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ABSTRACT

Photometric stereo is the problem of jointly inferring the 3D
reconstruction, reflectance, lighting and specularities of an
object from a set of visual signals. Recently, some varia-
tional, uncalibrated, unsupervised and unified formulations
have provided robust solutions to the problem while reducing
the prior knowledge about the shape geometry or the lighting
conditions. Unfortunately, these approaches cannot still pro-
duce solutions with an ample variety of details in the shape.
That is mainly due to the non-convex and non-linear nature
of the problem which requires the best initialization as possi-
ble. In this context, we propose a fully interpretable formula-
tion that combines a physically-aware image formation model
under perspective projection with a minimal detail-aware ini-
tialization and that it can handle general lighting. As a result,
our formulation can consider multiple scenarios composed of
unknown complex geometries and lighting patterns. Experi-
mental results on challenging synthetic and real datasets show
the effectiveness of our approach to capture more fine details,
outperforming state-of-the-art techniques in terms of 3D re-
construction.

Index Terms— Uncalibrated Photometric Stereo, Mini-
mal Surfaces, Unsupervised Vision, Specular Materials.

1. INTRODUCTION

Simultaneously recovering the 3D reconstruction of a rigid
object, its reflectance, lighting and specularities from multiple
visual signals taken at the same viewpoint but under different
illumination conditions is coined in literature as Photomet-
ric Stereo (PS) [1, 2, 3, 4]. Firstly, the most standard way
to solve the problem was to invert a physically-aware image
formation model by assuming a certain control of lighting.
In spite of providing robust and accurate solutions, these ap-
proaches drastically reduced its applicability to laboratory se-
tups where an exhaustive calibration of lighting was manda-
tory. In the counterpart, uncalibrated formulations were pre-
sented to avoid the strong assumptions of the calibrated ones,
obtaining an ill-posed problem as the underlying normal map
to encode the shape is recovered up to a linear ambiguity [5].
Later, the ambiguities were relaxed by means of the use of
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variational formulations where the 3D reconstruction was en-
coded as a depth map rather than using normal vectors [6, 7],
but just for a single source of illumination. Handling general
lighting in an uncalibrated fashion [8, 9, 10, 11, 12] is a very
important problem in signal processing with potentially many
real-world applications in art conservation, agriculture, biol-
ogy, the movie industry and, motion capture of humans and
animals, to name just a few. These works were proposed to
cope with Lambertian [11] and non-Lambertian [12] materi-
als, but the quality of their solutions were strongly influenced
by the initialization step [13, 14, 15]. In practice, the final 3D
estimation does not include many details as this step repre-
sents a key factor in the full algorithm.

Secondly, PS has been also solved by deep-learning ap-
proaches [4, 16, 17, 18, 19]. Basically, this family of meth-
ods exploits end-to-end learning architectures where some
ground-truth parameters are used for supervision in training,
obtaining implicit relations of the parameters to be estimated.
Despite obtaining promising results, their lack of physical
interpretability prevents them from knowing the real interac-
tions between lighting, surface 3D geometry and speculari-
ties. Nonetheless, the Achilles’ heel of these proposals is the
lack of large amounts of data for training, that should include
3D geometries of complex objects, the knowledge of general
lighting, or the specularities. Unfortunately, the acquisition
of this set of ground truths, even in a controlled lab setting,
is very laborious and expensive or unattainable for certain
types of materials. As a consequence, these methods tend to
include previous assumptions in the formulation, such as the
light direction or the intensity at every instant, i.e., a type of
calibration.

We overcome most of the limitations of current methods
by proposing a variational, unsupervised, unified, and uncali-
brated PS algorithm that can work under general lighting and
it is available for non-specific objects and materials. Our ap-
proach does not need any extra sensor, training data or ground
truth of any kind, it is fully interpretable and can run in a
commodity laptop in an efficient way. Instead, we propose a
convex formulation to initialize the 3D geometry from a sin-
gle visual signal that can recover a finer level of details and
it represents a key factor in the final estimation of our algo-
rithm. As this algorithm is not based on learning, the formula-
tion may process any object indistinctly, even including those
with thin areas.



