�

2 + �1� + �0, (86)

where

�3 = Tr(G) = 0,

�2 = −2Tr
(
RTR

)
,

�1 = −8 det(R),

�0 = det(G).

Since �3 = 0, the polynomial in (86) is already a depressed quartic. This means that the application of Ferrari’s method to

obtain the sought root, as it is done in54, is simplified.

If the absolute value of �1 is below a certain small threshold (in our implementation it is set to 10−5), the polynomial in (86)

can be safely approximated by a biquartic polynomial. In this case, the largest eigenvalue is

�max =

√
−
�2
2

+

√(�2
2

)2

− �0. (87)

Otherwise, in the general case, we have that the largest real root of (86) can be expressed as (see55 for details)

�max =
1√
6

⎛
⎜⎜⎝
k1+

√
−k2

1
−12�2−

12
√
6�1

k1

⎞
⎟⎟⎠
, (88)

where

k0 = 2�3
2
+ 27�2

1
− 72�2�0,

� = atan2

(√
4(�2

2
+ 12�0)

3
− k2

0
, k0

)
,

k1 = 2

√(√
�2
2
+ 12�0

)
cos

�

3
− �2.

It can be proven that all the rows of the cofactor matrix of (G − �maxI) are proportional to the eigenvector corresponding

to �max
54. In55, some computational time is saved by computing only the last row of this cofactor matrix. Unfortunately, all

the elements of this row are identically zero for rotations whose rotation axis lies on the xy-plane. Although, at least in theory,

rotations whose rotation axes lie on the xy-plane can be seen as a set of measure zero in the space of quaternions, in practice

it is enough to be close to this situation to generate large errors. Similar situations arise if we take any other row. Thus, for the

sake of robustness, we have to compute all rows and take the one with the largest norm.

3.8 Closed-form approximate quaternion methods

Observe that, for exact rotation matrices, all the columns of K in (80), denoted as ki, i = 1,… , 4, are equal to the corresponding

quaternion up to a scalar factor. This was first noticed in54, and later independently rediscovered in56 and41 (the same applies

to its rows as K is symmetric). For erroneous rotation matrices, this is no longer true. Then, assuming that the elements of

the rotation matrix are contaminated by uncorrelated noise, it is reasonable to compute the sought quaternion as the one that

minimizes its quadratic error with respect to the column vectors of K. That is, the value of e that minimizes

4∑
i=1

‖‖e − ki
‖‖2 =

4∑
i=1

(
eT e + kT

i
ki − 2eTki

)
, (89)

16

subject to the constraint eT e = 1. Expression (89) is minimized when its last term is maximized, which is equivalent to maximize

eTKe, (90)

subject to the constraint eT e = 1. We already know that the solution to this problem is the largest eigenvector of K. Thus, this

approach is equivalent to the one described in Section 3.7.

3.8.1 Arithmetic mean method

Instead of the quaternion that minimizes its quadratic error with respect to the column vectors of K, we can simply compute the

arithmetic mean of these columns as described in10. Next, we briefly summarize this method. It we estimate e by obtaining the

arithmetic mean of all rows of K, we obtain

ê =

4∑
i=1

ki, (91)

where ki denotes the i row of K. Nevertheless, this simple idea has a subtle flaw. Since ki and −ki represent the same rotation

(quaternions provide a double covering of the rotation group), changing the sign of any ki should not change the average.

Nevertheless, it is clear that (91) does not have this property. To fix this problem, one possibility is to homogenize the signs of

ki before averaging them. A simple way to implement this idea reads as follows:

ê =

4∑
i=1

sign(kj⋅ki)ki, (92)

where kj is chosen so that
‖‖‖kj

‖‖‖ ≥ ‖‖ki‖‖, i = 1,… , 4.

Therefore, the method can be summarized as follows: given the rotation matrixR, K is computed using (80), then ê using (92),

and finally R̂ from ê using (72). This is probably the simplest of the methods because it only requires the four basic arithmetic

operations.

