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Reconstruction of sampled surfaces with boundary via Morse theory
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Abstract
We study the perception problem for garments (e.g. a pair of pants) using tools from computational topology: the identification of
their geometry and position from point-cloud samples, as obtained e.g. with 3D scanners. We present a reconstruction algorithm
based on Morse theory that proceeds directly from the point-cloud to obtain a cellular decomposition of the surface derived via
a Morse function. No intermediate triangulation or local implicit equations are used, avoiding reconstruction-induced artifices.
The results are a piecewise parametrization of the surface as a union of Morse cells, suitable for tasks such as noise-filtering
or mesh-independent reparametrization, and a cell complex of small rank determining the surface topology. This algorithm can
be applied to smooth surfaces with or without boundary, embedded in an ambient space of any dimension.
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1. Introduction

Robotic manipulation of textiles in a domestic environment is a
very relevant problem because of the everyday presence of cloth in
human activities; with promising applications ranging from fold-
ing clothes to making beds [DSP∗16]. To succeed in this endeavor,
the robot needs to "understand" the textile it is trying to manipu-
late [Jim17]. When an arbitrary and unknown garment is presented
before the robot, a point-sample of it can be obtained through the
use of depth cameras or 3D scanners. Nevertheless, this sample of
points will in general have no known structure. This is where re-
constructing and recognizing the textile from the point-cloud (i.e.
to parametrize and deduce its topology) becomes of great impor-
tance if one wishes the robot to manipulate the garment [YVK21];
e.g. using physical cloth models [CAACnT22]. Naturally, recon-
struction of a surface in space from a sample of points on it is
a question to which considerable attention has been devoted in
the areas of Computational Geometry and Computer Graphics (see
[Dey06, HWW∗22] for a variety of methods). Nevertheless, to our
knowledge almost all reconstruction algorithms focus on triangula-
tions, implicit functions, and piecewise parametrizations, but disre-
gard a direct topological study of the point-cloud.

In this work, we present a reconstruction algorithm that proceeds
directly from a point-cloud to obtain a cellular decomposition of the
cloth surface: a global piecewise parametrization of the surface is
found, with a small number of pieces. From the cellular decom-
position, the topology of the surface can be deduced immediately.
Our method can be applied to surfaces with or without boundary,
embedded in an ambient space of any dimension. Moreover, the
algorithm is robust: it always produces a surface, and it captures
the topological features of the sampled surface with a size greater

than the average distance between sample points. Our algorithm
was first sketched by the authors in [ACAC∗22] for surfaces with-
out boundary. Here we expand on that work to treat the case with
boundary, give more details on how to compute Morse cells and
their attachment maps and reconstruct two challenging novel point-
clouds of garments with boundary.

2. Related work

Since its beginnings, Differential Topology has tackled the piece-
wise parametrization problem for manifolds through Morse func-
tions. A smooth map f : M → R defined on a compact manifold
without boundary is Morse if it has only finitely many critical
points, and at all of these the Hessian H( f ) is nondegenerate. Clas-
sical Morse theory (see [Hir76]) shows that a generic Morse func-
tion f induces, through its gradient flow, a decomposition of the
manifold M as a CW complex (see [Mun84]): each critical point
of f , together with its unstable manifold for the vector field −∇ f ,
forms a cell which is topologically a ball, whose boundary attaches
to lower-dimensional cells. A global piecewise decomposition of M
is achieved, and a Morse-Smale complex, with the critical points of
f as a basis, giving the singular homology of M.