2. PHYSICALLY-AWARE PHOTOMETRIC STEREO

Let {Ii
c ⊂ R2} be a set of i = {1, . . . , I} visual signals with

different illumination conditions and with c = {1, . . . , C}
color channels where a rigid object to be reconstructed ap-
pears. For that object, we also define S ⊂ Ii

c as its shape seg-
mentation in the signal set, and by means of B ⊂ S its silhou-
ette boundary, i.e., S contains P pixels inside the silhouette of
the object shape and B only its boundary. Inspired by a Phong
reflection model [20], the light at a p-th pixel can be modeled
as the sum of two additive terms: a viewpoint-independent
diffuse and a view-dependent specular. With that in mind, the
surface reflectance for all P pixel points p = [u, v]⊤ ∈ S can
be modeled by collecting elementary luminance contributions
arising from all the incident lighting directions ω as:

Ii
c(p) =

∫
S2
ρc(p) l

i
c(ω)max{0,ω⊤n(p)} dω+ si(p), (1)

where S2 indicate the unit sphere in R3, ρc(p) ∈ R+ and
lic(ω) represent the color-wise albedos and intensity of the
incident lights, respectively, n(p) the unit-length surface nor-
mal at the surface point conjugate to p-th pixel and, si(p) for
the specular reflection. The object irradiance or shading com-
ponent is coded by the max operator.

With these ingredients, the PS problem [1, 3, 6] in an un-
calibrated fashion consists in retrieving the 3D shape of the
object (via its normal vectors n(p)) together with the quanti-
ties {ρc}, {lic} and {si}, all of them, from the signal set {Ii

c}.
To do the problem tractable, many works in literature encode
the irradiance map by spherical harmonics of general light-
ing [21], considering first- or second-order approximations.
Image formation model in Eq. (1) could be now written as:

Ii
c(p) ≈ ρc(p) l

i
c

⊤
h[n](p) + si(p), (2)

where lic ∈ Ro and h[n] ∈ Ro with o ∈ {4, 9} are the first- or
second-order harmonic lighting coefficients and images, re-
spectively. To avoid the non-linear problem of estimating nor-
mal vectors, every surface normal vector n[z] is parametrized
by its depth [11, 12] under a perspective projection.

Energy Formulation. The model parameters can be es-
timated by minimizing an image render error of all the ob-
served points over all visual signals. To this end, a residual
function gic,p is defined to represent the error between the pre-
dicted intensity and the real one at the p-th pixel as:

gic,p(βp, ρc,p, l
i
c, s

i
p, z) = ρc,p l

i
c

⊤
hp[n̄p[z]/βp] + sip − Ii

c,p,

where βp = |n̄p[z]| ∀p ∈ {1, ..., P} and np[z] = n̄p[z]/βp,
with n̄p[z] a linear parametrization on depth. In addition to
the data term, two regularization priors to enforce smoothness
on the albedo and specular maps are considered. Then, the

total cost function A(β, {ρc}, {lic}, {si}, z) can be written as:

I∑
i=1

C∑
c=1

P∑
p=1

ψλ(g
i
c,p(βp, ρc,p, l

i
c, s

i
p, z))

+ µ

C∑
c=1

P∑
p=1

|(▽ρc)p|γ + µs

I∑
i=1

P∑
p=1

|(si)p|γs
, (3)

where ▽ is the spatial gradient operator, | · |γ denotes a Huber
norm and ψλ(q) = λ2 log(1 + q2

λ2 ) a Cauchy’s M-estimator
where λ is a scaling coefficient.

Unfortunately, the previous problem is non-convex and
highly non-linear and, as a consequence, a proper initializa-
tion represents a key factor to obtain accurate results as we
will see below. In any case, a lagged block coordinate de-
scent algorithm is used to minimize A in Eq. (3).