TABLE 3 The four consistent sets of signs for the components of ê.

sign(e0) sign(e1) sign(e2) sign(e3)

sign(e0) = 1 1 sign(r32 − r23) sign(r13 − r31) sign(r21 − r12)

sign(e1) = 1 sign(r32 − r23) 1 sign(r21 + r12) sign(r13 + r31)

sign(e2) = 1 sign(r13 − r31) sign(r21 + r12) 1 sign(r32 + r23)

sign(e3) = 1 sign(r21 − r12) sign(r13 + r31) sign(r32 + r23) 1

3.8.2 Cayley’s method

This method was presented in57 as a particularization of Cayley’s factorization to three dimensions. Now, we can derive it by

simply substituting the arithmetic mean in (92) by the squared mean root. The result reads as follows:

||e0|| = 1

4

√
r11+r22+r33 + 1)2 + (r32−r23)

2 + (r13−r31)
2 + (r21−r12)

2 (93)

||e1|| = 1

4

√
r32−r23)

2 + (r11−r22−r33 + 1)2 + (r21+r12)
2 + (r31+r13)

2 (94)

||e2|| = 1

4

√
r13−r31)

2 + (r21+r12)
2 + (r22−r11−r33 + 1)2 + (r32+r23)

2 (95)

||e3|| = 1

4

√
r21−r12)

2 + (r31+r13)
2 + (r32+r23)

2 + (r33−r11−r22+1)
2 (96)

If we assume that e0 is positive, we can give a consistent set of signs to the other elements of the quaternion by assigning

the signs of (r32 − r23), (r13 − r31), and (r21 − r12), to e1, e2, and e3, respectively. Alternatively, if we assume that e1 is positive,

a consistent set of signs to the other elements of the quaternion result from assigning the signs of (r32 − r23), (r21 + r12), and

(r1,3 + r3,1) to e0, e2, and e3, respectively. Table 3 summarizes the four possible alternatives.

17

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

FIGURE 7 Maximum Frobenius norm (left) and mean Frobenius norm (right) of the difference between the original error-free

matrices and the estimations obtained from their error-contaminated versions using the SVD method, the polar decomposition

method, and the four closed-form methods. For levels of error lower than 0.45, the plots for all exact methods overlap. Only the

approximate methods (the arithmetic mean method and Cayley’s method) obviously exhibit a different behavior.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10-15

10-14

10-13

10-12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10-15

10-14

FIGURE 8 Maximum orthogonality error (left) and mean orthogonality error (right) of R̂ obtained using the SVD method,

the polar decomposition, and the four closed-form methods. Even in the case of the diagonalization method, the committed

orthogonality errors can be considered as negligible for most applications.

4 PERFORMANCE COMPARISON OF THE ALGEBRAIC CLOSED-FORM METHODS

In this section, we compare all closed-form formulas described above, in terms of accuracy and computational cost, with respect

to following two iterative methods:

- The SVD method described in Section 3.6.2. In this case, the MatlabⓇ built-in function svd is used; and

- The polar decomposition method described in Section 3.6.1 as it is considered as an advantageous alternative to the SVD

for 3 × 3 matrices. In this case, the implementation delivered by the authors of41 is used.

In particular, the implemented closed-form formulas correspond to:

18

- The diagonalization method described in Section 3.6.3.

- The quaternion method described in Section 3.7.

- The arithmetic mean method described in Section 3.8.1.

- The Cayley’s method described in Section 3.8.2.

To assess the performance of these methods, we have implemented the following procedure in MatlabⓇ on a PC with a

CoreTMi7 processor running at 3.70 GHz and 16 GB of RAM:

1. Generate 105 random quaternions using the algorithm detailed in7, which permits to obtain sets of points uniformly

distributed on S
3.

2. Convert these quaternions to rotation matrices whose elements are then contaminated with additive uncorrelated uniformly

distributed noise in the interval [−�, �].

3. Compute the nearest rotation matrices for these 105 noisy rotation matrices using each of the above methods.

4. Compute the maximum and the mean Frobenius norm between the noisy matrices and the original rotation matrices using

each method.

5. Compute the maximum and the mean orthogonality error of the obtained results as the Frobenius norm of R̂R̂T − I.

If the above procedure is repeated for � ranging from 0 to 0.5, the plots in Figs. 7 and 8 are obtained. Fig. 7 shows the maximum

and mean Frobenius norm error between the original error-free matrices and the corresponding nearest rotation matrices to their

noisy versions using the six aforementioned methods implemented in single-precision arithmetic. Except for the two approximate

methods, the plots for all other methods overlap for � < 0.45. For higher levels of error, the diagonalization method starts to

have problems, as we already predicted in Section 3.6.3. Curiously enough, the arithmetic mean method performs better than

the Cayley’s method despite it results from a heuristic argument.