The success of Morse theory comes from the fact that Morse
functions, and the Morse-Smale transversality conditions required
for the above analysis, are generic among smooth maps from M to
R. For instance, the height function in a random direction in RN has
probability 1 of being a Morse-Smale function. Morse theory also
extends to manifolds with boundary via stratified spaces [GM88].
Applying Morse theoretical ideas directly to the sample point-cloud
of a surface S was first suggested by [GSZ08, ZSG09], who pro-
pose an algorithm for point clouds with a known, homogeneous
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density of sampling. Later, in [CRRC13] a Morse decomposition
scheme from point-clouds sampling manifolds without boundary of
any dimension is proposed. All these works, however, stop short of
questions such as cell parametrization or attachment maps, which
are relevant to robotic applications where point-clouds of textiles
may need to be filtered and down-sampled in order to e.g. be simu-
lated. We use the gradient flows of [GSZ08, ZSG09] as the starting
point, but then detect critical points and their Morse cells differ-
ently, proposing a new procedure based on studying the level sec-
tions of these flows.

3. Local structure of the point-cloud

Before we can define a Morse function on a given point-cloud X of
a surface with boundary S, we need to give it a local structure:

Neighbors identification: the first step is the identification of a
set of neighbors of each point v in the cloud X ⊂ RN . We merge
two classical criteria, and declare two points as neighbors when (i)
each point is among the k-nearest neighbors of the other and (ii)
their Voronoi cells in the decomposition of the ambient space RN

induced by X are adjoining. The relationship of neighborhood is
made symmetric by reciprocating neighboring relationships where
needed. The neighbors of v will be denoted by Neigh(v).

Tangent space estimation: this task is performed as usual by
finding the regression plane in the least squares sense: given the
point v and all its neighbors Neigh(v) = {v1, . . .vk} we compute
the singular value decomposition of the matrix with vectors v⃗vi as
rows.

Boundary recognition: in order to detect boundary points ro-
bustly, we propose the following novel graph-theoretical approach:
let v ∈ X , and TvS the estimated tangent plane at v. We follow the
following steps:

1. Given {v1, . . .vk} the neighbors of v0 = v we project them on the
planes Tv j S for j = 0, . . .k. These projections will be denoted by
π j(vi).

2. We create a plane graph G j with the projected points for every
j = 0, . . .k, where we add an edge between π j(vi) and π j(vl) only
when vi,vl are themselves neighbors in the cloud and i, l ̸= 0.

3. We declare the vertex v as a boundary point only when none of
the plane graphs G j enclose π j(v) for every projection to Tv j S.

4. Morse function and Morse cells

We define f : X → R as the height function f (v) = ⟨v, n̂⟩ where
n̂ is a fixed unitary direction (several random n̂ are tried, and the
one with a smaller set of local maxima and minima is selected;
randomness assures that the f (v) are all different). We define the
upward flow of f as the function Up : X → X such that

Up(v) = argmaxvk∈Neigh(v), f (vk)> f (v)
f (vk)− f (v)
||vk − v|| . (1)

Analogously, we define the downward flow Down : X → X . Then,
when f (v) > f (vk) for every k ∈ Neigh(v), we have a local maxi-
mum and define Up(v) = v. Likewise, when f (v)< f (vk) for every
k ∈ Neigh(v), we have a local minimum and write Down(v) = v.
Since we have identified the boundary curves of X , we can define

the two flows ∂Down(·) and ∂Up(·) analogously (considering that
each boundary point has two natural neighbors in ∂X) so that they
preserve the boundaries. Then we can easily compute boundary
maxima and minima (which will not be in general local extrema
of the full cloud X).

4.1. Hyperplane sections and critical points

In order to compute all critical points of f we perform n level
set intersections at equispaced levels ci = c0 + i · h ranging from
cn = max f (X) to c0 = min f (X). We intersect the realization in
RN of the oriented graph Gdown, with vertices X and edges given by
Down(·) (i.e. two vertices v,w ∈ X share an edge if w = Down(v))
and the boundary curves, with the (hyper)planes Hc = {p ∈ RN :
p · n̂ − c = 0}. These intersections Γ(c) = Gdown ∩ Hc are (hy-
per)plane point-samples of one-dimensional curves (possibly with
boundary, i.e. intervals) that we can reconstruct and parametrize.
Changes in the number or topological type of connected compo-
nents of these level sets tell us that the level ci has crossed a critical
point of f (see Figure 1).