Minimal Detailed Surface. To initialize depth, we pro-
pose to solve a minimal problem to infer detailed surfaces
from a single image, i.e., estimating a depth value for every
p-th pixel in S. As input we consider a grey average image
as Ī = mean(Ii

c). To that end, we propose to minimize a
new energy D(z) function composed of a data term [14, 15],
a shape-detail regularizator [22] and a volume one as:

P∑
p=1

√
1 + |(∇z)p|2 + θ(zp − wp)

2 + υ

P∑
p=1

zp − V, (4)

where θ and υ are weight coefficients and wp is a function to
regularize the solution. V indicates the volume of the object
and it is useful to scale the monocular reconstruction. Note
that this formulation never considers any depth real value to
constrain the solution and, therefore, our global formulation
estimates the 3D just from 2D visual signals.

Following [13, 14, 15], the thickness of the object in-
creases as we move inward from its silhouette boundary B,
especially in nature [22]. However, the use of a basic data
term to solve the minimal problem cannot recover a wide va-
riety of details as well as thin regions. To avoid that, we first
consider the distance d(p, ∂B) to the boundary B for any in-
terior point p ∈ S as d(p, ∂B) = minb∈∂B ∥p−b∥ (see Fig. 1-
second column). Moreover, a detail map e(Ī) by exploiting
image information as e(Ī) = ζ (|∇Ī|−min(|∇Ī|))

max(|∇Ī|)−min(|∇Ī|) is consid-
ered (an example is displayed in Fig. 1-third column), where
ζ is a weight coefficient, and e(Īm) = 0 for any pointm /∈ S.
The previous terms are now combined (see Fig. 1-fourth col-
umn) to define the function w, that for the p-th pixel location
can be written as:

wp = min{ϕ, η + κ d(p, ∂B) + e(Īp)}, (5)

where {ϕ, η, κ} are weights to encode the type of prior. Par-
ticularly, ϕ limits the level of extrusion of the object and it
can be tuned as ϕ = αmax(d(p, ∂B)), with α ∈ [0, 1]. η is to
guarantee a minimum of extrusion in those points close to the



Fig. 1. Shape prior interpretation. From left to right, it is displayed a color input visual signal, the distance function d(Ī, ∂B), the detail
map e(Ī), and the overall w(Ī) function to regularize the shape. As it can be seen, every component acts over the final constraint, providing
an accurate regularizer to extrude shape surfaces. Best viewed in color.

boundary. Finally, Dirichlet’s boundary conditions are also
enforced as zp = 0, ∀p ∈ B. As the problem D(z) in Eq. (4)
is convex, an iterative gradient descent method is employed.

3. EXPERIMENTAL EVALUATION

We now present our experimental results on both synthetic
and real datasets, providing quantitative evaluation and com-
parison with respect to competing techniques, as well as
a qualitative one. For quantitative evaluation we compute
the mean angular error between the estimated n[z] and
ground-truth nGT [z] normal vectors by means of MAE =
1
P

∑P
p=1 tan−1

(
|nGT [z]×n[z]|
nGT [z]·n[z]

)
, where × and · indicate cross

and dot products, respectively. In our experiments, to mini-
mize A(·) we set γ = γs = 0.1, µ = 3 · 10−5, µs = 2 · 10−6

and λ = 0.15; and to minimize D(·) the values θ = 0.1,
υ = κ = 1, η = 0, and α = 0.9. In our algorithm, we use
first-order spherical harmonics in the first eight iterations [11]
and then change to second-order ones. Moreover, we always
initialize the specularities by null maps.

Synthetic datasets. Four challenging synthetic object
shapes with different light conditions are considered: Joy-
ful Yell provided by [23]; Armadillo, Lucy, and ThaiStatue
provided by [24]. In order to generate the datasets, we
follow [12], employing 25 environment maps li from [25]
with a white albedo (ρc(p) = 1) and a specularity mask
(si(p) ̸= 0). The final visual signals we use for evalua-
tion are produced by applying Eq. (1) (some instances are
provided in the left column of Fig. 2).