To assess the orthogonality of the obtained rotation matrices, we have also computed the maximum and the mean Frobenius

norm of R̂R̂T−I for � ranging from 0 to 0.5. The results are plotted in Fig. 8. All orthogonality errors are always lower that 10−13,

which is completely negligible for most applications. Nevertheless, contrarily to all other methods, the orthogonality error for

the diagonalization method increases with the level of noise. As a consequence, in general, it should be avoided for levels of

noise greater than 0.45.

The most clear distinctive feature between the compared methods is their execution time. Indeed, using single-precision

arithmetic, their average execution times, normalized with respect to that of the SVD, are as follows

SVD 1.00

Polar decomposition 2.22

Diagonalization 0.59

Quaternion 103.07

Arithmetic mean 0.78

Cayley’s 0.89

Nevertheless, the inclusion of the SVD in the above comparison is meaningless because it is based on a MatlabⓇ’s compiled

built-in function. It was actually shown in10 that an interpreted version of the SVD has a computational cost two orders of

magnitude higher than its compiled counterpart.

5 CONCLUSION

The Singular Value Decomposition (SVD) is probably the most important matrix factorization of the computational era. It

provides a numerically stable matrix decomposition that can be used for solving a large variety of problems, including the nearest

19

rotation matrix problem. Nevertheless, we have shown how solving this problem using the SVD is not, in general, a good choice.

A clear better approach consists in using the polar decomposition method presented in41.

We have also shown how some little known closed-form algebraic methods perform well both in terms of computational time

and accuracy. In real-time control applications, these closed-form methods are preferable than numerical ones because they

permit analyzing symbolically the influence of each variable on the result, and their computational cost –in terms of arithmetic

operations– is constant. Moreover, two of these closed-form methods are approximate methods that can be easily implemented

in hardware due to their simplicity.

Finally, it is worth adding that our comparison has been based on randomly generated inputs. This analysis could be enhanced

by including the ill-conditioned inputs of the benchmark tests provided in41 for which the polar decomposition method presented

therein was proved to be stable, whereas other methods could be unstable. This is certainly a point that deserves further attention.

References

1. Werneth CM, Dhar M, Maung KM, Sirola C, and Norbury JW. Numerical Gram–Schmidt orthonormalization. Eur J

Physics. 2010;31(3):1058–1087.

2. Paul RP. Robot Manipulators: Mathematics, Programming, and Control. Cambridge, MA: MIT Press; 1982.

3. Stewart GW. Matrix Algorithms. Volume I: Basic Decompositions. SIAM; 1998.

4. Nugraha AS, and Basaruddin T. Analysis and comparison of QR decomposition algorithm in some types of matrix. In:

FedCSIS 2012. Wroclaw, Poland; 2012. p. 561–565.

5. Moler C. Compare Gram-Schmidt and Householder orthogonalization algorithms.

https://blogs.mathworks.com/cleve/2016/07/25/compare-gram-schmidt-and-householder-orthogonalization-algorithms;

2016.

6. Bar-Itzhack IY, and Fegley KA. Orthogonalization techniques of a direction cosine matrix. IEEE T Aero and Elec Sys.

1964;AES-5(5):798–804.

7. Marsaglia G. Choosing a point from the surface of a sphere. Ann Math Stat. 1972;43(2):645–646.

8. Zhuang H, Roth ZS, and Sudhakar R. Practical fusion algorithms for rotation matrices: A comparative study. J Robotic

Syst. 1992;9(7):915–931.

9. Costandin M, Costandin B, and Dobra P. A new orthogonalization and sensor fusion algorithm for attitude estimation. In:

2018 IEEE AQTR. Cluj-Napoca, Romania; 2018. p. 1–6.

10. Sarabandi S, Shabani A, Porta JM, and Thomas F. On closed-form formulas for the 3-D nearest rotation matrix problem.

IEEE T Rob. 2020;36(4):1333–1339.