Figure 1: When a local maximum appears, a new connected component
S1 appears in Γ(c).

Since we are assuming that the underlying surface S of the point-
cloud X has a boundary ∂S, the reconstructed curves Γ(c) are home-
omorphic to a union of S1 and closed intervals [0,1]. These inter-
vals always join two points of ∂S, introducing a bordism equiva-
lence relation in ∂S∩Hc. We will make a distinction between (lo-
cal) minima (resp. maxima) of the whole point-cloud, and boundary
minima (resp. maxima) which are points that are critical when we
restrict f to the boundary curves, but not in the whole surface. In
Figure 2 we can see a summary of the generic (i.e. non-degenerate)
level set transformations when the level crosses that of a particular
type of critical point.

4.2. Identification of Morse cells

Now we explain how to identify all the Morse cells that give us a
cellular decomposition of the surface. 0-cells correspond to local
minima or to boundary minima of f : they are the fixed points of
Down(·) and ∂Down(·) respectively. In the case of 2-cells, there
is one for each local maximum of f (the fixed points of Up(·)).
To deduce which points of the cloud correspond to each 2-cell, we
flow up every point v ∈ X by Up(·) and see at which maximum
it ends up. Finally, there are three cases that generate the 1-cells of
the skeleton: (i) boundaries: when S has a non-empty boundary, the
boundary curves are also part of the 1-skeleton; (ii) saddle points:
there are one-dimensional curves that go from one local minimum
m1 or boundary point to another (not necessarily distinct) local
minimum m2 or boundary point passing through the saddle point
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Figure 2: Different local level set transformations: the reconstructed
curves Γ(c) are homeomorphic to a union of S1 and closed intervals [0,1].

(these are detected by finding two pair of points in a level set that
can be paired by proximity, such that the flow Down(·) changes the
pairing in the next level); and finally (iii) boundary minima: there
are 1-cells connecting a boundary minimum to a local minimum or
boundary point of the cloud. In order to compute this 1-cell we sim-
ply flow down every boundary minimum using Down(·). When 1-
cells introduced by saddle points or boundary minima end at points
of the boundary ∂S not previously labeled as 0-cells, we introduce
the point where they meet to the 0-skeleton and divide the 1-cell
into two.

4.3. Attachment maps of the Morse cells

Now that we have the skeleton of S, i.e. the 0,1,2-cells, we en-
counter the problem of figuring out the attachment maps between
the cells. We choose a simple (i.e. without self-intersections) closed
curve of neighbors around each maximum and flow it by Down(·)
until it reaches the 1-cells. We do this in a way such that when a
point of the curve has neighbors that are in the 1-cells, we stop fol-
lowing the flow Down(·) and match the point in question to the
point in the 1-cell with results in the most negative downwards
slope. If the local maximum is located at ∂S, we consider a curve
around the maximum m̂, meaning that we take an arc of the bound-
ary centered at m̂ and complete it with neighboring interior nodes
so that we obtain a closed simple curve. We now have a matching
between the initial crown and the 1-cells (although not a bijection).
But this is enough to deduce which 1-cells are the boundary of the
2-cell (only the 1-cells that are reached), in which order (this can
be deduced since the curve is parametrized), the orientation (again
thanks to the parametrization) and how many times they appear
(once or twice, depending on the matching).

5. Results

In this section, we reconstruct two different surfaces with boundary,
one is synthetic whereas the other is a real scan of an actual textile.

Ellipsoidal vest. Figure 3 shows our algorithm applied to a sam-
ple of 36 000 points from a vest embedded in R3. The cloud was