We first use these datasets to evaluate how our full al-
gorithm works, but before proceeding the depth initialization
needs to be considered. To this end, we experiment with an
interval of V values [1, 100]. Despite obtaining stable so-
lutions within, we decide to provide the optimal values for
comparison purposes. Particularly, the optimal values were
32, 4, 5, and 3.8 for Joyful Yell, ThaiStatue, Armadillo and
Lucy, respectively. Without loss of generality, as the distance
from object to the camera is within reasonable bounds, the
relation between shape area and volume is always quite simi-
lar, simplifying the volume value V selection. Regarding the
detail-aware minimal initialization, we set ζ = 10 to enforce

Fig. 2. Qualitative evaluation on synthetic datasets. From top
to bottom: Joyful Yell, ThaiStatue, Armadillo, and Lucy. The same
information is shown for the all cases. From left to right, it is dis-
played an arbitrary i-th input image, the i-th estimated specular map,
the ground truth 3D shape, our 3D estimation and an alternative point
of view of that reconstruction.

a natural level of details, avoiding solutions with no details,
i.e., ζ = 0, or other types of over-estimations that could occur
for higher values. Our results for these values are displayed in
Fig. 2. As it can be seen, our solution is physically plausible
and seems very close to the ground truth in terms of 3D re-
construction (see right part in the figure). Moreover, we also
provide a quantitative evaluation with respect to UPS [11]
and SAUPS [12], the most accurate approaches in state of the
art. The parameters of these methods were set in accordance
with the original papers. Our results are reported in Table 1,
obtaining a MAE error of 9.32 on average. It is worth not-
ing that our approach outperforms the competing approaches



XXXXXXXXXXMeth.
Dataset

Joyful Yell Armadillo Lucy ThaiStatue Average

UPS [11] 13.44 24.83 14.43 23.74 19.11
SAUPS [12] 7.66 13.63 10.05 10.93 10.66

Ours 7.28 9.61 9.86 10.55 9.32
Relative error 1.85/ 2.58/ 1.46/ 2.25/ 2.05/

w.r.t. [11]/ [12] 1.05 1.42 1.02 1.04 1.13

Table 1. 3D reconstruction evaluation and comparison.
The table reports the MAE results in degrees for UPS [11],
SAUPS [12] and, our algorithm. Relative errors are computed
with respect to our solution, the most accurate algorithm on
average.

SAUPS [12] and UPS [11] by large margins between the 13%
and 205% on average, respectively. Our method obtains the
best performance for the Joyful Yell dataset, that includes a
wide variety of complex areas with many details. In any case,
as it can be observed in the figure, our approach can capture
most of details in all the datasets. In addition to that, second
column in the figure also shows some instances of specular
estimation our algorithm can infer.

Real datasets. We now present a qualitative evaluation on
four real-world visual collections. In particular, the shapes to
be captured represent an ample variety of natural geometries,
including smooth, nearly planar, and areas with a high level of
details as well as different examples of natural albedos. The
visual collections are Ovenmitt, Tablet, Face, and Vase [26],
and they were captured under daylight and a freely moving
LED.

For depth initialization, as no prior knowledge is avail-
able, we exploit the relation between shape area and volume
to set a volume as it was commented above. Our joint es-
timations are shown in Fig. 3. First, we analyze the 3D re-
construction our algorithm can infer. As it can be seen, in all
cases the estimation is physically possible, globally consis-
tent and compatible with the input images, being most of the
details captured (see fourth and fifth columns in the figure).
However, we can still observe some non-smooth regions in
the Face scenario, or a bit of over-deformations in the Vase
collection that could be avoided by including a shape regular-
ization to our energy in Eq. (3). It is worth mentioning that
our method can even recover naturally the Tablet scenario,
where the 3D shape is a challenging nearly planar shape. Be-
sides that, in the third column of the figure are displayed
the estimated albedos by our algorithm. Again, these solu-
tions seem to be accurate in accordance with the input image
(see first column in the same figure). Regarding speculari-
ties, our algorithm captures a bigger contribution in the Vase
dataset, and some challenging local specularities in the Oven-
mitt, Tablet, and Face. Particularly noteworthy is the local
estimation at the tip of the nose in the Face dataset. These
results can be seen in the second column of Fig. 3, where
some instances of recovered specularities are displayed. On
balance, as our algorithm can capture accurately both specu-
laries and reflectances, the corresponding 3D estimation will

Fig. 3. Qualitative evaluation on real datasets. From top to bot-
tom: Vase, Face, Ovenmitt, and Tablet. The same information is
shown for the all cases. From left to right, it is displayed an arbitrary
i-th input image, the corresponding i-th estimated specular map, the
albedo estimation, our 3D estimation and an alternative point of view
of that reconstruction.

be also more robust and accurate. Finally, and as a conse-
quence of the above, the global method is more stable and
faster in terms of computational cost, converging earlier and
giving an speed up of 1.07× and 1.06× in comparison with
UPS [11] and SAUPS [12], respectively.