11. Giardini CR, Bronson R, and Wallen I. An optimal normalization scheme. IEEE T Aeros Elec Sys. 1975;AES-11(4):443–

446.

12. Bar-Itzhack IY. Iterative optimal orthogonalization of the strapdown matrix. IEEE T Aero Elec Sys. 1975;11(1):30–37.

13. Bar-Itzhack IY, Meyer J, and Fuhrmann PA. Strapdown matrix orthogonalization: the dual iterative algorithm. IEEE T

Aero Elec Sys. 1976;AES-12(1):32–38.

14. Horn BK, Hilden HM, and Negahdaripour S. Closed form solution of absolute orientation using orthonormal matrices. J

Opt Soc Am A. 1988;5(7):1127–1135.

15. Gains HT. 1965. Attitude matrix orthonormality correction. . Honeywell Interoffice Correspondence.

16. Björek A, and Bowie C. An iterative algorithm for computing the best estimate of an orthogonal matrix. SIAM J Numer

Anal. 1971;8(2):358–364.

https://blogs.mathworks.com/cleve/2016/07/25/compare-gram-schmidt-and-householder-orthogonalization-algorithms

20

17. Hasan MA. Families of orthonormalization algorithms. In: IJCNN 2009. Atlanta, Georgia, USA; 2009. p. 14–19.

18. Hasan MA. Square-root free orthogonalization algorithms. In: ICASSP ’99. Taipei, Taiwan; 2009. p. 3173–3176.

19. Bar-Itzhack IY, and Meyer J. On the convergence of iterative orthogonalization processes. IEEE T Aero Elec Sys.

1976;AES-12(2):1946–1951.

20. Mao J, and Yin B. An orthonormalization algorithm for inertial navigation systems by using matrix sign function. In: IFAC

12th Tri. WC. Sydney, Australia; 1993. p. 801–804.

21. Liu Z, and Yan Q. New iterative algorithm for attitude determination. In: 2010 Int. Conf. E-Prod. E-Serv. E-Entert. Henan,

China; 2010. p. 1–4.

22. Priester RW, and Denman ED. Orthogonalization of a direction cosine matrix by iterative techniques. IEEE T Aero Elec

Sys. 1972;AES-8(5):692–694.

23. Bar-Itzhack IY, Meyer J, and Fuhrmann PA. Correction to ‘Strapdown matrix orthogonalization: the dual iterative

algorithm’. IEEE T Aero and Elec Sys. 1976;AES-12(1):32–38.

24. Higham NJ. Newton’s method for the matrix square root. Math Comput. 1986;46:537–550.

25. Hasan MA. Orthonormalization learning algorithm. In: IJCNN 2007. Orlando, Florida, USA; 2007. p. 12–17.

26. Higham NJ. Stable iterations for the matrix square root. Numer Algorithms. 1997;15(2):227–242.

27. Denman ED, and Beavers Jr AN. The matrix sign function and computations in systems. Appl Math Comput. 1976;2(1):63–

94.

28. Lu YY. A Padé approximation method for square roots of symmetric positive definite matrices. SIAM J Matrix Anal A.

1998;19(3):833–845.

29. Jones WB, and Thron WJ. Continued Fractions, Analytic Theory and Applications. Addison-Wesley, Reading, MA; 1990.

30. Goldstein H. Classical Mechanics. Cambridge, MA: Addison-Wesley; 1951.

31. Murray RM, Li Z, and Sastry SS. A Mathematical Introduction to Robotic Manipulation. Boca Raton, FL: CRC Press; 1994.

32. Al-Mohy AH, and Higham NJ. Improved inverse scaling and squaring algorithms for the matrix logarithm. SIAM J Sci

Comp. 2012;34(4):153–169.

33. Higham NJ. Functions of Matrices: Theory and Computation. SIAM; 2008.

34. Culver WJ. On the existence and uniqueness of the real logarithm of a matrix. P Am Math Soc. 1966;17(5):1146–1151.

35. Farrell JL, Stuelpnagel JC, Wessner RH, and Velman JR. A least squares estimate of spacecraft attitude. Solution 65-1.

SIAM Rev. 1966;8(3):384–386.