obtained by cutting out parts of an ellipsoid in order to obtain a
surface with the same topology as an open vest. Therefore, it has
positive Gaussian curvature everywhere and very large boundary
curves. After detecting and parametrizing the boundary success-
fully, the algorithm correctly detects 2 local maxima, 2 boundary
maxima, 1 local minima and 3 boundary minima for the height
function depicted in the figure. All critical points are located at
the boundary. Moreover, two new points (shown in purple) are
added as 0-cells where the 1-cells meet each other or the bound-
ary curves. Then, a decomposition of the surface into 16 Morse
cells is found (five 0-cells, nine 1-cells and two 2-cells). In or-
der to deduce how the two 2-cells attach and which 1-cells are
their boundary, we apply the curve flow explained in Section 4.3.
This process in action for one of the 2-cells can be visualized at
https://youtu.be/8cgr54oRf6w. Thus, we deduce how
the cells attach with each other (e.g. the 1-cell number 5 appears on
both 2-cells and it is precisely one of the curves where they attach,
see Figure 3). From this, we recover the entire topology of the vest.

Figure 3: A sampled vest: the black line is the direction of the height
function; maxima are painted in red, minima in black; 1-cells correspond-
ing to boundary minima are outlined in blue and the boundary curves in
black. The 2 purple points where the 1-cells meet each other or the bound-
ary curves are added to the decomposition. The numbers correspond to the
different formal 1-cells that, when identified (e.g. 7 with 7’), reconstruct the
entire surface from 2 pieces homeomorhic to disks.

3D-scan of pants. Figure 4 shows our algorithm applied to a 3D
scan of a pair of real jeans. The scan was made by a Artec Eva
professional handheld 3D scanner while the garment was worn.
In order to apply our algorithm and to reduce irrelevant details
and noise, we down-sample the initial cloud of more than 500 000
points to 11 000 by using a box-grid filter. Still, the cloud has a lot
of detail (e.g. wrinkles) that cause the proliferation of critical points
and hence of Morse-cells. After computing for each point its neigh-
bors as explained in Section 3, we apply a discrete-curvature filter
to the point-cloud. This means that we substitute each point v for a
weighted average of its position and the location of its neighbors.
When applied a small number of times this filter defines a bijection
between the original cloud and the filtered one, which preserves the
topology of the underlying surface. Hence, the decomposition we
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find for the filtered case is still valid and topologically accurate for
the original cloud, which is the one shown in Figure 4.

The algorithm correctly detects 1 local maxima, 2 boundary
maxima, 2 local minima, 1 boundary minima and 1 saddle point
for the height function depicted in Figure 4. A decomposition of
the surface into 8 Morse cells is found (three 0-cells: the minima
and a point added because the original 1-cells intersect, six 1-cells
and one 2-cell, for the local maximum). On the bottom of Figure
4 we display the level set curves Γ(c) = Gdown ∩Hc (see Section
4.1). Notice that for this point-cloud we encounter several of the
possible local transformations of level-set curves for surfaces with
boundary shown in Figure 2.

Figure 4: A 3D-scan of real pants: the black line is the direction of the
height function; maxima are painted red, minima in black, saddle points
are painted blue; 1-cells are outlined in blue and the boundary curves in
black. The purple point where the 1-cells meet each other is added to the
decomposition. On the bottom, we plot the level-set curves obtained by in-
tersecting the surface with planes perpendicular to the height function.

6. Conclusions and further work

In this work, we have presented an algorithm that successfully re-
constructs surfaces with boundary by finding a Morse cellular de-
composition from a cloud of sampled points on it. It can be applied
to surfaces with any topology, and correctly determines it. We re-
constructed with our method two different example surfaces with
boundary –a vest and a pair of pants– which posed various chal-
lenges. For instance, the pants were obtained as a 3D-scan of a

real pair of jeans and thus its point-cloud presented wrinkles, noise
and an irregular density distribution of points. For both surfaces
a global piece-wise decomposition was found, with a very small
number of pieces. From the cellular decomposition, the topology of
the surfaces can be deduced immediately. We intend to test the re-
construction algorithm with more real point-clouds of various tex-
tiles. This would allow the creation of a reconstructed data-base of
textiles that could be later simulated with any cloth model. Further-
more, we expect to extend the point-cloud reconstruction algorithm
for surfaces to higher dimensional manifolds by iterating the hyper-
plane sections, reconstructing the manifold from lower dimensional
slices.
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