4. CONCLUSION

In this paper an algorithm has been proposed to sort out the PS
problem in an unsupervised, unified, uncalibrated, efficient
and variational fashion under general lighting. As a result,
the method can jointly estimate lighting and specularities of
an object, its 3D reconstruction as well as its reflectance, all
of them, from a set of color visual signals with no require-
ment of training data. To that end, our algorithm exploits a
physical-aware formulation where a photometric constraint is
combined with spherical harmonics lighting, perspective pro-
jection and a detail-aware minimal initialization that provides
a fully interpretable solution. As a result, the method can
handle a wide variety of object shapes and materials with un-
known reflectances. Extensive experimental results on both
synthetic and real datasets show the superiority of our joint
estimation in comparison with state-of-the-art solutions, val-
idating the effectiveness of our coding of details. Our future
work is oriented to extend our formulation to scenarios with
strong occlusions that produce more complex interactions be-
tween the object shape and the lighting.
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mers, “Variational uncalibrated photometric stereo un-
der general lightings,” in IEEE International Confer-
ence on Computer Vision, 2019.

[12] P. Estevez and A. Agudo, “Uncalibrated, unified and
unsupervised specular-aware photometric stereo,” in
ICPRW, 2022.

[13] M. R. Oswald, E. Toeppe, and D. Cremers, “Fast and
globally optimal single view reconstruction of curved
objects,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2012.

[14] E. Toeppe, M. R. Oswald, D. Cremers, and C. Rother,
“Silhouette-based variational methods for single view
reconstruction,” in Video Processing and Computational
Video, 2010.

[15] S. Vicente and L. Agapito, “Balloon shapes: recon-
structing and deforming objects with volume from im-
ages,” in 3D Vision, 2013.

[16] J. Li, A. Robles-Kelly, S. You, and Y. Matsushita,
“Learning to minify photometric stereo,” in IEEE Con-
ference on Computer Vision and Pattern Recognition,
2019.

[17] X. Wang, Z. Jian, and M. Ren, “Non-lambertian pho-
tometric stereo network based on inverse reflectance
model with collocated light,” IEEE Transactions on Im-
age Processing, vol. 29, pp. 6032–6042, 2020.

[18] Z. Yao, K. Li, Y. Fu, H. Hu, and B. Shi, “GPS-net:
Graph-based photometric stereo network,” in Confer-
ence on Neural Information Processing Systems, 2020.

[19] B. Kaya, S. Kumar, C. Oliveira, V. Ferrari, and L. Van
Gool, “Uncertainty-aware deep multi-view photometric
stereo,” in CVPR, 2022.

[20] S. Marschner and P. Shirley, Fundamentals of Computer
Graphics, A K Peters/CRC Press, 2018.

[21] R. Basri, D. Jacobs, and I. Kemelmacher, “Photometric
stereo with general, unknown lighting,” International
Journal of Computer Vision, vol. 72, no. 5, pp. 239–257,
2007.

[22] A. Agudo, “Safari from visual signals: Recovering vol-
umetric 3D shapes,” in ICASSP, 2022.

[23] The Joyful Yell, ,” URL:
http://www.thingiverse.com/thing:897412.

[24] M. Levoy, J. Gerth, B Curless, and K. Pull, “The stan-
ford 3D scanning repository,” 2005.

[25] HDRLabs, “sIBL archive,” URL:
http://www.hdrlabs.com/sibl/archive.html.

[26] B. Haefner, S. Peng, A. Verma, Y. Queau, and D. Cre-
mers, “Photometric depth super-resolution,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 42, no. 10, pp. 2453–2464, 2019.