36. Higham NJ. Computing the polar decomposition—with applications. SIAM J Sci Stat Comp. 1986;7(4):1160–1174.

37. Halmos PR. Finite Dimensional Vector Spaces. 2nd ed. Princeton, N.J: Van Nostrand; 1958.

38. Higham NJ, and Schreiber RS. Fast polar decomposition of an arbitrary matrix. SIAM J Sci Stat Comp. 1990;11(4):648–655.

39. Du K. The iterative methods for computing the polar decomposition of rank-deficient matrix. Appl Math Comput.

2005;162(1):95–102.

40. Soleymani F, Stanimirović PS, and Stojanović I. A novel iterative method for polar decomposition and matrix sign function.

Discrete Dyn Nat Soc. 2015;(Article ID 649423).

41. Higham NJ, and Noferini V. An algorithm to compute the polar decomposition of a 3×3 matrix. Numer Algorithms.

2016;73(2):349–369.

21

42. Mao J. Optimal orthonormalization of the strapdown matrix by using singular value decomposition. Comp Math Appl.

1986;12(3):253–262.

43. Golub GH. Least squares, singular values and matrix approximations. Appl Math-Czech. 1968;13:44–51.

44. Eggert DW, Lorusso A, and Fisher RB. Estimating 3-D rigid body transformations: a comparison of four major algorithms.

Mach Vision Appl. 1997;9(5):272–290.

45. Golub GH, and Van Loan CF. Matrix Computations. Johns Hopkins University Press; 1983.

46. Björck A, and Hammarling S. A Schur method for the square root of a matrix. Linear Algebra Appl. 1983;52-53:127–140.

47. Schweinler HC, and Wigner EP. Orthogonalization methods. J Math Phys. 1970;11(5):1693–1694.

48. Smith OK. Eigenvalues of a symmetric 3×3 matrix. Commun ACM. 1961;4(4):168.

49. Blinn JF. How to solve a cubic equation, part 1: The shape of the discriminant. IEEE Comput Graph. 2006;26(3):84–93.

50. Franca LP. An algorithm to compute the square root of a 3×3 positive definite matrix. Comput Math Appl. 1989;18(5):459–

466.

51. Kahan W. Lecture notes for a numerical analysis course. https://people.eecs.berkeley.edu/~wkahan/Math128/Cubic.pdf;

1986.

52. Blinn JF. How to solve a cubic equation, part 5: Back to numerics. IEEE Comput Graph. 2007;27(3):78–89.

53. Keat J. 1977. Analysis of least-squares attitude determination routine DOAOP. CSC/TM-77/6034. Goddard Space Flight

Center, Greenbelt, MD.: Computer Science Corp.

54. Horn BK. Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am. 1987;4(4):629–642.

55. Wu J, Liu M, Zhou Z, and Li R. Fast symbolic 3D registration solution. IEEE T Autom Sci Eng. 2019;17(2):761–770.

56. Bar-Itzhack IY. New method for extracting the quaternion from a rotation matrix. J Guid Control Dynam. 2000;23(6):1085–

1087.

57. Sarabandi S, Perez-Gracia A, and Thomas F. On Cayley’s factorization with an application to the orthonormalization of

noisy rotation matrices. Adv Appl Clifford Al. 2019;29(3):49–65.

How to cite this article: S. Sarabandi, and F. Thomas (2023), Solution Methods to the Nearest Rotation Matrix, Numerical

Linear Algebra with Applications, 2023;00:1–21.

https://people.eecs.berkeley.edu/~wkahan/Math128/Cubic.pdf

	Solution Methods to the Nearest Rotation Matrix Problem in R3: A Comparative Survey
	Abstract
	Introduction
	Geometric methods
	Dot product method and QR factorization
	Cross product method
	Iterative cross product method
	Equal mean direction method

	Algebraic methods
	Series expansion method
	Matrix sign function method
	Padé approximant method
	Continued fraction method
	Logarithm method
	Matrix factorization methods
	Polar decomposition method
	SVD method
	Closed-form diagonalization method

	Closed-form quaternion method
	Closed-form approximate quaternion methods
	Arithmetic mean method
	Cayley's method

	Performance comparison of the algebraic closed-form methods
	Conclusion
	References

